首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sensitivity and specificity of a polyethylene glycol terminated alkanethiol mixed self-assembled monolayers (SAM) on surface plasmon resonance (SPR) immunosensor to detect Escherichia coli O157:H7 is demonstrated. Purified monoclonal (Mabs) or polyclonal antibodies (PAbs) against E. coli O157:H7 were immobilized on an activated sensor chip and direct and sandwich assays were carried to detect E. coli O157:H7. Effect of Protein G based detection and effect of concentrations of primary and secondary antibodies in sandwich assay were investigated. The sensor surface was observed under an optical microscope at various stages of the detection process. The sensor could detect as low as 10(3)CFU/ml of E. coli O157:H7 in a sandwich assay, with high specificity against Salmonella Enteritidis. The detection limit using direct assay and Protein G were 10(6)CFU/ml and 10(4)CFU/ml, respectively. Results indicate that an alkanethiol SAM based SPR biosensor has the potential for rapid and specific detection of E. coli O157:H7, using a sandwich assay.  相似文献   

2.
Our group has previously reported a sandwich-based strip immunoassay for rapid detection of Escherichia coli O157:H7 [Anal. Chem. 75 (2003) 4330]. In the present study, a microcapillary flow injection liposome immunoanalysis (mFILIA) system was developed for the detection of heat-killed E. coli O157:H7. A fused-silica microcapillary with anti-E. coli O157:H7 antibodies chemically immobilized on the internal surface via protein A served as an immunoreactor/immunoseparator for the mFILIA system. Liposomes tagged with anti-E. coli O157:H7 and encapsulating a fluorescent dye were used as the detectable label. In the presence of E. coli O157:H7, sandwich complexes were formed between the immobilized antibodies in the column, the sample of E. coli O157:H7 and the antibody-tagged sulforhodamine-dye-loaded liposomes. Signals generated by lysing the bound liposomes with 30 mM n-octyl-beta-D-glucopyranoside were measured by a fluorometer. The detected signal was directly proportional to the amount of E. coli O157:H7 in the test sample. The mFILIA system successfully detected as low as 360 cells/mL (equivalent to 53 heat-killed bacteria in the 150 microL of the sample solution injected). MeOH (30%) was used for the regeneration of antibody binding sites in the capillary after each measurement, which allowed the immunoreactor/immunoseparator to be used for at least 50 repeated assays. The calibration curve for heat-killed E. coli O157:H7 has a working range of 6 x 10(3)-6 x 10(7)cells, and the total assay time was less than 45 min. A coefficient of variation for triplicate measurements was < or =8.9%, which indicates an acceptable level of reproducibility for this newly developed method.  相似文献   

3.
An impedance biosensor based on interdigitated array microelectrode (IDAM) coupled with magnetic nanoparticle-antibody conjugates (MNAC) was developed and evaluated for rapid and specific detection of E. coli O157:H7 in ground beef samples. MNAC were prepared by immobilizing biotin-labeled polyclonal goat anti-E. coli antibodies onto streptavidin-coated magnetic nanoparticles, which were used to separate and concentrate E. coli O157:H7 from ground beef samples. Magnitude of impedance and phase angle were measured in a frequency range of 10 Hz to 1 MHz in the presence of 0.1M mannitol solution. The lowest detection limits of this biosensor for detection of E. coli O157:H7 in pure culture and ground beef samples were 7.4 x 10(4) and 8.0 x 10(5)CFU ml(-1), respectively. The regression equation for the normalized impedance change (NIC) versus E. coli O157:H7 concentration (N) in ground beef samples was NIC=15.55 N-71.04 with R(2)=0.95. Sensitivity of the impedance biosensor was improved by 35% by concentrating bacterial cells attached to MNAC in the active layer of IDAM above the surface of electrodes with the help of a magnetic field. Based on equivalent circuit analysis, it was observed that bulk resistance and double layer capacitance were responsible for the impedance change caused by the presence of E. coli O157:H7 on the surface of IDAM. Surface immobilization techniques, redox probes, or sample incubation were not used in this impedance biosensor. The total detection time from sampling to measurement was 35 min.  相似文献   

4.
A sensitive bacteria enrichment and detection system for viable Escherichia coli O157:H7 was developed using a piezoelectric biosensor-quartz crystal microbalance (QCM) with antibody-functionalized gold nanoparticles (AuNPs) used as detection verifiers and amplifiers. In the circulating-flow QCM system, capture antibodies for E. coli O157:H7 were first immobilized onto the QCM chip. The sample containing E. coli O157:H7 was circulated through the system in the presence of 10ml of brain heart infusion (BHI) broth for 18h. The cells of E. coli O157:H7 specifically captured and enriched on the chip surface of the QCM were identified by QCM frequency changes. Listeria monocytogenes and Salmonella Typhimurium were used as negative controls. After bacterial enrichment, detection antibody-functionalized AuNPs were added to enhance the changes in detection signal. The use of BHI enrichment further enhanced the sensitivity of the developed system, achieving a detection limit of 0-1log CFU/ml or g. The real-time monitoring method for viable E. coli O157:H7 developed in this study can be used to enrich and detect viable cells simultaneously within 24h. The unique advantages of the system developed offer great potential in the microbial analysis of food samples in routine settings.  相似文献   

5.
In this paper, we describe a novel method for detecting Escherichia coli (E. coli) O157:H7 by using a quartz crystal microbalance (QCM) immunosensor based on beacon immunomagnetic nanoparticles (BIMPs), streptavidin-gold, and growth solution. E. coli O157-BIMPs were magnetic nanoparticles loaded with polyclonal anti-E. coli O157:H7 antibody (target antibody, T-Ab) and biotin-IgG (beacon antibody, B-Ab) at an optimized ratio of 1:60 (T-Ab:B-Ab). E. coli O157:H7 was captured and separated by E. coli O157-BIMPs in a sample, and the streptavidin-gold was subsequently conjugated to E. coli O157-BIMPs by using a biotin-avidin system. Finally, the gold particles on E. coli O157-BIMPs were enlarged in growth solution, and the compounds containing E. coli O157:H7, E. coli O157-BIMPs, and enlarged gold particles were collected using a magnetic plate. The QCM immunosensor was fabricated with protein A from Staphylococcus aureus and monoclonal anti-E. coli O157:H7 antibody. The compounds decreased the immunosensor's resonant frequency. E. coli O157-BIMPs and enlarged gold particles were used as "mass enhancers" to amplify the frequency change. The frequency shift was correlated to the bacterial concentration. The detection limit was 23 CFU/ml in phosphate-buffered saline and 53 CFU/ml in milk. This method could successfully detect E. coli O157:H7 with high specificity and stability. The entire procedure for the detection of E. coli O157:H7 took only 4 h.  相似文献   

6.
A modified procedure for magnetic capture of antibody-conjugated bacteria for light addressable potentiometric sensor (LAPS) detection using the Threshold System was developed. Streptavidin coated magnetic beads, partially labeled with biotinylated anti Escherichia coli O157 antibodies, were used to capture Escherichia coli O157:H7. Captured bacteria were further labeled with fluorescein-conjugated anti -E. coli O157:H7 antibodies and urease-labeled. anti-fluorescein antibody. Magnetically concentrated bacteria-containing complexes were then immobilized through streptavidin-biotin interactions on 0.45 μ biotinylated nitro-cellulose membranes assembled as sample sticks for the Threshold instrument. The rate of pH change associated with the production of NH3 by the urease in urea-containing solution was measured by a LAPS incorporated in the Threshold instrument. This approach allowed us to detect 103 to 104 CPU of cultured E. coli O157:H7 in PBS solutions. Furthermore, detectable LAPS signals of the sample sticks remained relatively constant for at least 24 h at 4C. The developed approach was applied to detect the E. coli in beef hamburger spiked with the bacteria. After a 5 to 6-h enrichment at 37C, as low as 1 CFU/g of E. coli O157:H7 in beef hamburger could be detected.  相似文献   

7.
A time-resolved fluorescence technique was developed to detect Escherichia coli O157:H7 in ground beef burger. After a 4.5 h enrichment period, streptavidin coated magnetic beads conjugated with biotin-labeled anti E. coli O157:H7 were used to capture the bacteria. The bacteria were, at the same time, also labeled by a nonfluorescent, europium (Eu)-tagged anti-E. coli O157:H7 antibody. The sandwiched bacterial complexes were then concentrated using a magnetic particle concentrator and washed to remove other solution components. Upon addition of an enhancement buffer, the Eu-labels were then released from the antibodies and chelated to nitrilo-triacetic acid (NTA) and trioctylphosphine oxide (TOPO) to form highly fluorescent Eu-(2-NTA)3(TOPO)2–3 micellar complexes. Delayed fluorescence associated with these complexes was measured and its intensity was used to estimate the original bacterial concentration spiked in hamburger. This approach was applied to detect E. coli O157:H7 spiked in hamburgers. The results indicated this method is able to detect 1 CFU/g of the bacteria after a brief enrichment for four and half hours at 37C. Specificity studies indicated that the approach exhibited no or limited cross reactivity to Salmonella typhimurium, E. coli K-12 or Shigella dysenteriae spiked in hamburgers. Thus, the developed approach may be used as a rapid screening procedure for E. coli O157 bacteria in foods.  相似文献   

8.
A high density microelectrode array biosensor was developed for the detection of Escherichia coli O157:H7. The biosensor was fabricated from (100) silicon with a 2 microm layer of thermal oxide as an insulating layer, an active area of 9.6 mm2 and consists of an interdigitated gold electrode array. The sensor surface was functionalised for bacterial detection using heterobifunctional crosslinkers and immobilised polyclonal antibodies to create a biological sensing surface. Bacteria suspended in solution became attached to the immobilised antibodies when the biosensor was tested in liquid samples. The change in impedance caused by the bacteria was measured over a frequency range of 100 Hz-10 M Hz. The biosensor was evaluated for E. coli O157:H7 detection in pure culture and inoculated food samples. The biosensor was able to discriminate between cellular concentrations of 10(4)-10(7)CFU/mL and has applications in detecting pathogens in food samples.  相似文献   

9.
A circulating-flow piezoelectric biosensor, based on an Au nanoparticle amplification and verification method, was used for real-time detection of a foodborne pathogen, Escherichia coli O157:H7. A synthesized thiolated probe (Probe 1; 30-mer) specific to E. coli O157:H7 eaeA gene was immobilized onto the piezoelectric biosensor surface. Hybridization was induced by exposing the immobilized probe to the E. coli O157:H7 eaeA gene fragment (104-bp) amplified by PCR, resulting in a mass change and a consequent frequency shift of the piezoelectric biosensor. A second thiolated probe (Probe 2), complementary to the target sequence, was conjugated to the Au nanoparticles and used as a "mass enhancer" and "sequence verifier" to amplify the frequency change of the piezoelectric biosensor. The PCR products amplified from concentrations of 1.2 x 10(2) CFU/ml of E. coli O157:H7 were detectable by the piezoelectric biosensor. A linear correlation was found when the E. coli O157:H7 detected from 10(2) to 10(6) CFU/ml. The piezoelectric biosensor was able to detect targets from real food samples.  相似文献   

10.
We report here the use of immunomagnetic (IM) electrochemiluminescence (ECL) for quantitative detection of Esherichia coli O157:H7 in water samples following enrichment in minimal lactose broth (MLB). IM beads prepared in-house with four commercial anti-O157 monoclonal antibodies were compared for efficiency of cell capture. IM-ECL responses for E. coli O157:H7 (strain SEA13B88) were similar for all four commercial anti-O157 LPS monoclonal antibodies. The ECL signal was linearly correlated with E. coli O157:H7 cell concentration, indicating a constant ECL response per cell. Twenty-two strains of E. coli O157:H7 or O157:NM gave comparable ECL signals using IM beads prepared in-house. To assess the potential for interference from background bacteria in MLB-enriched water samples, 10(4) cells of E. coli O157:H7 (strain SEA13B88) were added to enriched samples prior to analysis. There was considerable variability in recovery of E. coli O157:H7 cells; net ECL signals ranged from 1% to 100% of expected values (i.e., percent inhibition from 0% to 99%). Cultures of Klebsiella pneumoniae, Klebsiella oxytoca, and Enterobacter cloacae, subsequently isolated from MLB-enriched water samples via IM separation (IMS), were observed to interfere with the binding of E. coli O157:H7 cells to IM beads. Recoveries of 10(4) E. coli O157:H7 cells were 相似文献   

11.
Two murine monoclonal antibodies (MAbs) (2B7 and 46E9-9) reactive with the H7 flagellar antigen of Escherichia coli were produced and characterized. A total of 217 E. coli strains (48 O157:H7, 4 O157:NM, 23 O157:non-H7, 22 H7:non-O157, and 120 non-O157:nonH7), 17 Salmonella serovars, and 29 other gram-negative bacteria were used to evaluate the reactivities of the two MAbs by indirect enzyme-linked immunosorbent assay (ELISA). Both MAbs reacted strongly with all E. coli strains possessing the H7 antigen and with H23- and H24-positive E. coli strains. Indirect ELISA MAb specificity was confirmed by inhibition ELISA and by Western blotting (immunoblotting), using partially purified flagellins from E. coli O157:H7 and other E. coli strains. On a Western blot, MAb 46E9-9 was more reactive against H7 flagellin of E. coli O157:H7 than against H7 flagellin of E. coli O1:K1:H7. Competition ELISA suggested that MAbs 2B7 and 46E9-9 reacted with closely related H7 epitopes. When the ELISA reactivities of the MAbs and two commercially available polyclonal anti-H7 antisera were compared, both polyclonal antisera and MAbs reacted strongly with E. coli H7 bacteria. However, the polyclonal antisera cross-reacted strongly both with non-H7 E. coli and with many non-E. coli bacteria. The polyclonal antisera also reacted strongly with H23 and H24 E. coli isolates. The data suggest the need to define serotype-specific epitopes among H7, H23, and H24 E. coli flagella. The anti-H7 MAbs described in this report have the potential to serve as high-quality diagnostic reagents, used either alone or in combination with O157-specific MAbs, to identify or detect E. coli O157:H7 in food products or in human and veterinary clinical specimens.  相似文献   

12.
Escherichia coli O157:H7, the most common serotype of enterohemorrhagic E. coli (EHEC), is responsible for numerous food-borne and water-borne infections worldwide. An integrating waveguide biosensor is described for the detection of water-borne E. coli O157, based on a fluorescent sandwich immunoassay performed inside a glass capillary waveguide. The genomic DNA of captured E. coli O157 cells was extracted and quantitative real-time PCR subsequently performed to assess biosensor-capture efficiency. In vitro microbial growth in capillary waveguide is also documented. The biosensor allows for quantitative detection of as few as 10 cells per capillary (0.075 ml volume) and can be used in conjunction with cell amplification, PCR and microarray technologies to positively identify a pathogen.  相似文献   

13.
An evanescent wave biosensor was used to detect Escherichia coli O157:H7 in unpasteurized apple juice. Light is launched from a 635 nm laser diode into silica or polystyrene optical waveguides, generating an evanescent field which extends from the waveguide surface. Fluorescent molecules within the evanescent field are excited resulting in an emission signal that the biosensor then detects and quantifies. A sandwich immunoassay was performed on the waveguides using cyanine 5 dye-labeled anti-E. coli O157:H7 antibodies for generation of the specific fluorescent signal. The lower limit of detection was between 6.0 × 102 and 6.0 × 104 CFU/mL with silica waveguides and between 3.2 × 104 and 3.2 × 104 CFU/mL using polystyrene waveguides. One-hundred percent correct identification of true positive samples occurred at 6.0 × 104 and 3.2 × 104 CFU/mL for silica and polystyrene waveguides, respectively. Signals from a variety of non-E. coli O157 bacteria, including closely related enterotoxigenic strains of E. coli at concentrations of ˜ 106 CFU/mL, were below the limits of detection. Assays were conducted in near real-time with results obtained within 15 min of sample processing.  相似文献   

14.
AIM: To evaluate the potential for polyclonal antibodies targeting enterohaemorrhagic Escherichia coli (EHEC) virulence determinants to prevent colonization of host cells by E. coli O157:H7. METHODS AND RESULTS: Rats and laying hens were immunized with recombinant proteins from E. coli O157:H7, EspA, C-terminal intimin or EscF. Rat antisera (IgG) or chicken egg powders (IgY) were assessed for their ability to inhibit growth and colonization-associated processes of E. coli O157:H7. Mammalian antisera with antibodies to intimin, EspA or EscF effectively reduced adherence of the pathogen to HeLa cells (P<0.05) and prevented type III secretion of Tir. Similarly, HeLa cells treated with chicken egg powder containing antibodies against intimin or EspA were protected from EHEC adherence (P<0.05). Neither egg nor rat antibody preparations had any antibacterial effect on the growth of EHEC (P>0.05). CONCLUSIONS: Antibody preparations targeting EHEC adherence-associated factors were effective at preventing adhesion and intimate colonization-associated events. SIGNIFICANCE AND IMPACT OF THE STUDY: This work indicates that immunotherapy with anti-adherence antibodies can reduce E. coli O157:H7 colonization of host cells. Passive immunization with specific antibodies may have the potential to reduce E. coli O157:H7 colonization in hosts such as cattle or humans.  相似文献   

15.
A novel assay utilizing immuno-labeling, filtration, and electrochemistry for the rapid detection of bacteria has been optimized for the detection of Escherichia coli O157:H7. Bacteria were specifically labeled with alkaline phosphatase conjugated polyclonal antibodies and captured on a polycarbonate track-etched membrane filter (0.2 microm pore size). The filter was then placed directly against a glassy carbon electrode, incubated with enzyme substrate, and the product detected by square wave voltammetry. The high speed and capture efficiency of membrane filtration and inherent sensitivity of electrochemical detection produced a 25-min assay with a detection limit of 5 x 10(3) E. coli O157:H7 per ml using a filtration volume of 100 microl (i.e. 500 cells filtered). The labeling, filtration, and electrochemical steps were optimized, and the assay performance using electrochemical and colorimetric detection methods was compared. The assay was used to detect E. coli O157:H7 that was spiked into filter-sterilized urine at clinically relevant concentrations.  相似文献   

16.
摘要:【目的】结合纳米技术建立检测大肠杆菌(Escherichia coli)O157︰H7高灵敏检测技术。【方法】采用化学共沉淀法制备出核心粒径约为10 nm的免疫纳米磁颗粒,柠檬酸钠还原法制备粒径约为20 nm的免疫胶体金。压电免疫传感器通过金黄色葡萄球菌蛋白A(Protein A from Staphylococcus aureus SPA)法将抗体固定于石英晶振上,两种免疫纳米颗粒借助不同的抗体连接于传感器上对检测频率信号进行放大。【结果】SPA在石英晶振上的最佳固定浓度和时间为1.2 mg/mL和40 min,抗体的最佳固定浓度和时间为1.0 mg/mL和60 min。压电免疫传感器通过两种免疫纳米颗粒的放大作用,使其对大肠杆菌O157︰H7的检测限从104 cfu/mL提高到101 cfu/mL。【结论】免疫纳米颗粒强化对压电免疫传感器的检测频率信号具有很好的放大效应,可以明显提高其检测灵敏度。  相似文献   

17.
A disposable amperometric immunosensing strip was fabricated for rapid detection of Escherichia coli O157:H7. The method uses an indirect sandwich enzyme-linked immunoassay with double antibodies. Screen-printed carbon electrodes (SPCEs) were framed by commercial silver and carbon inks. For electrochemical characterization the carbon electrodes were coupled with the first E. coli O157:H7-specific antibody, E. coli O157:H7 intact cells and the second E. coli O157:H7-specific antibody conjugated with horseradish peroxidase (HRP). Hydrogen peroxide and ferrocenedicarboxylic acid (FeDC) were used as the substrate for HRP and mediator, respectively, at a potential +300 mV vs. counter/reference electrode. The response current (RC) of the immunosensing strips could be amplified significantly by 13-nm diameter Au nanoparticles (AuNPs) attached to the working electrode. The results show that the combined effects of AuNPs and FeDC enhanced RC by 13.1-fold. The SPCE immunosensing strips were used to detect E. coli O157:H7 specifically. Concentrations of E. coli O157:H7 from 10(2) to 10(7)CFU/ml could be detected. The detection limit was approximately 6CFU/strip in PBS buffer and 50CFU/strip in milk. The SPCE modified with AuNPs and FeDC has the potential for further applications and provides the basis for incorporating the method into an integrated system for rapid pathogen detection.  相似文献   

18.
A solid phase fluorescence-based immunoassay was developed for the detection of Escherichia coli O157:H7 using an antigen down competition format. A soft glass capillary tube served as the solid support, to which heat-killed E. coli O157:H7 were adsorbed. Polyclonal anti- E. coli O157:H7 antibody, conjugated with biotin, was used and the bound antigen-antibody complex was detected using avidin molecules labelled with Cy5, a fluorescent cyanine dye. Any E. coli O157:H7 in the sample would compete with the formation of this complex, reducing fluorescence. This assay was tested for sensitivity with spiked ground beef and apple cider samples. The minimum detectable number of cells present in the initial inoculum was calculated to be approximately 1 colony-forming unit (cfu) per 10g of ground beef when samples were enriched in modified EC broth for 7 h at 37°C. The minimum detectable number of cells for the apple cider samples was calculated to be ∼0.5 cfu ml-1 The E. coli cells in the cider samples were captured with immunomagnetic beads, incubated for 7 h in the enrichment broth, and detected with the solid phase fluorescence immunoassay.  相似文献   

19.
Jin M  Lang J  Shen ZQ  Chen ZL  Qiu ZG  Wang XW  Li JW 《PloS one》2012,7(2):e31352
To detect food E. coli O157:H7 contamination rapidly and accurately, it is essential to prepare high specific monoclonal antibodies (mAbs) against the pathogen. Cyclophosphamide (Cy)-mediated subtractive immunization strategy was performed in mice to generate mAbs that react with E. coli O157:H7, but not with other affiliated bacteria. Specificity of 19 mAbs was evaluated by ELISA and/or dot-immunogold filtration assay (DIGFA). Immunogloubin typing, affinity and binding antigens of 5 selected mAbs were also analysed. MAbs 1D8, 4A7, 5A2 were found to have high reactivity with E. coli O157:H7 and no cross-reactivity with 80 other strains of bacteria including Salmonella sp., Shigella sp., Proteus sp., Yersinia enterocolitica, Staphylococcus aureus, Klebsiella pneumoniae, Citrobacter freundii and other non-E. coli O157:H7 enteric bacteria. Their ascetic titers reached 1:10(6) with E. coli O157:H7 and affinity constants ranged from 1.57 × 10(10) to 2.79 × 10(10) L/mol. The antigens recognized by them were different localized proteins. Furthermore, immune-colloidal gold probe coated with mAb 5A2 could specifically distinguish minced beef contaminated by E. coli O157:H7 from 84 other bacterial contaminations. The Cy-mediated subtractive immunization procedure coupled with hybridoma technology is a rapid and efficient approach to prepare discriminatory mAbs for detection of E. coli O157:H7 contamination in food.  相似文献   

20.
The aim of this work was to characterize adaptive mucosal immune responses to Escherichia coli O157:H7 at the principal site of colonization in the bovine species. Following experimental infection, extracts from terminal rectum mucosal samples were tested for IgA antibodies by immunoblotting against different bacterial antigens including: whole-cell E. coli O157:H7 with and without proteinase treatment, outer membrane and cytoplasmic preparations, secreted protein supernatants and purified E. coli O157 lipopolysaccharide and H7 flagellin. Lipopolysaccharide and H7 flagellin preparations were also used to coat enzyme-linked immunosorbent assay plates to determine mucosal IgG1 and IgA antibody titers. In this work, evidence is presented of strong local IgA immune responses induced following infection at the bovine terminal rectal mucosa directed against multiple antigens including type III secretion-dependent proteins, O157 lipopolysaccharide, H7 flagellin and OmpC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号