首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The Relationship Between Growth and Oxygen Uptake in Hypoxic Rice Seedlings   总被引:1,自引:0,他引:1  
Atwell, B. J. and Green way, H. 1987. The relationship betweengrowth and oxygen uptake in hypoxic rice seedlings.—J.exp. Bot. 38: 454–465. Rice seedlings (Oryza saliva L.) were grown in the dark forup to 4 d in solutions containing various concentrations ofO2. Compared with seedlings grown at 0·250 mol O2 m–3,the dry weight of the growing seedling was 14% lower at 0·110mol O2 m–3 and 60% lower at 0 mol O2 m–3. Decreasesin fresh weight were similar but not identical to decreasesin dry weight, possibly because leaf growth was suppressed evenabove 0·110 mol O2 m–3. Oxygen deficiency inhibitedroot growth more severely than coleoptile growth. Coleoptiles from seedlings grown in aerated solution were exposedto an atmosphere of pure N2 for 30 min. Anoxia caused a declinein ATP content and energy charge, suggestive of decreased oxidativephosphorylation. It is not clear whether the decline in oxidativephosphorylation was solely responsible for impaired growth inhypoxia. In seedlings growing at O2 concentrations less than 0·110mol O2 m–3, significant amounts of ethanol were synthesized.The rate of O2 uptake decreased markedly below 0·06 molO2 m–3; this was presumably near the external O2 concentrationat which oxidative phosphorylation became limited by the supplyof O2. The stage of development of the seedlings appeared toinfluence O2 uptake, possibly through changes in conductanceof the tissue to O2. Uncouplers were used to confirm that thecritical O2 concentration was dependent on O2 diffusion ratherthan enzyme kinetics. Impaired growth above 0·110 molO2 m–3 may have been due to a decreased activity of oxygenasesof relatively low affinity for O2, which in turn altered cellmetabolism. Key words: Growth, oxygen uptake, rice seedlings, hypoxia  相似文献   

2.
This study evaluated the effects of anoxia on K+ uptake andtranslocation in 3–4-d-old, intact, rice seedlings (Oryzasativa L. cv. Calrose). Rates of net K+ uptake from the mediumover 24 h by coleoptiles of anoxic seedlings were inhibitedby 83–91 %, when compared with rates in aerated seedlings.Similar uptake rates, and degree of inhibition due to anoxia,were found for Rb+ when supplied over 1·5–2 h,starting 22 h after imposing anoxia. The Rb+ uptake indicatedthat intact coleoptiles take up ions directly from the externalsolution. Monovalent cation (K+ and Rb+) net uptake from thesolution was inhibited by anoxia to the same degree for thecoleoptiles of intact seedlings and for coleoptiles excised,‘aged’, and supplied with exogenous glucose. Transportof endogenous K+ from caryopses to coleoptiles was inhibitedless by anoxia than net K+ uptake from the solution, the inhibitionbeing 55 % rather than 87 %. Despite these inhibitions,osmotic pressures of sap (sap) expressed from coleoptiles ofseedlings exposed to 48 h of anoxia, with or without exogenousK+, were 0·66 ± 0·03 MPa; however,the contributions of K+ to sap were 23 and 16 %, respectively.After 24 h of anoxia, the K+ concentrations in the basal10 mm of the coleoptiles of seedlings with or without exogenousK+, were similar to those in aerated seedlings with exogenousK+. In contrast, K+ concentrations had decreased in aeratedseedlings without exogenous K+, presumably due to ‘dilution’by growth; fresh weight gains of the coleoptile being 3·6-to 4·7-fold greater in aerated than in anoxic seedlings.Deposition rates of K+ along the axes of the coleoptiles werecalculated for the anoxic seedlings only, for which we assessedthe elongation zone to be only the basal 4 mm. K+ depositionin the basal 6 mm was similar for seedlings with or withoutexogenous K+, at 0·6–0·87 µmolg–1 f. wt h–1. Deposition rates in zones above6 mm from the base were greater for seedlings with, thanwithout, exogenous K+; the latter were sometimes negative. Weconclude that for the coleoptiles of rice seedlings, anoxiainhibits net K+ uptake from the external solution to a muchlarger extent than K+ translocation from the caryopses. Furthermore,K+ concentrations in the elongation zone of the coleoptilesof anoxic seedlings were maintained to a remarkable degree,contributing to maintenance of sap in cells of these elongatingtissues.  相似文献   

3.
The photosynthetic response to CO2 concentration, light intensityand temperature was investigated in water hyacinth plants (Eichhorniacrassipes (Mart.) Solms) grown in summer at ambient CO2 or at10000 µmol(CO2) mol–1 and in winter at 6000 µmol(CO2)mol–1 Plants grown and measured at ambient CO2 had highphotosynthetic rate (35 µmo1(CO2) m–2 s–1),high saturating photon flux density (1500–2000) µmolm–2 s–1 and low sensitivity to temperature in therange 20–40 °C. Maximum photosynthetic rate (63 µmol(CO2)m–2 s–1) was reached at an internal CO2 concentrationof 800 µmol mol–1. Plants grown at high CO2 in summerhad photosynthetic capacities at ambient CO2 which were 15%less than for plants grown at ambient CO2, but maximum photosyntheticrates were similar. Photosynthesis by plants grown at high CO2and high light intensity had typical response curves to internalCO2 concentration with saturation at high CO2, but for plantsgrown under high CO2 and low light and plants grown under lowCO2 and high light intensity photosynthetic rates decreasedsharply at internal CO2 concentrations above 1000 µmol–1. Key words: Photosynthesis, CO2, enrichment, Eichhornia crassipes  相似文献   

4.
The respiratory effluxes of nodules and of roots of FiskebyV soyabean (Glycine max (L.) Merr.), grown in a controlled environment,were measured at intervals in air and 3% O2 from shortly afterthe onset of N2 fixation until plant senescence. The respiratoryburdens linked with nitrogenase plus ammonia metabolism, andnodule growth and maintenance, were calculated from gas exchangedata and related to the concurrent rates of N2 fixation. The specific respiration rates of nodules increased to a maximumof 21 mg CO2 g–1 h–1 at the time pods began development:the equivalent maximum for roots was c. 4.5 mg CO2 g–1h–1. Maximum nodule and root respiration rates per plantwere attained about 25 d later at the time N2 fixation peakedat 15 mg N d–1 plant–1. The relationship between nodule respiration and N2 fixationindicated an average respiratory cost of 13.2 mg CO2 mg–1N until the last few days of plant development Separation ofnodule respiration into the two components: nitrogenase (+ NH3metabolism) respiration and nodule growth and maintenance respiration,indicated that the latter efflux accounted for c. 20% of nodulerespiration while N2 fixation was increasing and new noduletissue was being formed. When nodule growth ceased and N2 fixationdeclined, this component of respiration also declined. The respiratorycost of nitrogenase activity plus the associated metabolismof NH3 varied between 11 mg CO2 mg–1 N during vegetativeand early reproductive growth, to 12.5 mg CO2 mg–1 N duringthe later stages of pod development. Key words: N2 fixation, Respiration, Nodules, Nitrogenase  相似文献   

5.
Stands of groundnut (Arachis hypogaea L.), a C3 legume, weregrown in controlled-environment glasshouses at 28 °C (±5°C)under two levels of atmospheric CO2 (350 ppmv or 700 ppmv) andtwo levels of soil moisture (irrigated weekly or no water from35 d after sowing). Elevated CO2 increased the maximum rate of net photosynthesisby up to 40%, with an increase in conversion coefficient forintercepted radiation of 30% (from 1–66 to 2–16g MJ–1) in well-irrigated conditions, and 94% (from 0–64to 1·24 g MJ–1) on a drying soil profile. In plantswell supplied with water, elevated CO2 increased dry matteraccumulation by 16% (from 13·79 to 16·03 t –1) and pod yield by 25% (from 2·7 to 3·4t ha–1).However, the harvest index (total poddry weight/above-grounddry weight) was unaffected by CO2 treatment. The beneficial effects of elevated CO2 were enhanced under severewater stress, dry matter production increased by 112% (from4·13 to 8·87 t ha–1) and a pod yield of1·34t ha–1 was obtained in elevated CO2, whereascomparable plotsat 350 ppmv CO2 only yielded 0·22 t ha-1.There was a corresponding decrease in harvest index from 0·15to 0·05. Following the withholding of irrigation, plants growing on astored soil water profile in elevated CO2 could maintain significantlyless negative leaf water potentials (P<0·01) for theremainder of the season than comparable plants grown in ambientCO2, allowing prolonged plant activity during drought. In plants which were well supplied with water, allocation ofdry matter between leaves, stems, roots, and pods was similarin both CO2 treatments. On a drying soil profile, allocationin plants grown in 350 ppmv CO2 changed in favour of root developmentfar earlier in the season than plants grown at 700 ppmv CO2,indicating that severe waterstress was reached earlier at 350ppmv CO2. The primary effects of elevated CO2 on growth and yield of groundnutstands weremediated by an increase in the conversion coefficientfor intercepted radiation and the prolonged maintenance of higherleaf water potentials during increasing drought stress. Key words: Arachis hypogaea, elevated CO2, water stress, dry matter production  相似文献   

6.
Root growth of 7-d-old wheat (Triticum aestivum cv. Gamenya)seedlings was impaired at dissolved O2 concentrations of 0.01and 0.055 mol m–3 O2, while growth at 0.115 mol m–3O2 was the same as that in continuously aerated controls (0.26mol m–3 O2). Oxygen uptake by apical (0–2 mm), expanding (2–4mm) and expanded (10–12 mm) tissues of the roots decreasedbelow 0.16, 0.09 and 0.05 mol m–3 O2, respectively. Thishierarchy is consistent with the metabolic rates of these tissues.There was a small (c. 9%) inhibition of O2 uptake and some netsynthesis of ethanol and alanine in root apices at 0.115 molm–3 O2. Significant amounts of anaerobic end-productsaccumulated at 0.055 mol m–3 O2 and even more so at 0.01mol m–3 O2, indicating that oxidative phosphorylationwas strongly inhibited. Net alanine synthesis increased in fully expanded (10–16mm) tissues exposed to <0.003–0.01 mol m–3 O2,and this increase was accompanied either by a proportionallysmaller increase in the concentration of other free amino acidsor by a net decrease in free amino acid levels excluding alanine.This suggests that alanine was synthesized as an end-productof anaerobic catabolism and did not accumulate simply becauseof decreased net protein synthesis. Comparing the carbon flow to CO2, ethanol, lactate and alaninein roots at 0.01 mol m–3 O2 with carbon loss as CO2 inaerated roots suggests that carbon flow to products of metabolismwas not greatly enhanced due to O2 deficiency. This infers,but does not prove that, in wheat, generation of energy duringperiods of O2 deficiency is not enhanced due to a Pasteur effect. Key words: Anaerobic, fermentation, oxygen, wheat  相似文献   

7.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

8.
Barley was grown at a range of oxygen concentrations (0.5–9mg l–1), in nutrient solutions. Growth of both shootsand seminal roots was restricted by O2 concentrations lowerthan 2–3 mg l–1) but nodal root growth was not. Root porosities were increased even at those O2 concentrationswhich did not restrict growth, and were inversely proportionalto the protein levels of the roots. Sugar concentrations increasedappreciably only at those O2 concentrations which also restrictedgrowth. Hordeum vulgare L., barley, root porosity, sugar, protein, oxygen concentration  相似文献   

9.
Inhibition of Growth in Tomato by Air Polluted with Nitrogen Oxides   总被引:5,自引:0,他引:5  
Air polluted with parts 10–8concentrations of NO and NO2significantly reduced the rate of growth of tomato seedlings.These two pollutants are known to occur in glasshouse atmos-Dhcresenriched with CO2 from propane or kerosene burners. The inhibitionof growth would be sufficient to reduce, or even nullity, thebenefits of CO2enrichments under conditions of low light intensityin winter.  相似文献   

10.
Photosynthetic rates of outdoor-grown soybean (Glycine max L.Merr. cv. Bragg) canopies increased with increasing CO2 concentrationduring growth, before and after canopy closure (complete lightinterception), when measured over a wide range of solar irradiancevalues. Total canopy leaf area was greater as the CO2 concentrationduring growth was increased from 160 to 990 mm3 dm–3.Photosynthetic rates of canopies grown at 330 and 660 mm3 CO2dm–3 were similar when measured at the same CO2 concentrationsand high irradiance. There was no difference in ribulose bisphosphatecarboxylase/oxygenase (rubisco) activity or ribulose 1,5-bisphosphate(RuBP) concentration between plants grown at the two CO2 concentrations.However, photosynthetic rates averaged 87% greater for the canopiesgrown and measured at 660 mm3 CO2 dm–3. A 10°C differencein air temperature during growth resulted in only a 4°Cleaf temperature difference, which was insufficient to changethe photosynthetic rate or rubisco activity in canopies grownand measured at either 330 or 660 mm3 CO2 dm–3. RuBP concentrationsdecreased as air temperature during growth was increased atboth CO2 concentrations. These data indicate that the increasedphotosynthetic rates of soybean canopies at elevated CO2 aredue to several factors, including: more rapid development ofthe leaf area index; a reduction in substrate CO2 limitation;and no downward acclimation in photosynthetic capacity, as occurin some other species. Key words: CO2 concentration, soybean, canopy photosynthesis  相似文献   

11.
Barley and rice, at the early tillering stage, were grown inaerated nutrient solutions (> 7 mg O2 l–1) and transferredto solutions of low O2 concentrations (< 0.5 mg l –1). For barley, low O2 concentrations during the first 5 days severelyinhibited growth of seminal roots had less effect on nodal roots,and did not reduce shoot growth. Longer exposure to low O2 concentrationsreduced shoot as well as root growth. Sugar concentrations inroots and shoots increased within 7 h after transfer of plantsto low O2 concentrations. After 5 days at low O2 concentrationssugar concentrations were very high in fast growing nodal rootsand in shoots, as well as in the slower growing seminal roots. In rice, low O2 concentrations increased sugar levels of rootsduring summer, but not during winter. In summer, the highersugar levels at low O2 concentrations persisted throughout adiurnal cycle. In root apices, sugar concentrations were increasedby low O2 concentrations, even though the experiment was donein winter and the bulk of the root system showed no differencein sugar levels. The data indicate that sugar accumulation, at low O2 concentrations,is caused by reduced growth and also that even apices of rootsgrown at low O2 concentrations have sufficient substrates forrespiration. Hordeum vulgare L, barley, Oryza sativa L, rice, sugar accumulation, oxygen concentration  相似文献   

12.
The cell wall of rice coleoptile was found to contain severalhundred microgram hexosamine per gram dry wt with the pectic,hemicellulosic, and -cellulose fractions containing 50%, 40%,and 10%, respectively. The cell wall hexosamine content increasedseveralfold with coleoptile growth and was higher in air-typecoleoptiles (grown on the surface of water) than water-typeones (grown under water). Rice coleoptiles were cultured in glucosamine, NH4+, glutamine,or asparagine solution and growth was inhibited at 10–4M and above. Coleoptile growth capacity in glucosamine or NH4+solution correlated inversely with the cell wall hexosaminecontent. Both of these solutions also inhibited elongation ofsubmerged air-type coleoptile sections. Azaserine promoted thegrowth of both intact and excised coleoptiles at 10–6to 10–5 M and halved the cell wall hexosamine contentof intact ones. 6-Diazo-5-oxo-L-norleucine promoted the elongationof sections. These results suggest that the hexosamine-containingcell wall component is an important growth suppression factorin rice coleoptiles. (Received April 25, 1983; Accepted August 30, 1983)  相似文献   

13.
Plants of Phaseolus vulgaris L were grown from seed in open-topgrowth chambers at present day (350 µmol mol–1)and double the present day (700 µmol mol–1) atmosphericCO2 concentration with either low (L, without additional nutrientsolution) or relatively high (H, with additional nutrient solution)nutrient supply Measurements of assimilation rate, stomatalconductance and water use efficiency were started 17 d aftersowing on each fully expanded, primary leaf of three plantsper treatment Measurements were made in external CO2 concentrations(C2) of 200, 350, 450, 550 and 700 µmol mol–1 andrelated to both Ca and to C1, the mean intercellular space CO2concentration Fully adjusted, steady state measurements weremade after approx 2 h equilibration at each CO2 concentration The rate of CO2 assimilation by leaves increased and stomatalconductance decreased similarly over the range of Ca or C1 inall four CO2 and nutrient supply treatments but both assimilationrate and stomatal conductance were higher in the high nutrientsupply treatment than in the low nutrient treatment The relationbetween assimilation rate or stomatal conductance and C1 wasnot significantly different amongst plants grown in present-dayor elevated CO2 concentration in either nutrient supply treatment,i e there was no evidence of down regulation of photosynthesisor stomatal response Increase in CO2 concentration from 350to 700 µmol mol–1 doubled water use efficiency ofindividual leaves in the high nutrient supply treatment andtripled water use efficiency in the low nutrient supply treatment The results support the hypothesis that acclimation phenomenaresult from unbalanced growth that occurs after the seed reservesare exhausted, when the supply of resources becomes growth limiting CO2 enrichment, Phaseolus vulgaris L., net CO2 assimilation rate, stomatal conductance, water use efficiency  相似文献   

14.
The effects of a range of applied nitrate (NO3) concentrations(0–20 mol m3) on germination and emergence percentageof Triticum aestivum L. cv. Otane were examined at 30, 60, 90and 120 mm sowing depths. Germination percentage was not affectedby either sowing depth or applied NO3 concentration whereasemergence percentage decreased with increased sowing depth regardlessof applied NO3 concentration. Nitrate did not affectemergence percentage at 30 mm sowing depth, but at 60 to 120mm depth, emergence percentage decreased sharply with an increasedapplied NO3 concentration of 0 to 1·0 mol m–3then decreased only slightly with further increases in appliedNO3 of about 5·0 mol m–3. Root and shoot growth, NO3 accumulation and nitrate reductaseactivity (NRA) of plants supplied with 0, 1·0 and 1·0mol m–3 NO3 at a sowing depth of 60 mm were measuredprior to emergence. The coleoptile of all seedlings opened withinthe substrate. Prior to emergence from the substrate, shootextension growth was unaffected by additional NO3 butshoot fr. wt. and dry wt. were both greater at 1·0 and1·0 mol m–3 NO3 than with zero NO3.Root dry wt. was unaffected by NO3. Nitrate concentrationand NRA in root and shoot were always low without NO3.At 1·0 and 10 mol m3 NO3, NO3 accumulatedin the root and shoot to concentrations substantially greaterthan that applied and caused the induction of NRA. Regardlessof the applied NO3 concentration, seedlings which failedto emerge still had substantial seed reserves one month afterplanting. Coleoptile length was substantially less for seedlingswhich did not emerge than for seedlings which emerged, but wasnot affected by NO3. It is proposed that (a) decreasedemergence percentage with increased sowing depth was due tothe emergence of leaf I from the coleoptile within the substrateand (b) decreased emergence percentage with additional NO3was due to the increased expansion of leaf 1 within the substrateresulting in greater folding and damage of the leaf. Key words: Triticum aestivwn L., nitrate, sowing depth, seedling growth, seedling emergence  相似文献   

15.
THOMAS  H. 《Annals of botany》1983,51(3):363-371
Lolium temulentum seedlings were grown on a nutrient mediumcontaining NH4NO2 at 0, 0·1, 0·5, 1·0 and4·3 mmoll–1 as the sole N source. Relative andabsolute extension rates, maximal leaf size, duration of extensiongrowth, rate of leaf appearance and plastochron index were determinedfrom the parameters of Richards functions fitted to lengthsof laminae measured at intervals after sowing. The final lengthof leaf I was relatively insensitive to N whereas mean relativeextension rate was increased and duration of growth decreasedwith increasing NH4NO2 concentration. Leaves 2 and 3 enlargedprogressively with N at concentrations up to 1·0 mmoll–1but were unresponsive thereafter. There was no significant correlationbetween final length and mean relative extension rate for leaves1 to 3. Leaves 4 to 6 continued to show increasing length beyond1·0 mmoll–1 N and final length was significantlycorrelated with mean relative extension rate. Increasing N increasedthe rate of leaf appearance by decreasing the duration of leafextension and plastochron. These results are discussed in relationto the control of leaf and N turnover. Lolium temulentum, rye grass, leaf extension, nitrogen, Richards function, growth analysis  相似文献   

16.
Rice seedlings germinated in the dark in O2-deficient and normalair environments manifest dimorphism and are designated hereas d and d+ plants. Both d and d+ seedlings lackchlorophyll but the d plants are stark-white whereasthe d+ plants are yellow or yellow-green in appearance. Riceseedlings germinated in the light under O2 deficiency also lackchlorophyll and manifest the same developmental characteristicsas the d dark-germinated seedlings. Thus, in an O2-deficientenvironment, light-germinated rice seedlings behave as thoughthey were germinated in the dark under O2 deficiency. Exposureof the dark-germinated d and d+ seedlings and the light-germinatedd seedlings to normal air in the light brings about chlorophyllformation and normal morphogenetic development in all threetypes of germinating seedlings. Thus O2 exerts a critical influenceon the response of germinating rice seedlings to light energywith respect to their normal morphogenetic development.  相似文献   

17.
Plants of Phaseolus vulgaris were grown from seed in open-topgrowth chambers at the present (P, 350 µmol mol–1)atmospheric CO2 concentration and at an elevated (E, 700 µmolmol–1) CO2 concentration, and at low (L, without additionalnutrient solution) and high (H, with additional nutrient solution)nutrient supply for 28 d The effects of CO2 and nutrient availabilitywere examined on growth, morphological and biochemical characteristics Leaf area and dry mass were significantly increased by CO2 enrichmentand by high nutrient supply Stomatal density, stomatal indexand epidermal cell density were not affected by elevated CO2concentration or by nutrient supply Leaf thickness respondedpositively to CO2 increasing particularly in mesophyll areaas a result of cell enlargement Intercellular air spaces inthe mesophyll decreased slightly in plants grown in elevatedCO2 Leaf chlorophyll content per unit area or dry mass was significantlylower in elevated CO2 grown plants and increased significantlywith increasing nutrient availability The content of reducingcarbohydrates of leaves, stem, and roots was not affected byCO2 but was significantly increased by nutrient addition inall plant parts Starch content in leaves and stem was significantlyincreased by elevated CO2 concentration and by high nutrientsupply Phaseolus vulgaris, elevated atmospheric CO2, CO2-nutrient interaction, stomatal density, leaf anatomy, chlorophyll, carbohydrates, starch  相似文献   

18.
Larsson, M., Larsson, C.-M. and Guerrero, M. G. 1985. Photosyntheticnitrogen metabolism in high and low CO2-adapted Scenedesmus.I. Inorganic carbon-dependent O2 evolution, nitrate utilizationand nitrogen recycling.—J. exp Bot. 36: 1373–1386 Scenedesmus obtusiusculus Chod. was grown on an inorganic mediumflushed with either air or air supplemented with 3% CO2. Inair-grown cells, O2 evolution dependent on low, but not high,HCO3 concentrations was strongly inhibited by the carbonicanhydrase inhibitor acetazolamide. Cells grown with 3% CO2 exhibitedlow rates of O2 evolution at low external inorganic C; however,after 30 min in air O2 evolution rates at low inorganic C approachedthose of air-grown cells. These results are compatible withthe view that Scenedesmus develops a ‘CO2 concentratingmechanism’ in air, with carbonic anhydrase as an importantconstituent When 3% CO2-grown cells were subjected to air-level of CO2,just a transient decline in NO3 utilization was observed,but in the presence of acetazolamide the rate of the processdecreased drastically in response to the decrease in the CO2level. In CO2-free air NO3 was taken up at high ratesbut in a deregulated manner, leading to release of NH4+. A portionof the NO3 taken up in the absence of CO2 was apparentlyassimilated Cellular nitrate reductase (NR) activity initially decreasedbut subsequently recovered after a transition from 3% CO2 toair. In the presence of acetazolamide, a persistent decreasein NR activity was observed. Cellular glutamine synthetase (GS)activity increased after transition from 3% CO2 to air, theactivity increase being unaffected by acetazolamide. NH4+ releaseto the medium in the presence of L-methionine-D, L-sulphoximine(MSO) transiently increased in 3% CO2-grown cells in responseto a transfer to air. MSO-induced NH4+ release was in fact higherin air-grown cells than in 3% CO2-grown cells. Glycollate wasinitially released after transition from 3% CO2 to air, butthere was no difference in glycollate release between MSO-treatedand untreated cells. In air-adapted Scenedesmus, N recyclingseems to be of minor importance in comparison to primary N assimilation Key words: CO2-fixation, N recycling, nitrate uptake, Scenedesmus  相似文献   

19.
A study was made of the incorporation of 14C by intact leavesof Coffea arabica (cultivars Mundo Novo, Catuai, 1130–13,and H 6586–2) and Coffea canephora (cultivar Guarini)supplied with gas mixtures containing 14CO2 under controlledconditions. Samples of the leaves were combusted and the 14Cin the CO2 produced measured using a liquid scintillation counter.The results were used to estimate photosynthetic rates. Theeffects of changing the partial pressures of O2 and CO2 on thephotosynthetic rate were studied and estimates made of the CO2compensation point and photorespiration. The data obtained show differences between the mean net photosyntheticrates of the C. arabica cultivars (6·14 mg CO2 dm–2h–1) and the mean rate for the C. canephora cultivar (3·96mg CO2 dm–2 h–1). The cultivar of the latter speciesphotorespired more rapidly than the cultivar Catuai of C. arabica.Rates of photosynthesis in coffee measured using the 14CO2 methodwere similar to rates obtained by others using an infrared gasanalyser. The 14CO2 method proved to be reliable for photosyntheticmeasurements and the apparatus is suitable for use in fieldconditions.  相似文献   

20.
Net CO2-uptake of sets of clover plants (Trifolium subterraneumL.) was measured over 3 weeks in ambient air and in a highlyCO2-enriched atmosphere (400 Pa CO2). Phosphate (P) in the nutrientsolution was varied between 0·05 mol m–3 P (reducedP) and 2·0 mol m–3 P (high P). In ambient air,the daily increments of the daily rate of net CO2-uptake (DICU;a parameter related to relative growth) were higher at reducedP than at high P. Stimulation by high CO2 of net CO2-uptakein the first day was less at reduced P than at high P. In thefollowing days, high CO2 markedly inhibited DICU at reducedP, and thus growthstimulation by high CO2 ceased after between4 and 12 d. By contrast, at high P, DICU increased more than2-fold upon CO2-enrichment, and thus growth stimulation by highCO2 was maintained. Intermediate results were obtained withhalf-strength Hoagland's solution (0·5 mol m–3P). Leaf pools of inorganic ortho P, soluble esterified P, and totalP declined markedly in high CO2 when P-nutrition had been reduced.Considerable decline also occurred in high CO2 when P-nutritionhad been increased suggesting that P-uptake was not well tunedwith net CO2-uptake (growth). It is proposed that high CO2 can perturb the P-metabolism ofclover, the impairment being less at high levels of P-nutrition.With regard to high CO2 as a growth stimulus, these resultsdemonstrate that increasing P-nutrition to a level supraoptimalin ambient air can considerably improve the growth of a C3-plantin high CO2. Key words: Atmospheric CO2-enrichment, phosphate nutrition, photosynthesis, clover  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号