首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new entomopathogenic nematode species, Steinernema scarabaei, was evaluated for efficacy against two white grub species, the European chafer, Rhizotrogus majalis, and the Japanese beetle, Popillia japonica, in laboratory, greenhouse, and field trials. In laboratory assays, S. scarabaei caused greater mortality than Heterorhabditis bacteriophora. S. scarabaei was highly virulent with an LC50 of 5.5–6.0 and 5.7 infective juveniles (IJs) per third-instar larva in R. majalis and P. japonica, respectively. In a greenhouse trial, S. scarabaei provided greater mortality of R. majalis at all application rates (0.156–1.25 × 109 IJs/ha) than Steinernema glaseri and H. bacteriophora (both at 1.25 × 109 IJs/ha). Combination of imidacloprid and S. scarabaei resulted in an antagonistic interaction. In a fall field trial, S. scarabaei provided 88 and 75% control of R. majalis at 2.5 × 109 and 109 IJs/ha, respectively, and 54% control of P. japonica at 109 IJs/ha; H. bacteriophora had no effect on mortality of either white grub species. In a spring field trial, unusually cool temperatures impeded nematode activity. Against R. majalis, S. scarabaei provided moderate control (56–59%), whereas Heterorhabditis marelatus provided no control. Mortality of P. japonica was moderate (49–66%) in both S. scarabaei and H. marelatus treatments. Overwinter persistence of S. scarabaei activity was demonstrated in a spring assay of soil from fall treated plots in which nematode infection was absent from control plots and present in treated plots.  相似文献   

2.
Three species of entomopathogenicnematodes, a combination of two nematodespecies, an entomopathogenic fungal species,and a combination of a nematode and fungalspecies were evaluated against the white grubsEctinohoplia rufipes and Exomalaorientalis (Coleoptera: Scarabaeidae) in the field. The nematodes were acommercial formulation of Steinernemacarpocapsae (BioSafe) and S. glaseri from Dongrae and from Hanrim, and Heterorhabditis bacteriophora from Hamyang,Republic of Korea. The entomopathogenic funguswas Beauveria brongniartii, produced onSabouraud maltose agar plus 1% yeast (SMAY),rice bran, or compost. The combinationtreatment was S. carpocapsae with H.bacteriophora or B. brongniartii. Fieldapplications were made in August or Septemberagainst third instars at a golf course infestedwith E. rufipes in Gyeongnam Province in1991, and one in Pusan with E. orientalisin 1992 and 1993. In 1991, a significantreduction of 70.2 to 79.4% of E. rufipeslarvae was observed in the nematode, fungal andchemical (fenitrothion) treatments comparedwith a 15.7% reduction in the control. In1992, the E. orientalis larval populationwas reduced between 62.7 and 82.8% in thetreatments compared to 10.7% in the control.In 1993, larval reductions in plots treatedwith nematodes (78.3 to 97%) and B.brongniartii propagated on rice bran (84.5%)were significantly better than in plots treatedwith B. brongniartii propagated on SMAY(63.6%) or compost (59.6%). Combining twonematode species did not enhance the efficacycompared to treatments with one nematodespecies alone, but combining S.carpocapsae with B. brongniartiiproduced on SMAY resulted in a significantincrease in grub mortality over the applicationof the fungus alone produced on SMAY orcompost. The high efficacy of the nematode andmost fungal treatments was attributed to theclose proximity of the white grubs to the soilsurface which allowed for excellentpathogen-host contact and to favorable soiltemperatures, sandy soil, post irrigationapplication and/or rain and a minimal thatchlayer in the turfgrass.  相似文献   

3.
Biological control potential of nine entomopathogenic nematodes, Heterorhabditis bacteriophora CLO51 strain (HbCLO51), H. megidis VBM30 strain (HmVBM30), H. indica, Steinernema scarabaei, S. feltiae, S. arenarium, S. carpocapsae Belgian strain (ScBE), S. glaseri Belgian strain (SgBE) and S. glaseri NC strain (SgNC), was tested against second-, and third-instar larvae and pupae of Hoplia philanthus in laboratory and greenhouse experiments. The susceptibility of the developmental stages of H. philanthus differed greatly among tested nematode species/strains. In the laboratory experiments, SgBE, SgNC, HbCLO51 and HmVBM30 were highly virulent to third-instar larvae and pupae while SgBE was only virulent to second-instar larvae. Pupae were highly susceptible to HbCLO51, HmVBM30, SgBE and SgNC (57–100%) followed by H. indica and S. scarabaei (57–76%). In pot experiments, HbCLO51, SgBE and S. scarabaei were highly virulent to the third-instar larvae compared to the second-instar larvae. Our observations, combined with those of previous studies on other nematode and white grub species, show that nematode virulence against white grub developmental stages varies with white grub and nematode species.  相似文献   

4.
Infectivity of six entomopathogenic nematode (EPNs) species against Bactrocera oleae was compared. Similar infection levels were observed when third-instar larvae were exposed to infective juveniles (IJs) on a sand-potting soil substrate. When IJs were sprayed over naturally infested fallen olives, many larvae died within treated olives as well as in the soil; Steinernema feltiae caused the highest overall mortality of 67.9%. In addition, three laboratory experiments were conducted to optimize a time period for S. feltiae field application. (1) Abundance of fly larvae inside fallen olives was estimated over the 2006–2007 season with the highest number of susceptible larvae (3 mm and larger) per 100 olives being observed during December, 2006. (2) S. feltiae efficacy against fly larvae dropped to the soil post-IJ-application was determined. B. oleae added to the substrate before and after nematode application were infected at similar levels. (3) Effect of three temperature regimes (min–max: 10–27, 6–18, and 3–12 °C) corresponding to October through December in Davis, California on S. feltiae survival and infectivity was determined. After 8 weeks, the IJs at the 3–12 °C treatment showed the highest survival rate. However, the cold temperature significantly limited S. feltiae infectivity. Our results demonstrate that B. oleae mature larvae are susceptible to EPN infection both in the soil and within infested olives. Being the most effective species, S. feltiae may have the potential to suppress overwintering populations of B. oleae. We suggest that November is the optimal time for S. feltiae field application in Northern California.  相似文献   

5.
A survey was conducted to determine the diversity and frequency of endemic entomopathogenic nematodes (EPN) in citrus orchards in the Western Cape, Eastern Cape and Mpumalanga provinces of South Africa. The main aim of the survey was to obtain nematodes as biological control agents against false codling moth (FCM), Thaumatotibia leucotreta, a key pest of citrus in South Africa. From a total of 202 samples, 35 (17%) tested positive for the presence of EPN. Of these, four isolates (11%) were found to be steinernematids, while 31 (89%) were heterorhabditids. Sequencing and characterisation of the internal transcribed spacer (ITS) region was used to identify all nematode isolates to species level. Morphometrics, morphology and biology of the infective juvenile (IJ) and the first-generation male were used to support molecular identification and characterisation. The Steinernema spp. identified were Steinernema khoisanae, Steinernema yirgalemense and Steinernema citrae. This is the first report of S. yirgalemense in South Africa, while for S. citrae it is the second new steinernematid to be identified from South Africa. Heterorhabditis species identified include Heterorhabditis bacteriophora, Heterorhabditis zealandica and an unknown species of Heterorhabditis. Laboratory bioassays, using 24-well bioassay disks, have shown isolates of all six species found during the survey, to be highly virulent against the last instar of FCM larvae. S. yirgalemense, at a concentration of 50 IJs/FCM larva caused 100% mortality and 74% at a concentration of 200 IJs/pupa. Using a sand bioassay, S. yirgalemense gave 93% control of cocooned pupae and emerging moths at a concentration of 20 IJs/cm2. This is the first report on the potential use of EPN to control the soil-borne life stages of FCM, which includes larvae, pupae and emerging moths. It was shown that emerging moths were infected with nematodes, which may aid in control and dispersal.  相似文献   

6.
We compared the virulence of the entomopathogenic nematodes Steinernema scarabaei, Heterorhabditis zealandica, and Heterorhabditis bacteriophora (GPS11 and TF strains) against third instars of the Japanese beetle, Popillia japonica, the oriental beetle, Anomala (=Exomala) orientalis, the northern masked chafer, Cyclocephala borealis, the European chafer, Rhizotrogus majalis, and the Asiatic garden beetle, Maladera castanea, in laboratory and greenhouse experiments. The virulence of the nematode species relative to each other differed greatly among white grub species. H. bacteriophora and H. zealandica had similar modest virulence to P. japonica, A. orientalis, C. borealis, and M. castanea. But against R. majalis, H. zealandica showed low virulence with a clear concentration response whereas H. bacteriophora caused only erratic and very low mortality. In contrast, S. scarabaei had modest virulence against C. borealis, but was highly virulent against R. majalis, P. japonica, A. orientalis, and M. castanea with R. majalis being the most susceptible and M. castanea the least susceptible.  相似文献   

7.
Infective juveniles (IJs) of entomopathogenic nematodes (EPNs) are susceptible to a wide variety of environmental factors, including desiccation, which limit their usefulness as biocontrol agents. Although EPNs can be subjected to a gradual loss of water in their natural environment they are not full anhydrobiotes, being able to survive only moderate levels of desiccation at high relative humidities (rh). We investigated the desiccation tolerance of IJs of several Heterorhabditisspecies and strains when exposed to fast and slow desiccation regimes. We also investigated the behavioural and biochemical responses of Heterorhabditis IJs when exposed to 98% rh for 4 days. IJs of H. megidis UK211 (but not IJs of H. indica) aggregate into large clumps when desiccated at high rh, but unlike Steinernema spp., neither H. megidis nor H. indica IJs showed any tendency to coil. Preincubation of H. megidis UK211 IJs at high (98%) rh enhances their ability to survive for 150 min at 57% rh. We show that preincubation of H. megidis and H. indica at 98% rh induces the synthesis of glycerol but not of trehalose, whereas identical preincubation conditions do induce trehalose synthesis in Steinernema carpocapsae and Aphelenchus avenae. The biosynthesis of glycerol rather than trehalose by IJs of two species of Heterorhabditis in response to moderate levels of desiccation indicates that Heterorhabditis is unlikely to have the necessary metabolic responses to desiccation required to enable it to enter into a fully anhydrobiotic state.  相似文献   

8.
The guava weevil, Conotrachelus psidii, is a major pest of guava in Brazil and causes severe reduction in fruit quality. This weevil is difficult to control with insecticides because adults emerge over a long period, and larvae develop to the fourth-instar inside the fruit and move to the soil for pupation. We assessed the virulence of entomopathogenic nematodes to fourth-instar larvae in soil by comparing their susceptibility to nine species or strains: Heterorhabditis bacteriophora HP88, H. baujardi LPP7, and LPP1, H. indica Hom1, Steinernema carpocapsae All and Mexican, S. feltiae SN, S. glaseri NC, and S. riobrave 355. In petri dish assays with sterile sand at a concentration of 100 infective juveniles (IJs) of a given nematode species/strain, larval mortality ranged from 33.5 to 84.5%, with the heterorhabditids being the most virulent. In sand column assays with H. baujardi LPP7, H. indica Hom1, or S. riobrave 355 at concentrations of 100, 200, and 500 IJs, mortality was greater than the control only for H. baujardi (62.7%) and H. indica (68.3%) at the highest concentration. For H. baujardi LPP7 in a petri dish assay, the time required to kill 50 and 90% of the larvae (LT50 and LT90) for 100 IJs was 6.3 and 9.9 days, whereas the lethal concentration required to kill 50 and 90% of the larvae (LC50 and LC90) over 7 days was 52 and 122.2 IJs. In a greenhouse study with guava trees in 20-L pots, 10 weevil larvae per pot, and concentrations of 500, 1000 or 2000 IJs, H. baujardi LPP7 caused 30 and 58% mortality at the two highest concentrations. These results show that H. baujardi is virulent to fourth-instar larvae and has potential as a biological control agent in IPM programs.  相似文献   

9.
Generally, microbial control agents such as entomopathogenic nematodes are applied in a curative manner for achieving pest suppression; prophylactic applications are rare. In this study, we determined the ability of two Steinernema carpocapsae strains (All and Hybrid) to prophylactically protect peach trees from damage caused by the peachtree borer, Synanthedon exitiosa, which is a major pest of stone fruit trees in North America. In prior studies, the entomopathogenic nematodes S. carpocapsae and Heterorhabditis bacteriophora caused field suppression when applied in a curative manner to established S. exitiosa populations. In our current study, nematodes were applied three times (at 150,000–300,000 infective juveniles/tree) during September and October of 2005, 2006, and 2007. A control (water only) and a single application of chlorpyrifos (at the labeled rate) were also made each year. The presence of S. exitiosa damage was assessed each year in the spring following the treatment applications. Following applications in 2006, we did not detect any differences among treatments or the control (possibly due to a low and variable S. exitiosa infestation of that orchard). Following applications in 2005 and 2007, however, the nematode and chemical treatments caused significant damage suppression. The percentage of trees with S. exitiosa damage in treated plots ranged from 0% damage in 2005 to 16% in plots treated with S. carpocapsae (Hybrid) in 2007. In control plots damage ranged from 25% (2005) to 41% (2007). Our results indicate that nematodes applied in a preventative manner during S. exitios’s oviposition period can reduce insect damage to levels similar to what is achieved with recommended chemical insecticide treatments.  相似文献   

10.
Gram-negative bacteria, Photorhabdus luminescens and P. temperata, form a mutualistic association with entomopathogenic heterorhabditid nematodes while P. asymbiotica is known as an opportunistic human pathogen that causes disseminated bacteremic spread on two continents, the United States and Australia. In the course of our phylogenetic study of Photorhabdus bacteria associated with Japanese Heterorhabditis nematodes, we found two Photorhabdus isolates (Photorhabdus sp. Cbkj163 and OnIr40) whose partial 16S rRNA gene sequence showed high similarities to clinical isolates of this pathogen from Heterorhabditis indica. The phylogenetic study, based upon the gyrase subunit B gene sequences of the two isolates, revealed clustering with these clinical isolates of P. asymbiotica from both the United States and Australia but not with other Photorhabdus bacteria associated with nematodes. The two bacterial isolates were also found to share microbiological and biochemical characteristics with clinical and entomopathogenic Photorhabdus strains. Moreover, not only the two novel Photorhabdus isolates but also an Australian clinical isolate of P. asymbiotica formed mutualistic association with H. indica isolates. These data suggest that the bacteria isolated from H. indica CbKj163 and OnIr40 are a novel subspecies of P. asymbiotica, and that some clinical isolates of P. asymbiotica could have originated from bacteria associated with entomopathogenic nematodes.  相似文献   

11.
    
The prefeeding behaviours of adult crucifer flea beetles, Phyllotreta cruciferae (Coleoptera: Chrysomelidae: Alticinae), were determined on seedlings of the host plant, Brassica napus, and compared to behaviors on seedlings of the nonhost crucifers, Crambe abyssinica, Sinapis alba, and Camelina sativa. Three stages of prefeeding behaviour, i.e., acclimation, stimulation, and initial feeding, were distinguished through observation of filmed beetles. Both antennal and tarsal chemoreceptors are important in determination of host plant quality by the crucifer flea beetle. The results of this study suggest that the sequence of prefeeding behaviors plays a crucial role in the onset of feeding. Differences in time spent on plant tissue and the frequency and duration of prefeeding behaviors provide insight into possible mechanisms of resistance to flea beetles in the non-Brassica crucifers. The nonpreferred hosts C. abyssinica and S. alba contain deterrent phytochemicals that partially inhibit feeding. These deterrent compounds appear to be volatile in nature in S. alba but nonvolatile in C. abyssinica. CFB resistance in the nonhost C. sativa may result from either the presence of repellent or the absence of stimulatory volatile phytochemicals.  相似文献   

12.
In the laboratory, mortality rates of the agromyzid leafminer larvae,Liriomyza trifolii (Burgess), ranged from 48 to 98% by 20 strains and/or species of steinernematid and heterorhabditid nematodes. In the greenhouse, abamectin provided superior control of larval leafminers, killing 100% of them as compared withSteinernema carpocapsae (Weiser) All strain (24 to 43% leafminer mortality) orS. carpocapsae Liriomyza-selected strain (8 to 44% leafminer mortality); the maximum relative humidity (r.h.) ranged between 81 and 91% and the minimum r.h. between 50 and 70%. In the foghouse under high r.h., the commercially available All strain and the Hawaiian isolate ofS. feltiae (Filipjev) MG-14 strain caused 69 and 67% mean mortality, respectively. There was a significant correlation (P<0.01) between nematode mortality of leafminers and r.h., including the mean, standard deviation, and minimum r.h. during the 48 h after treatment. Average r.h. >92% with a standard deviation of <9% r.h. and a minimum of 72% r.h. providedS. carpocapsae All strain mortality rates of leafminers >65%. The major constraint against the use of nematodes against leafminers in the foliar environment is low r.h. The use of nematodes againstL. trifolii can be successful if the r.h. remains high and if nematodes enter leafmines before desiccation, and the nematodes should be integrated with chemical insecticides such as abamectin to manage pesticide resistance inL. trifolii.  相似文献   

13.
Mutual effects between the symbiotic bacteria of entomopathogenic nematodes, Photorhabdus luminescens and Xenorhabdus poinarii, and entomopathogenic fungi were investigated in vitro. A dual culture assay on nutrient agar supplemented with bromothymol blue and triphenyltetrazolium chloride (NBTA) medium revealed that P. luminescens is antagonistic to Metarhizium anisopliae, Beauveria bassiana, B. brongniartii and Paecilomyces fumosoroseus by inhibiting their growth and conidial production; the fungal growth was not inhibited by X. poinarii. In a second laboratory experiment, crude extract produced by M. anisopliae was tested for its activity against P. luminescens and X. poinarii. Crude extract from M. anisopliae was antibacterial to P. luminescens and X. poinarii at 1000 g/ml and inhibited their growth on NBTA, but had no effect at 100 or 10 g/ml. The influence of the crude extract of M. anisopliae on the dispersal of infective juveniles (IJs) of Heterorhabditis megidis and Steinernema glaseri was assayed on Sabouraud Dextrose Agar (SDA) plates. Results showed that the crude extract of M. anisopliae had no toxic effects even at highest concentration (1000 g/ml).  相似文献   

14.
  总被引:26,自引:0,他引:26  
Russet Burbank potato plants have been genetically improved to resist insect attack and damage by Colorado potato beetles (Leptinotarsa decemlineata (Say)) by the insertion of a cryIIIA gene encoding the insect control protein of Bacillus thuringiensis var. tenebrionis. A modified gene that dramatically improved plant expression of this protein was utilized. Its expression in Russet Burbank potato plants resulted in protection from damage by all insect stages in the laboratory and in dramatic levels of protection at multiple field locations. Analysis of these genetically modified potatoes indicated that they conform to the standards for Russet Burbank potatoes in terms of agronomic and quality characteristics including taste.  相似文献   

15.
We examined the influence of insect cadaver desiccation on the virulence and production of entomopathogenic nematodes (EPNs), common natural enemies of many soil-dwelling insects. EPNs are often used in biological control, and we investigated the feasibility of applying EPNs within desiccated insect cadavers. Desiccation studies were conducted using the factitious host, Galleria mellonella (Lepidoptera: Pyralidae, wax moth larvae) and three EPN species (Heterorhabditis bacteriophora ‘HB1’, Steinernema carpocapsae ‘All’, and Steinernema riobrave). Weights of individual insect cadavers were tracked daily during the desiccation process, and cohorts were placed into emergence traps when average mass losses reached 50%, 60%, and 70% levels. We tracked the proportion of insect cadavers producing infective juveniles (IJs), the number and virulence of IJs produced from desiccated insect cadavers, and the influence of soil water potentials on IJ production of desiccated insect cadavers. We observed apparent differences in the desiccation rate of the insect cadavers among the three species, as well as apparent differences among the three species in both the proportion of insect cadavers producing IJs and IJ production per insect cadaver. Exposure of desiccated insect cadavers to water potentials greater than −2.75 kPa stimulated IJ emergence. Among the nematode species examined, H. bacteriophora exhibited lower proportions of desiccated insect cadavers producing IJs than the other two species. Desiccation significantly reduced the number of IJs produced from insect cadavers. At the 60% mass loss level, however, desiccated insect cadavers from each of the three species successfully produced IJs when exposed to moist sand, suggesting that insect cadaver desiccation may be a useful approach for biological control of soil insect pests.  相似文献   

16.
Invasive, non-native, white grubs (Coleoptera: Scarabaeidae) cause significant damage in urban landscapes. Although the lack of natural enemies in their new home is often suggested as an important factor in the establishment and spread of invasive species, the potential of incumbent generalist parasites and pathogens to delay their establishment and spread has not been explored. We compared the susceptibility of the introduced Popillia japonica and the native Cyclocephala borealis to 16 species and strains of entomopathogenic nematodes isolated from within or outside the geographic ranges of the two scarabs. We found large variation in the virulence of the species/strains of nematodes with over 50% mortality of P. japonica produced by Heterorhabditis zealandica strain X1 and H. bacteriophora strain GPS11 and of C. borealis by H. zealandica and H. bacteriophora strains KMD10 and NC1. Heterorhabditis indica and H. marelatus caused less than 20% mortality of both scarab species. When considered as a group the nematode species and strains from within and outside the geographic ranges of either P. japonica or C. borealis did not differ in virulence towards either scarab species. Dose response studies with selected nematode species and strains against P. japonica and two additional non-native species Anomala (Exomala) orientalis and Rhizotrogus majalis and the native C. borealis indicated that R. majalis was the least susceptible and P. japonica and A. orientalis were as susceptible as the native C. borealis. Heterorhabditis zealandica was significantly more virulent than any other species or strain against P. japonica with a LC50 of 272 IJs/grub. The LC30 and LC50 values for H. zealandica were also the lowest among the four nematode species/strains tested against A. orientalis and C. borealis. The LC50 values for H. zealandica and H. megidis (UK strain) were significantly lower for the native C. borealis than the introduced A. orientalis. H. zealandica also showed the highest penetration efficiency and the lowest encapsulation in P. japonica and C. borealis grubs. Results suggest that the introduction of the exotic H. zealandica into the front-line states with respect to the movement of P. japonica and A. orientalis should be explored as a tactic to delay their establishment and spread. The results also suggest that the manipulation of the indigenous H. bacteriophora populations may help in delaying spread and mitigating losses caused by the invasive grub species.  相似文献   

17.
Ants were the most apparent invertebrate scavengers observed foraging on entomopathogenic nematode-killed insects (i.e., insect cadavers containing entomopathogenic nematodes and their symbiotic bacteria) in the present study. Workers of the Argentine ant,Linepithema humile(Mayr), scavenged nematode-killed insects on the surface and those buried 2 cm below the soil surface. Ant workers scavenged significantly more steinernematid-killed (60–85%) than heterorhabditid-killed (10–20%) insects. More 4-day-postinfected cadavers (hosts died within 48 h after exposure to nematodes) were scavenged than 10-day-postinfected cadavers. Ten-day-postinfected hosts contained live infective juvenile nematodes therefore ants may serve as phoretic agents. Other ant species, includingVeromessor andrei(Mayr),Pheidole vistanaForel,Formica pacificaFrancoeur, andMonomoriom ergatogynaWheeler, also scavenged nematode-killed insects. These ant species removed or destroyed about 45% of the steinernematid-killed insects. These results suggest that survival of steinernematid nematodes may be more significantly impacted by invertebrate scavengers, especially ants, than that of heterorhabditid nematodes, and placement of steinernematid-killed insects in the field for biological control may be an ineffective release strategy. Because entomopathogenic nematodes kill insects with the help of symbiotic bacteria, we tested the role of these bacterial species in deterring invertebrate scavengers by injecting bacteria (without nematodes) into insects and placing the cadavers in the field. None of the insects killed by the symbiotic bacterium,Photorhabdus luminescens(Thomas and Poinar) fromHeterorhabditis bacteriophoraPoinar, were scavanged, whereas 70% of the insects killed by the symbiotic bacterium,Xenorhabdus nematophilus(Poinar and Thomas) fromSteinernema carpocapsae(Weiser), and 90% of the insects killed byBacillus thuringiensisBerliner were scavenged by the Argentine ant. We conclude thatP. luminescensis responsible for preventing ants from foraging on heterorhabditid-killed hosts.  相似文献   

18.
Larvae ofPhyllopertha horticola L. (Coleoptera: Scarabaeidae) cause increasing problems on sports fields and lawns in NW-Europe. A biological control programme using insect parasitic nematodes is being developed. This paper contains the results of bioassays with various species and isolates of the nematode generaHeterorhabditis andSteinernema. In bioassays in small pots with moist sand, most of the nematode isolates gave 30–60% mortality against each of the three larval stages. The susceptibility of the grubs for nematode infection generally increased with larval development.H. bacteriophora, H. heliothidis, H. megidis, a DutchHeterorhabditis isolate NLH-E87.3 andS. glaseri 326 showed the highest mortality rates, with nearly 100% mortality of third instar grubs. The DutchHeterorhabditis isolate NLH-E87.3 andS. glaseri 326 were selected as candidates for further studies on their potential as biological control agents forP. horticola grubs in the field.  相似文献   

19.
An exotic invasive pest of pines, the red turpentine beetle, Dendroctonus valens LeConte (Scolytidae) (RTB), was first detected in Shanxi Province, northern China, in 1998 and started causing widespread tree mortality there in 1999. This outbreak continues and has spread to three adjacent provinces, causing unprecedented tree mortality. Although it is considered a minor pest of pines in North America, RTB has proven to be an aggressive and destructive pest of Pinus tabuliformis, China’s most widely planted pine species. The bionomics and occurrence, distribution, response to host volatiles, and host preference of this pine beetle in China are compared with what is known of the beetle in its native range in North America. Factors likely contributing to D. valens success in China and control of the beetle outbreak are discussed. (−)-β-pinene was shown to be the most attractive host volatile for D. valens from the Sierra Nevada of California, whereas 3-(+)-carene is the most attractive host volatile for beetles in China. Monocultures of Pinus tabuliformis, several consecutive years of drought conditions and warm winters have apparently factored D. valens invasion and establishment in China.  相似文献   

20.
Adult female red pine cone beetles (Conophthorus resinosae Hopkins) (Coleoptera:Scolytidae) left cones of white pine (Pinus strobus L.) more readily than cones of red pine (Pinus resinosa Ait.) in the first 3 min after being placed on cones. Slices of white pine cones, however, did not elicit different beetle behavior than slices of red pine cones. Beetles bored into white pine as readily as into red pine. We conclude that beetles initially reject white pine due to structural traits, but eventually accept it during prolonged exposure and may utilize white pine in nature.
Résumé C. resinosae Hopkins (Coleoptera, Scolytidae) s'alimente et pond sur les cônes de Pinus resinosa Ait.; il détruit souvent plus de la moitié des graines du pin dans la région des grands lacs aux USA. Cette espèce et les autres Conophthorus sont considérés comme des spécialistes très spécifiques. Nous avons voulu vérifier que les femelles de C. resinosae acceptent plus facilement comme hôtes les cônes de P. resinosae que ceux de P. strobus L. Au laboratoire, les scolytes ont abandonné les cônes de P. strobus plus rapidement que ceux de P. resinosae, au cours des 3 minutes qui ont suivi leur dépôt sur les cônes. Cependant des rondelles de P. resinosae n'ont pas été plus stimulantes que celles de P. strobus; les scolytes n'ont pas foré plus rapidement, ni n'ont plus séjourné sur P. resinosae que sur P. strobus au cours de 1, 2 ou 24 heures de l'expérience. Nous en concluons que les scolytes rejettent de prime abord P. strobus pour ses caractères structuraux, mais qu'ils l'acceptent éventuellement pendant expositions prolongées et peuvent le consommer dans la nature.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号