首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Noninformative vision improves haptic spatial perception   总被引:10,自引:0,他引:10  
Previous studies have attempted to map somatosensory space via haptic matching tasks and have shown that individuals make large and systematic matching errors, the magnitude and angular direction of which vary systematically through the workspace. Based upon such demonstrations, it has been suggested that haptic space is non-Euclidian. This conclusion assumes that spatial perception is modality specific, and it largely ignores the fact that tactile matching tasks involve active, exploratory arm movements. Here we demonstrate that, when individuals match two bar stimuli (i.e., make them parallel) in circumstances favoring extrinsic (visual) coordinates, providing noninformative visual information significantly increases the accuracy of haptic perception. In contrast, when individuals match the same bar stimuli in circumstances favoring the coding of movements in intrinsic (limb-based) coordinates, providing identical noninformative visual information either has no effect or leads to the decreased accuracy of haptic perception. These results are consistent with optimal integration models of sensory integration in which the weighting given to visual and somatosensory signals depends upon the precision of the visual and somatosensory information and provide important evidence for the task-dependent integration of visual and somatosensory signals during the construction of a representation of peripersonal space.  相似文献   

2.
Summary Extracellular recordings have been made from ganglion cells of the lemon shark retina: ON, OFF and ON-OFF units were recorded. Spectral sensitivity measurements under darkadapted conditions reveal a max of 519–522 nm. This may be due to two photoreceptor systems. A second class of ganglion cells was characterized as receiving input from a single 544 nm visual pigment system.  相似文献   

3.
Techniques employed in rehabilitation of visual field disorders such as hemianopia are usually based on either visual or audio-visual stimulation and patients have to perform a training task. Here we present results from a completely different, novel approach that was based on passive unimodal auditory stimulation. Ten patients with either left or right-sided pure hemianopia (without neglect) received one hour of unilateral passive auditory stimulation on either their anopic or their intact side by application of repetitive trains of sound pulses emitted simultaneously via two loudspeakers. Immediately before and after passive auditory stimulation as well as after a period of recovery, patients completed a simple visual task requiring detection of light flashes presented along the horizontal plane in total darkness. The results showed that one-time passive auditory stimulation on the side of the blind, but not of the intact, hemifield of patients with hemianopia induced an improvement in visual detections by almost 100% within 30 min after passive auditory stimulation. This enhancement in performance was reversible and was reduced to baseline 1.5 h later. A non-significant trend of a shift of the visual field border toward the blind hemifield was obtained after passive auditory stimulation. These results are compatible with the view that passive auditory stimulation elicited some activation of the residual visual pathways, which are known to be multisensory and may also be sensitive to unimodal auditory stimuli as were used here. TRIAL REGISTRATION: DRKS00003577.  相似文献   

4.
Current information on the rate of mutation and the fraction of sites in the genome that are subject to selection suggests that each human has received, on average, at least two new harmful mutations from its parents. These mutations were subsequently removed by natural selection through reduced survival or fertility. It has been argued that the mutation load, the proportional reduction in population mean fitness relative to the fitness of an idealized mutation-free individual, allows a theoretical prediction of the proportion of individuals in the population that fail to reproduce as a consequence of these harmful mutations. Application of this theory to humans implies that at least 88% of individuals should fail to reproduce and that each female would need to have more than 16 offspring to maintain population size. This prediction is clearly at odds with the low reproductive excess of human populations. Here, we derive expressions for the fraction of individuals that fail to reproduce as a consequence of recurrent deleterious mutation () for a model in which selection occurs via differences in relative fitness, such as would occur through competition between individuals. We show that is much smaller than the value predicted by comparing fitness to that of a mutation-free genotype. Under the relative fitness model, we show that depends jointly on U and the selective effects of new deleterious mutations and that a species could tolerate 10's or even 100's of new deleterious mutations per genome each generation.  相似文献   

5.
6.
7.
Some available single- and multiple-channel models are reviewed. Multichannel models are generalized and tested against threshold data on various stimulus sets. Without using the explicit assumption of spatial probability summation, simple multichannel models are shown to provide good simultaneous predictions of threshold curves of sinewave gratings and other gratings. They fail in predicting threshold curves of disk-shaped stimuli. If global or local spatial probability summation within channels is incorporated into the models, correctly shaped threshold curves of disks can be predicted. However, the predicted curves appear still too low if compared to measured curves. The same holds for noise gratings. Possible extensions of the models, based on local summation between channel responses and/or models consisting of initial isotropic channels (retina) followed by anisotropic channels (cortex), are discussed.  相似文献   

8.
Nitrate, an inorganic anion abundant in vegetables, is converted in vivo to bioactive nitrogen oxides including NO. We recently demonstrated that dietary nitrate reduces oxygen cost during physical exercise, but the mechanism remains unknown. In a double-blind crossover trial we studied the effects of a dietary intervention with inorganic nitrate on basal mitochondrial function and whole-body oxygen consumption in healthy volunteers. Skeletal muscle mitochondria harvested after nitrate supplementation displayed an improvement in oxidative phosphorylation efficiency (P/O ratio) and a decrease in state 4 respiration with and without atractyloside and respiration without adenylates. The improved mitochondrial P/O ratio correlated to the reduction in oxygen cost during exercise. Mechanistically, nitrate reduced the expression of ATP/ADP translocase, a protein involved in proton conductance. We conclude that dietary nitrate has profound effects on basal mitochondrial function. These findings may have implications for exercise physiology- and lifestyle-related disorders that involve dysfunctional mitochondria.  相似文献   

9.
The present experiment was designed to assess daily fluctuations of visual discriminability, a function reflecting the resolution power of the visual sensitivity by measure of a differential threshold. Sixteen subjects underwent a visual discrimination threshold task (using the constant method) in a protocol allowing one point every 2h over the 24h period. The results show that the visual discrimination threshold is low in the morning and increases progressively over the day, reaching a first peak at 22:00. During the night, the same pattern occurs, with low threshold levels at the beginning of the night and high levels at the end. This profile is quite different from that of detection threshold variations, suggesting that the two visual functions are under the control of different underlying mechanisms. Two interpretations could account for this discrepancy. The first relates to different oscillators in the eye for detection and discrimination. The second refers to a possible linkage of visual discriminability with the sleep-wake cycle since threshold measures were systematically low (i.e., high resolution power) after long sleep periods. (Chronobiology International, 17(12), 187-195, 2000)  相似文献   

10.
Public policies that encourage high-density human living arrangements have been predicated explicitly on the assumption that certain spatial distributions of a fixed-size human population are less environmentally damaging than others. We examine the empirical validity of this assumption across 127 countries by analyzing whether the concentration of human presence in each country is related statistically to the percentage of species that were on the IUCN Red List in 2004. Our findings indicate that concentration of the human population is associated with reduced imperilment among amphibians but increased imperilment among reptiles, and birds.
Ram PanditEmail:
  相似文献   

11.
Over the past few years, the light-gated cation channel Channelrhodopsin-2 (ChR2) has seen a remarkable diversity of applications in neuroscience. However, commonly used wide-field illumination provides poor spatial selectivity for cell stimulation. We explored the potential of focal laser illumination to map photocurrents of individual neurons in sparsely transfected hippocampal slice cultures. Interestingly, the best spatial resolution of photocurrent induction was obtained at the lowest laser power. By adjusting the light intensity to a neuron's spike threshold, we were able to trigger action potentials with a spatial selectivity of less than 30 microm. Experiments with dissociated hippocampal cells suggested that the main factor limiting the spatial resolution was ChR2 current density rather than scattering of the excitation light. We conclude that subcellular resolution can be achieved only in cells with a high ChR2 expression level and that future improved variants of ChR2 are likely to extend the spatial resolution of photocurrent induction to the level of single dendrites.  相似文献   

12.
The sub-cellular localisation of a protein is vital in defining its function, and a protein's mis-localisation is known to lead to adverse effect. As a result, numerous experimental techniques and datasets have been published, with the aim of deciphering the localisation of proteins at various scales and resolutions, including high profile mass spectrometry-based efforts. Here, we present a meta-analysis assessing and comparing the sub-cellular resolution of 29 such mass spectrometry-based spatial proteomics experiments using a newly developed tool termed QSep. Our goal is to provide a simple quantitative report of how well spatial proteomics resolve the sub-cellular niches they describe to inform and guide developers and users of such methods.  相似文献   

13.
The function of the hands is inextricably linked to cutaneous mechanosensation, both in touch and in how hand movement and posture (proprioception) are controlled. The structure and behavior of hands and distal forelimbs of other vertebrates have been evolutionarily shaped by these mechanosensory functions. The distal forelimb of tetrapod vertebrates is homologous to the pectoral fin rays and membrane of fishes. Fish fins demonstrate similar mechanosensory abilities to hands and other distal tetrapod forelimbs in touch and proprioception. These results indicate that vertebrates were using the core mechanosensory inputs, such as fast adapting and slow adapting nerve responses, to inform fin and limb function and behavior before their diversification in fish and tetrapod lineages.  相似文献   

14.
15.
Vision in dim light requires that photons absorbed by rod photoreceptors evoke signals that reliably propagate through the retina. We investigated how a perturbation in rod physiology affects propagation of those signals in the retina and ultimately visual sensitivity. Recoverin is a protein in rods that prolongs phototransduction and enhances visual sensitivity. It is not present in neurons postsynaptic to rods, yet we found that light-evoked responses of rod bipolar and ganglion cells were shortened when measured in recoverin-deficient retinas. Unexpectedly, the effect of recoverin on postsynaptic signals could not be explained by its effect on phototransduction. Instead, it is an effect of recoverin downstream of phototransduction in rods that prolongs signal transmission and enhances visual sensitivity. An important implication of our findings is that the recovery phase of the rod photoresponse does not contribute significantly to visual sensitivity near absolute threshold.  相似文献   

16.
Shao G  Zhang R  Wang ZL  Gao CY  Huo X  Lu GW 《Neuro-Signals》2006,15(6):314-321
Although it has been reported in a lot of studies that hypoxic preconditioning could protect the brain from hypoxic/ischemic injury, it is not clear whether hypoxic preconditioning could affect brain functions such as cognitive ability. This work aims at investigating the effect of hypoxic preconditioning on spatial cognitive ability in mice after acute and repeated hypoxic exposures. The mice were randomly divided into 3 groups: a control group in which mice were not exposed to hypoxia (H0) and experimental groups in which mice encountered hypoxia either once (H1) or 4 times (H4). Neural cell adhesion molecule (NCAM) expression, long-term potentiation (LTP) recording and Morris water maze test were used to measure the animals' cognitive ability. The tolerance time was progressively prolonged as exposure went on. The expression of both NCAM mRNA and NCAM protein as well as the LTP induction rate decreased in group H1, but recovered to control level in group H4. The performance of mice in the maze test was improved in H4 in comparison with that in both H1 and H0. These findings may indicate that spatial cognitive ability is improved in adult mice by their hypoxic preconditioning.  相似文献   

17.
18.
The exceptional cytology provided by polytene chromosomes has made Drosophila melanogaster a premier model for chromosome studies, but full exploitation of polytene cytology is impeded by the difficulty in preparing high-quality chromosome spreads. Here we describe use of high pressure to produce formaldehyde-fixed chromosome spreads, which upon light-microscopy examination reveal structural detail previously observed only in electron microscopy preparations. We demonstrate applications to immunofluorescence and in situ hybridization.  相似文献   

19.
A multiunit processing system mime for human color vision is presented. This processing system is composed of a sequence of black box units which encode the visual field and subsequently decode the visual field in the following manner. A “primary retinal encoder” performs an internal digitization of the visual field in both color and intensity. A “fundamental symbol translating unit” encodes the color and intensity patterns into a new pattern containing the fundamental symbols. This encoding is done via a Gödel transformation of the fundamental symbol patterns. The symbols needed to execute this transformation are found in an encoded table called the “symbol translation table.” Finally, the “Gödel signal generator” translates the fundamental symbol pattern into an electrical signal which is sent to a decoding region in the visual cortex and lateral geniculate body. This region is also tied to the symbol translation table, and is then used to decode the electrical signal back to the visual field. It is shown that various errors/failures in these black box units may lead to a wide variety of visual problems which mimic human disorders. These disorders include color blindness, color weakness, dyslexic problems, and a new disorder called visual field fluctuation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号