首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The influences of IgA hinge length and composition on its susceptibility to cleavage by bacterial IgA1 proteases were examined using a panel of IgA hinge mutants. The IgA1 proteases of Streptococcus pneumoniae, Streptococcus sanguis strains SK4 and SK49, Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae cleaved IgA2-IgA1 half hinge, an Ab featuring half of the IgA1 hinge incorporated into the equivalent site in IgA1 protease-resistant IgA2, whereas those of Streptococcus mitis, Streptococcus oralis, and S. sanguis strain SK1 did not. Hinge length reduction by removal of two of the four C-terminal proline residues rendered IgA2-IgA1 half hinge resistant to all streptococcal IgA1 metalloproteinases but it remained sensitive to cleavage by the serine-type IgA1 proteases of Neisseria and Haemophilus spp. The four C-terminal proline residues could be substituted by alanine residues or transferred to the N-terminal extremity of the hinge without affect on the susceptibility of the Ab to cleavage by serine-type IgA1 proteases. However, their removal rendered the Ab resistant to cleavage by all the IgA1 proteases. We conclude that the serine-type IgA1 proteases of Neisseria and Haemophilus require the Fab and Fc regions to be separated by at least ten (or in the case of N. gonorrhoeae type I protease, nine) amino acids between Val(222) and Cys(241) (IgA1 numbering) for efficient access and cleavage. By contrast, the streptococcal IgA1 metalloproteinases require 12 or more appropriate amino acids between the Fab and Fc to maintain a minimum critical distance between the scissile bond and the start of the Fc.  相似文献   

2.
Serum samples from 26 normal volunteers were evaluated by isotype-specific ELISA for the presence of IgG and IgM antibodies directed at IgA. Although there were wide variations in antibody levels, anti-IgA antibodies of both isotypes were found in all individuals tested. The anti-IgA activity was detected against a variety of polymeric and monomeric IgA1 and IgA2 myeloma proteins containing both kappa and lambda light chains. By using Fab and Fc fragments generated by incubation of an IgA1 myeloma protein with IgA1 protease, it was shown that the anti-IgA activity was specific for the Fab portion of the IgA molecule. It was also demonstrated that the serum of two individuals contained both IgG and IgM activity directed at autologous affinity-purified IgA. IgM antibody levels against both whole IgA and Fab of IgA were significantly higher than IgG antibody levels. Cells producing anti-IgA antibodies of both isotypes were detected in lipopolysaccharide-stimulated human spleen.  相似文献   

3.
Three bacterial strains of Bifidobacterium and Clostridium sp. from patients with inflammatory bowel disease (I.B.D.) and Streptococcus pneumoniae from a patient with pneumonia were identified to produce extracellular proteases cleaving IgA into Fab and Fc fragments. Although the proteases from the Bifidobacterium and the Streptococcus pneumoniae showed the characteristics of typical IgA1 proteases, cleaving the IgA of only the IgA1 subclass, the protease from Clostridium sp. revealed a dual substrate specificity, in that it cleaved both IgA1 and IgA2 of the A2m(1) allotype. The latter protease, however, did not show any activity with respect to the IgA2 of the A2m(2) allotype. Fc fragments isolated from the IgA1 and the IgA2 A2m(1) by digestion with the Clostridium sp. protease were identified to have an identical amino terminal residue of valine. The site of cleavage in both the alpha 1 and the alpha 2 of A2m(1) by the protease was assumed to be an identical peptide bond at Pro(221)-Val(222), which is a common one present just before the hinge of both the alpha 1 and the alpha 2 of the A2m(1) but not of the alpha 2 of the A2m(2). The protease was sensitive to ethylene-diamino tetraacetic acid, a chelating agent, similar to other already reported IgA1 proteases.  相似文献   

4.
While isolating free secretory component (FSC) by monoclonal antibody affinity chromatography, we demonstrated FSC-IgG complexes in human milk. We hypothesized that IgG antibody to secretory component (SC) might be transported into the milk from the serum. We therefore examined sera from 10 normal adults and 10 infants for IgG capable of binding to FSC in an enzyme-linked immunosorbent assay. Eight of 10 normal adult sera and nine of 10 infant sera demonstrated IgG binding to FSC with titers ranging from 1:54 to 1:4096. Quantitation of the IgG bound to FSC was hampered in adult sera by the binding of IgM and polymeric IgA to the FSC. Quantitation in five infant sera ranged from 0.5 to 6.4 micrograms/ml. A pepsin digest of an IgG fraction of serum demonstrated binding of the F(ab')2 fragments to the FSC. The specificity of the antibodies in human serum was evaluated by examining the binding to secretory IgA (sIgA) and FSC isolated from pooled human milk and polymeric IgA isolated from the ascitic fluid of a patient with an IgA myeloma. Eight of the 10 adults had antibody specific for FSC. Three of the eight, all female, also had antibody specific for sIgA. Two of the eight had antibody either to FSC and sIgA or to FSC plus an antibody that could bind to an epitope shared by sIgA and FSC. Competition experiments with monoclonal antibodies to human secretory component and sIgA were used to confirm and further define these specificities. The results of this study indicate that antibody to SC is common in normal adult and infant sera. The majority of antibodies seem to be directed against epitopes present on FSC but not on sIgA, which suggests sensitization to circulating or membrane-bound SC. The significance of these antibodies in normal human sera remains to be elucidated.  相似文献   

5.
The protozoan Entamoeba histolytica is the etiological agent of amebiasis, an infection with high prevalence worldwide. The host-ameba relationship outcome depends on parasite and host factors, and among these is secretory IgA. These antibodies reduce mucosal colonization by pathogens and neutralize a variety of toxins and enzymes. The functionality of secretory IgA depends on its integrity. Some bacteria produce IgA proteases that cleave mainly the IgA1 subclass; live E. histolytica trophozoites, and other ameba fractions are also able to degrade human IgA. The aim of this study was to determine if serum and secretory IgA, its subclasses and secretory component, are degraded by cysteine proteases, which are present and active on the surface of glutaraldehyde-fixed amebas. It was observed that secretory IgA1, IgA2, free and IgA-bound secretory component were degraded by E. histolytica surface-associated cysteine proteinases. Secretory IgA2, although it was degraded, conserved its ability to agglutinate live amebas better than IgA1. Therefore, while specificity of known ameba cysteine proteases is cathepsin B-like and is different from bacterial IgA proteases, IgA2 was functionally more resistant than IgA1 to ameba surface-associated cysteine protease degradation, similar to the greater resistance of IgA2 to bacterial IgA-specific proteases.  相似文献   

6.
A double-sandwich enzyme immunoassay method was developed for determination of serum immunoglobulin A (S-IgA) and mucosal secretory immunoglobulin A (sIgA) in duodenal brush samples obtained via endoscopy and the relationship between enteric mucosal sIgA, salivary sIgA and S-IgA in dogs was examined. Twenty healthy dogs underwent routine endoscopy. A brush sample from the duodenal mucosa was obtained and washed in PBS, with a serum sample being taken concurrently. A saliva sample was collected from twelve of these dogs. S-IgA and sIgA with total protein concentrations in the duodenal washings and saliva samples were determined. A significant negative correlation (r = -0.64, P = 0.0059) was found between duodenal sIgA/protein ratios and S-IgA concentrations. Saliva sIgA/protein ratios did not correlate with sIgA/protein ratios of duodenal samples. The method described here allows for direct assessment of duodenal IgA; therefore indirect measures based on serum IgA or salivary IgA can be avoided. In addition, these indirect measures appear to be poor indicators of duodenal sIgA competence in dogs.  相似文献   

7.
A bacterial strain isolated from feces of a patient with ulcerative colitis, which had been shown to produce a novel immunoglobulin A (IgA) protease (cleaving both the human IgA1 subclass and IgA2 subclass of A2m(1) allotype) extracellularly, was identified as Clostridium ramosum. By using a selective medium (propionate-rifampicin-gentamicin-colimycin-polymyxin medium) devised for C. ramosum, analysis of the population level of this organism was performed to determine its ecology in the human intestinal tract. C. ramosum was isolated in 20 of 25 fecal samples (80%) from patients with inflammatory bowel disease (I.B.D.) and in 112 of 135 samples (83%) from patients without I.B.D. (control group). C. ramosum was also isolated from 6 of 11 biopsy samples (55%) of the inflamed rectal mucosa from patients with ulcerative colitis and from five of 15 samples (33%) from the intact mucosa of the control group. The population levels of C. ramosum in most of the biopsy samples ranged from 2.3 to 5.0 log10 per gram. The IgA protease-positive C. ramosum was found in only four of 135 fecal samples (3%) and one of 15 biopsy samples (6.7%) from the control group. These results indicate that IgA protease-positive C. ramosum is not likely to play a role in the induction of I.B.D., unless the organism is first isolated from the patient with I.B.D.  相似文献   

8.
Human IgA1 initiates complement-mediated killing of Neisseria meningitidis   总被引:5,自引:0,他引:5  
We studied the effect of human IgA1, the predominant IgA subclass in serum, on C-mediated killing of Neisseria meningitidis. We purified monomeric IgA1 from normal human serum and tetravalent meningococcal polysaccharide vaccinate serum by using the following successive chromatographic steps: jacalin lectin affinity, Superose 12 FPLC gel filtration, Mono Q FPLC anion exchange, and anti-IgG affinity. SDS-PAGE, ELISA, and Western immunoblot analyses of the IgA1 detected no trace of contaminating IgG or IgM. IgA1 initiated partial or complete lysis (62 to 100%) of nine group C strains by using either normal, hypogammaglobulinemic, factor B-depleted, or properdin-deficient human serum as a C source, but IgA1 was unable to effect killing in serum chelated with 10 mM MgCl2 and 10 mM EGTA. Lytic activity was dependent on the group C strain and the source of the IgA1; neither IgA1 preparation was bactericidal for all nine strains. Removal of the Fc portion of IgA1 with pepsin completely abolished bactericidal activity. We purified and radiolabeled C component C3, and found that IgA1 did not increase C3 deposition. With the use of a group C polysaccharide ELISA, we found that the vaccinate IgA1 had a high titer of group C polysaccharide antibody, whereas the IgA1 purified from normal human serum had no detectable group C polysaccharide specificity. Absorption of the vaccinate IgA1 with alum-bound group C polysaccharide did not affect the killing of a sensitive strain, but it did potentiate the killing of a previously resistant strain. Western immunoblots of whole cell lysates, outer membrane complex, and purified lipooligosaccharide showed that the bactericidal IgA1 was specific for several outer membrane proteins. Four of the proteins recognized by both IgA1 preparations had apparent Mr of 29, 42, 66, and 74 kDa. We conclude that IgA1, when bound to specific outer membrane proteins, can initiate lysis of group C meningococci via the classical C pathway, and that initiation of lysis is an Fc-dependent event which occurs without an increase in C3 deposition.  相似文献   

9.
Human immunoglobulin A (IgA) is an abundant antibody that mediates immune protection at mucosal surfaces as well as in plasma. The IgA1 isotype contains two four-domain Fab fragments and a four-domain Fc fragment analogous to that in immunoglobulin G (IgG), linked by a glycosylated hinge region made up of 23 amino acid residues from each of the heavy chains. IgA1 also has two 18 residue tailpieces at the C terminus of each heavy chain in the Fc fragment. X-ray scattering using H2O buffers and neutron scattering using 100 % 2H2O buffers were performed on monomeric IgA1 and a recombinant IgA1 that lacks the tailpiece (PTerm455). The radii of gyration RG from Guinier analyses were similar at 6.11-6.20 nm for IgA1 and 5.84-6.16 nm for PTerm455, and their cross-sectional radii of gyration RXS were also similar. The similarity of the RG and RXS values suggests that the tailpiece of IgA1 is not extended outwards in solution. The IgA1 RG values are higher than those for IgG, and the distance distribution function P(r) showed two distinct peaks, whereas a single peak was observed for IgG. Both results show that the hinge of IgA1 results in an extended Fab and Fc arrangement that is different from that in IgG. Automated curve-fit searches constrained by homology models for the Fab and Fc fragments were used to model the experimental IgA1 scattering curves. A translational search to optimise the relative arrangement of the Fab and Fc fragments held in a fixed orientation resembling that in IgG was not successful in fitting the scattering data. A new molecular dynamics curve-fit search method generated IgA1 hinge structures to which the Fab and Fc fragments could be connected in any orientation. A search based on these identified a limited family of IgA1 structures that gave good curve fits to the experimental data. These contained extended hinges of length about 7 nm that positioned the Fab-to-Fab centre-to-centre separation 17 nm apart while keeping the corresponding Fab-to-Fc separation at 9 nm. The resulting extended T-shaped IgA1 structures are distinct from IgG structures previously determined by scattering and crystallography which have Fab-to-Fab and Fab-to-Fc centre-to-centre separations of 7-9 nm and 6-8 nm, respectively. It was concluded that the IgA1 hinge is structurally distinct from that in IgG, and this results in a markedly different antibody structure that may account for a unique immune role of monomeric IgA1 in plasma and mucosa.  相似文献   

10.
The influence of regions, other than the hinge, on the susceptibility of human IgA1 to cleavage by diverse bacterial IgA1 proteases, was examined using IgA1 mutants bearing amino acid deletions, substitutions, and domain swaps. IgA1 lacking the tailpiece retained its susceptibility to cleavage by all of the IgA1 proteases. The domain swap molecule alpha1alpha2gamma3, in which the CH3 domain of IgA1 was exchanged for that of human IgG1, was resistant to cleavage with the type 1 and 2 serine IgA1 proteases of Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae, but remained sensitive to cleavage with the metallo-IgA1 proteases of Streptococcus pneumoniae, Streptococcus oralis, Streptococcus sanguis, and Streptococcus mitis. Substitution of the IgA1 Calpha3 domain motif Pro440 -Phe443 into the corresponding position in the Cgamma3 domain of alpha1alpha2gamma3 resulted now in sensitivity to the type 2 IgA1 protease of N. meningitidis, indicating the possible requirement of these amino acids for sensitivity to this protease. For the H. influenzae type 2 protease, resistance of an IgA1 mutant in which the CH3 domain residues 399-409 were exchanged with those from IgG1, but sensitivity of mutant HuBovalpha3 in which the Calpha3 domain of bovine IgA replaces that of human IgA1, suggests that CH3 domain residues Glu403, Gln406, and Thr409 influence sensitivity to this enzyme. Hence, unlike the situation with the metallo-IgA1 proteases of Streptococcus spp., the sensitivity of human IgA1 to cleavage with the serine IgA1 proteases of Neisseria and Haemophilus involves their binding to different sites specifically in the CH3 domain.  相似文献   

11.
To analyze the subclass restriction of Ag-specific IgA, sera and saliva from healthy blood donors and from IgA class or subclass deficient individuals were studied. The latter included donors with or without C alpha 1 or C alpha 2 gene deletions. Monoclonal human IgA1 and a genetically engineered IgA2 antibody, normal human serum and colostrum IgA were used as standards to estimate serum and saliva levels of Ag-specific antibodies. In normal individuals, there was a strong IgA1 preference of naturally acquired antibodies in serum against both polysaccharide Ag (PPS 6A, PPS 23, pneumococcal C-polysaccharide, and LPS from Escherichia coli) and protein Ag (Staphylococcus aureus alpha-toxin and HSV). Specific IgA2 in serum against the tested Ag were frequently not measurable. In contrast, most of the individuals with homozygous C alpha 1 gene deletions displayed substantial amounts of specific IgA2 against protein as well as polysaccharide Ag. The median levels of specific IgA in serum against protein Ag were approximately one-third as compared to normal individuals and one-fifth, or less, against polysaccharide Ag. Normal serum levels of IgA against the tested Ag, restricted to the IgA1 subclass, were noted in two individuals with IgA2 deficiency, one of whom carried a homozygous C alpha 2 gene deletion. Median values of specific IgA, against the tested Ag S. aureus alpha-toxin, HSV, and pneumococcal C-poly-saccharide, from normal healthy donors were approximately four to eight times higher in serum as compared to saliva. Individuals with homozygous C alpha 1 gene deletions displayed increased levels of the various specific IgA2 antibodies in saliva. In conclusion, the individuals with homozygous C alpha 1 gene deletions displayed decreased median levels of specific IgA antibodies in serum despite normal levels of total IgA. Normal levels of both specific IgA and total IgA in saliva were found.  相似文献   

12.
Secretory IgA (sIgA) Abs are polymeric Igs comprised of two or more IgA monomers joined together at their C termini and covalently associated with a 70-kDa glycoprotein called secretory component. As the predominant Ig type in gastrointestinal sections, sIgA Abs are centrally important in adaptive immunity to enteropathogenic bacteria, viruses, and toxins. In this study, we demonstrate that sIgA Abs may also function in innate defense against ricin, a naturally occurring, galactose-specific plant lectin with extremely potent shiga toxin-like enzymatic activity. In lectin blot overlay assays, we found that ricin bound to secretory component and the H chain of human IgA, and this binding was inhibited by the addition of excess galactose. The toxin also recognized IgM (albeit with less affinity than to IgA), but not IgG. Ricin bound to both human IgA1 and IgA2, primarily via N-linked oligosaccharide side chains. At 100-fold molar excess concentration, sIgA (but not IgG) Abs inhibited ricin attachment to the apical surfaces of polarized intestinal epithelial cells grown in culture. sIgA Abs also visibly reduced toxin binding to the luminal surfaces of human duodenum in tissue section overlay assays. We conclude that sIgA Abs in mucosal secretions may serve as receptor analogues for ricin, thereby reducing the effective dose of toxin capable of gaining access to glycolipid and glycoprotein receptors on epithelial cell surfaces.  相似文献   

13.
Secretory IgA (SIgA) is the principal immunoglobulin isotype present in the mucosal secretions of humans. SIgA is thought to play a major role in host defense at these surfaces by inhibiting the colonization of potentially pathogenic microorganisms. A number of bacteria that are mucosal pathogens of humans produce a protease that specifically cleaves the IgA1 subclass of humans and great apes at the hinge region to produce Fab and Fc fragments. In order to study the effect of IgA1 protease on the ability of SIgA1 antibodies to inhibit bacterial adherence, an in vitro assay that quantifies the adsorption of radiolabeled Streptococcus mutans to hydroxyapatite (HA) beads was employed. High titer S. mutans-specific SIgA1 and SIgA2 antibodies were induced in chimpanzee milk for use in the assay. Fabα1 fragments had significantly reduced ability to inhibit adherence of S. mutans to saliva-coated HA compared to intact SIgA1 or SIgA2 anti-S. mutans antibodies. These data support the potential importance of IgA1 proteases as an ecological determinant in the oral cavity and their role as a determinant of pathogenesis of pathogenic bacteria whose portal of entry is the mucosal surface.  相似文献   

14.
We have recently shown that human IgA1 can initiate lysis of group C Neisseria meningitidis via the classical C pathway when bound to specific outer membrane proteins, but that IgA1 can also function as a blocking antibody when bound to the polysaccharide capsule of meningococci. In this report, we further characterized IgA1 blockade by examining the effect of IgA1 on IgG-initiated immune lysis of group C meningococci. We purified IgG and monomeric IgA1 from either convalescent group C meningococcal case sera or tetravalent (A, C, Y, W135) polysaccharide vaccinate sera. In the absence of IgA1, IgG initiated complete lysis (greater than 99%) of strains 118V (C:P3,4:L2,4) 126E (C:P3:L1,8), and 35E (C:P5:L2). Addition of IgA1 to the bactericidal reaction mixture completely blocked the lytic function of IgG. Removal of the Fc portion of IgA1 with either pepsin or IgA1 protease did not affect blockade. Both the F(ab')2 and Fab derivatives of IgA1 blocked lysis quantitatively as well as intact IgA1. The Fc fragment produced by IgA1 protease cleavage neither increased nor decreased Fab-mediated blockade. IgA1 and its Fab and F(ab')2 fragments blocked IgG-initiated lysis via either the classical pathway in factor B-depleted and in properdin-deficient serum, the alternative pathway in MgEGTA-chelated serum, or both pathways combined. Absorption of the IgA1 and IgG with alum-bound group C polysaccharide completely removed blocking and lytic activity, respectively, indicating that both the blocking IgA1 and the lytic IgG were specific for the group C capsule. Blocking by IgA1 was a linear function of the polysaccharide Ag-binding capacity (ABC) ratio of blocking IgA1 to lytic IgG. Complete blockade was observed at an ABC ratio of 5.5. At ABC ratios of 3.3 and 4.4, IgA1 affected significant blockade whether added previous to, concurrent with, or subsequent to sensitization of the organisms with IgG. With the use of a C polysaccharide ELISA, we found that the binding of IgA1 to the group C capsule in the presence of IgG exhibited positive cooperativity and therefore that blockade was independent of the ability of IgA1 to directly compete with IgG for binding to epitopes within the group C capsule. We conclude that IgA1, when bound to the group C polysaccharide capsule, can block IgG-initiated lysis of group C meningococci through either the classical or the alternative pathway before or after the organism is exposed to IgG, and that blockade is an Fc-independent event.  相似文献   

15.
A receptor for IgA was purified from human polymorphonuclear neutrophils (PMN) by affinity chromatography on human serum IgA-Sepharose. The receptor appeared on SDS/polyacrylamide gels as a diffuse band with an apparent molecular mass of 50-70 kDa, whether reduced or non-reduced. During purification, the protein showed remarkable stability to proteolytic digestion by endogenous PMN proteinases. Purified radioiodinated receptor re-bound to IgA-Sepharose, but not to IgG-Sepharose or BSA-Sepharose. The binding of the receptor to IgA-Sepharose was inhibited in a dose-dependent manner by human serum IgA1 or IgA2 or secretory IgA1 or IgA2, but not by IgG or IgM. Binding of receptor to IgA-Sepharose was also inhibited by the Fc fragment of IgA, but not by the Fab fragment. An IgA fragment produced by digestion with pepsin which lacks the CH3 domain also inhibited binding, but to a more limited extent than did the whole IgA molecule.  相似文献   

16.
Extracellular caseinolytic activity was found in the culture fluid of Streptococcus sanguis ATCC 10556 grown in a dialyzed culture medium. This activity was due to multiple proteases that differed in their elution from hydroxyapatite, sensitivity to enzyme inhibitors, specificity and optimum pH. IgA protease, which splits human immunoglobulin A1 into intact Fc and Fab could be effectively separated from these relatively non-specific proteases and purified to apparent homogeneity in 20% yield by a five-step procedure. Although the bulk of the dextran sucrase activity was separated from the IgA protease, a small amount of sucrase activity remained with the final IgA protease preparation. In polyacrylamide gel electrophoresis at pH 9.5 both activities were located in the single protein band detected in this preparation. A quantitative method for the assay of IgA protease was developed, based on radial immunodiffusion to quantitate the Fab produced. This was used to follow the specific activity and yield during purification, and to characterize some of the catalytic properties of the enzyme. At an enzyme/substrate ratio of 1: 400 (w/w) the protease could effect 50% proteolysis of IgA in overnight incubation at 37 degrees C. The optimum activity was at pH 8.0, and 50% inhibition was achieved at 4 . 10(-4) M o-phenanthroline or 8 . 10(-4) M ethylene diamine tetraacetate. Concentrations of diisopropyl phosphofluoridate, phenylmethyl-sulfonyl fluoride, iodoacetate and p-chloromercuribenzoate up to 10(-2) M were without effect on the IgA protease activity. Full reactivation of the chelator inhibited enzyme could be achieved by the addition of Mg2+, Mn2+ or Ca2+.  相似文献   

17.
The distribution of non-covalently bound secretory component (SC) on the two subclasses, IgA-f and IgA-g of rabbit secretory IgA (sIgA) was determined; the two subclasses were separated from each other by the use of antibody-immunosorbent columns and were subjected to SDS polyacrylamide gel electrophoresis. No SC appeared to be dissociated from the IgA-f molecules from each of 11 different rabbits; the IgA-g molecules, however, did have SC which was dissociated by SDS. Thus, all of the noncovalently bound SC on rabbit sIgA resides on the IgA-g subclass molecules.  相似文献   

18.
We have compared the epitopes present in various forms of human secretory component by using a panel of hybridoma-derived antibodies elicited by immunizing mice with free secretory component (FSC) or secretory IgA (sIgA). Enzyme-linked immunosorbent binding assays (ELISA) were used to assess antibody binding to FSC- and SC-containing antigens, including sIgA isolated from milk, reduced and alkylated sIgA, and sIgA assembled in vitro by incubating dimeric IgA with FSC. Immunofluorescence assays were also used to assess binding to a human epithelial tumor cell line (HT29) that expresses secretory component as an integral protein of the plasma membrane. The results can be summarized as follows. 1) Most antibodies from fusions in which sIgA was the immunizing antigen bound preferentially to sIgA. 2) Most antibodies from fusions in which FSC was the immunizing antigen bound preferentially to FSC. 3) Antibodies that bound preferentially to sIgA invariably bound sIgA assembled in vitro; antibodies that bound preferentially to FSC invariably did not. 4) Antibodies that bound readily to both sIgA and FSC were rare in all fusions. 5) The monoclonal antibodies defined at least six classes of epitopes on SC, including epitopes that were a) FSC specific and reduction sensitive, b) FSC specific and reduction insensitive, c) sIgA specific and reduction-sensitive, d) sIgA specific and reduction insensitive, e) shared by FSC and sIgA and reduction-sensitive, and f) shared by FSC and sIgA and reduction-insensitive. 6) Antibodies that mediated intense immunofluorescent staining of secretory component on HT29 cell membranes were rare and constituted a distinct subset of those which recognized epitopes shared by FSC, reduced and alkylated sIgA, and some preparations of native sIgA. Results of these antibody-binding studies indicate that most SC epitopes are not shared by FSC and sIgA. Most SC-related epitopes on sIgA appear to be generated by the physical interaction of SC with dimeric IgA, whereas most epitopes on FSC are masked or altered by this interaction. Finally, epitopes that are shared by membrane SC and FSC and/or sIgA represent a minor and immunochemically distinct subset of epitopes on SC. The high proportion of unique epitopes on the different physical forms of SC suggest that the epitopes of this molecule are highly sensitive to its molecular environment. The monoclonal reagents described here will be useful in studying the structure and function of SC; quantitating FSC, sIgA, and membrane SC; purifying various molecular forms of SC by immunoaffinity chromatography; and localizing SC in human tissues and cultured cells by immunocytochemical techniques.  相似文献   

19.
The development and production of recombinant monoclonal antibodies is well established. Although most of these are IgGs, there is also great interest in producing recombinant IgAs since this isotype plays a critical role in providing immunologic protection at mucosal surfaces. the choice of expression system for production of recombinant antibodies is crucial because they are glycoproteins containing at least one N-linked carbohydrate. these glycans have been shown to contribute to the stability, pharmacokinetics and biologic function of antibodies. We have produced recombinant human IgA1 and all three allotypes of IgA2 in murine myeloma and CHo cell lines to systematically characterize and compare the N-linked glycans. Recombinant IgAs produced in murine myelomas differ significantly from IgA found in humans in that they contain the highly immunogenic Galα(1,3)Gal epitope and N-glycolylneuraminic acid residues, indicating that murine myeloma is not the optimal expression system for the production of human IgA. In contrast, IgAs produced in CHo cells contained glycans that were more similar to those found on human IgA. expression of IgA1 and IgA2 in Lec2 and Lec8 cell lines that are defective in glycan processing resulted in a less complex pool of N-glycans. In addition, the level of sialylation of rIgAs produced in murine and CHo cells was significantly lower than that previously reported for serum IgA1. these data underscore the importance of choosing the appropriate cell line for the production of glycoproteins with therapeutic potential.Key words: recombinant antibody, IgA, glycosylation, expression system, mass spectrometry  相似文献   

20.
J chain is covalently bound to both monomer subunits in human secretory IgA   总被引:4,自引:0,他引:4  
Previous work has established that the secretory component (SC) in human secretory IgA is covalently linked to only one of the two IgA monomer subunits, but it has not been clear whether the J chain is covalently linked to one or to both of these subunits. In view of the asymmetry in the disulfide bonding between SC and the IgA subunits, an arrangement which follows disulfide interchange, several models for the disulfide linkage of J chain and the bonds between IgA subunits were envisaged and investigated. When sIgA was gel filtered through Sephadex G-200 in acetic acid, a single major symmetrical peak eluted at the front. This material contained SC, alpha and L chains, and all of the J chain. The greater resolution afforded by polyacrylamide gel electrophoresis in detergent confirmed that human sIgA contains no major noncovalently linked components in the 150,000-200,000 molecular weight range. In another series of experiments the Fc monomer, which is not covalently attached to SC, isolated after treatment of sIgA with IgA protease and cyanogen bromide, was investigated to learn whether alpha chain COOH-terminal octapeptides could be released by reduction. The results were negative. The available data thus favor a model in which J chain is disulfide-bonded to both IgA monomer subunits in sIgA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号