首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the hypothesis that the highly selective recombination of an active mating type locus (MAT) with either HMLα or HMRa is facilitated by the spatial positioning of relevant sequences within the budding yeast (Saccharomyces cerevisiae) nucleus. However, both position relative to the nuclear envelope (NE) and the subnuclear mobility of fluorescently tagged MAT, HML, or HMR loci are largely identical in haploid a and α cells. Irrespective of mating type, the expressed MAT locus is highly mobile within the nuclear lumen, while silent loci move less and are found preferentially near the NE. The perinuclear positions of HMR and HML are strongly compromised in strains lacking the Silent information regulator, Sir4. However, HMLα, unlike HMRa and most telomeres, shows increased NE association in a strain lacking yeast Ku70 (yKu70). Intriguingly, we find that the yKu complex is associated with HML and HMR sequences in a mating-type-specific manner. Its abundance decreases at the HMLα donor locus and increases transiently at MATa following DSB induction. Our data suggest that mating-type-specific binding of yKu to HMLα creates a local chromatin structure competent for recombination, which cooperates with the recombination enhancer to direct donor choice for gene conversion of the MATa locus.  相似文献   

2.
The sexual development and virulence of the fungal pathogen Cryptococcus neoformans is controlled by a bipolar mating system determined by a single locus that exists in two alleles, α and a. The α and a mating-type alleles from two divergent varieties were cloned and sequenced. The C. neoformans mating-type locus is unique, spans >100 kb, and contains more than 20 genes. MAT-encoded products include homologs of regulators of sexual development in other fungi, pheromone and pheromone receptors, divergent components of a MAP kinase cascade, and other proteins with no obvious function in mating. The α and a alleles of the mating-type locus have extensively rearranged during evolution and strain divergence but are stable during genetic crosses and in the population. The C. neoformans mating-type locus is strikingly different from the other known fungal mating-type loci, sharing features with the self-incompatibility systems and sex chromosomes of algae, plants, and animals. Our study establishes a new paradigm for mating-type loci in fungi with implications for the evolution of cell identity and self/nonself recognition.  相似文献   

3.
Deacetylases of the Sir2 family regulate lifespan and response to stress. We have examined the evolutionary history of Sir2 and Hst1, which arose by gene duplication in budding yeast and which participate in distinct mechanisms of gene repression. In Saccharomyces cerevisiae, Sir2 interacts with the SIR complex to generate long-range silenced chromatin at the cryptic mating-type loci, HMLα and HMR a. Hst1 interacts with the SUM1 complex to repress sporulation genes through a promoter-specific mechanism. We examined the functions of the non-duplicated Sir2 and its partners, Sir4 and Sum1, in the yeast Kluyveromyces lactis, a species that diverged from Saccharomyces prior to the duplication of Sir2 and Hst1. KlSir2 interacts with both KlSir4 and KlSum1 and represses the same sets of target genes as ScSir2 and ScHst1, indicating that Sir2 and Hst1 subfunctionalized after duplication. However, the KlSir4-KlSir2 and KlSum1-KlSir2 complexes do not function as the analogous complexes do in S. cerevisiae. KlSir4 contributes to an extended repressive chromatin only at HMLα and not at HMR a. In contrast, the role of KlSum1 is broader. It employs both long-range and promoter-specific mechanisms to repress cryptic mating-type loci, cell-type–specific genes, and sporulation genes and represents an important regulator of cell identity and the sexual cycle. This study reveals that a single repressive complex can act through two distinct mechanisms to regulate gene expression and illustrates how mechanisms by which regulatory proteins act can change over evolutionary time.  相似文献   

4.
The HML and HMR loci carry unexpressed copies of MATa and MATα information, and a replica of that information is transposed to MAT during mating-type interchange in Saccharomyces yeasts. A negative control mechanism keeps silent the information located at the HML and HMR loci. We mapped these loci by constructing strains in which these loci are expressed. In these strains, the mating type of the segregants is dependent upon the allele at HML and HMR. This novel approach is independent of their switching function. HML is located on the left arm of chromosome III distal to his4 by about 26.8 centimorgans (cM). HMR maps on the right arm of the same chromosome distal to thr4 by about 39.8 cM and proximal to MAL2 by about 1.0 cM. The results allow the exact placement of these loci and are in accord with the observations made by Harashima and Oshima (1976).  相似文献   

5.
6.
Livi GP  Mackay VL 《Genetics》1980,95(2):259-271
Heterozygosity at the mating-type locus (MAT) in Saccharomyces cerevisiae has been shown previously to enhance X-ray survival in diploid cells. We now show that a/α diploids are also more resistant to the radiomimetic agent methyl methanesulfonate (MMS) than are diploids that are homozygous at MAT (i.e., either a/a or α/α). Log-phase a/α cultures exhibit biphasic MMS survival curves, in which the more resistant fraction consists of budded cells (those cells in the S and G2 phases of the cell cycle). Survival curves for log-phase cultures of a/a or α/α diploids have little if any biphasic nature, suggesting that the enhanced S- and G2-phase repair capacity of a/α cells may be associated with heterozygosity at MAT. The survival of cells arrested at the beginning of the S phase with hydroxyurea indicates that MAT-dependent MMS repair is limited to S and G2, whereas MAT-independent repair can occur in G1.  相似文献   

7.
The mating-type a and α alleles of the yeast Saccharomyces cerevisiae interconvert by a transposition-substitution reaction where replicas of the silent mating loci, at HML and HMR, are transmitted to the expressed mating-type locus (MAT). HML is on the left arm and HMR on the right arm, while MAT is in the middle of chromosome III. Cells with the genotype HMLα HMRa switch mating type efficiently at a frequency of about 86%. Since well over 50% of the cells switch, it is thought that switches do not occur randomly, but are directed to occur to the opposite mating-type allele. In contrast, we report that strains possessing the reverse HMLa HMRα arrangement switch (phenotype) inefficiently at a maximum of about 6%. The basis for this apparent reduced frequency of switching is that these strains preferentially yield futile homologous MAT locus switches—that is, MATa to MATa and MATα to MATα—and consequently, most of these events are undetected. We used genetically marked HM loci to demonstrate that a cells preferentially choose HMR as donor and a cells preferentially choose HML as donor, irrespective of the genetic content of the silent loci. Because of this feature, HMLα HMRa strains generate predominantly heterologous while HMLa HMRα strains produce predominantly homologous MAT switches. The control for directionality of switching therefore is not at the level of transposing heterologous mating-type information, but only at the level of choosing HML versus HMR as the donor. In strains where the preferred donor locus is deleted, the Inefficient donor becomes capable of donating efficiently. Thus the preference seems to be mediated by competition between the HM loci for donating information to MAT.  相似文献   

8.
Lemontt JF  Fugit DR  Mackay VL 《Genetics》1980,94(4):899-920
The umr7–1 mutation, previously identified in a set of mutants that had been selected for defective UV-induced mutagenesis at CAN1, affects other cellular functions, including many of those regulated by the mating-type locus (MAT) in heterothallic Saccharomyces cerevisiae. The recessive umr7–1 allele, mapping approximately 20 cM distal to thr4 on chromosome III, causes clumpy growth in both a and α cells and has no apparent effect on a mating functions. However, α umr7 meiotic segregants fail to express several α-specific functions (e.g., high-frequency conjugation with a strains, secretion of the hormone α-factor and response to the hormone a-factor). In addition, α umr7 cells exhibit some a-specific characteristics, such as the barrier phenotype (Bar+) that prevents diffusion of α-factor and an increased mating frequency with α strains. The most striking property of α umr7 strains is their altered morphology, in which mitotic cells develop an asymmetric pear shape, like that of normal a cells induced to form "shmoos" by interaction with α-factor. Some a/α-specific diploid functions are also affected by umr7; instead of polar budding patterns, aumr7/umr7 diploids have medial budding like a/a, α/α and haploid strains. Moreover, aumr7/umr7 diploids have lost the ability to sporulate and are Bar+ like a or a/a strains. Revertant studies indicate that umr7–1 is a single point mutation. The umr7 mutant fails to complement mutants of both tup1 (selected for deoxythymidine monophosphate utilization) and cyc9 (selected for high iso-2-cytochrome c levels), and all three isolates have similar genetic and phenotypic properties. It is suggested that the product of this gene plays some common central role in the complex regulation of the expression of both MAT-dependent and MAT-independent functions.  相似文献   

9.
The alleles of the yeast mating type locus, MATα and MATa, determine the yeast cell types, a,α, and a/α. It has been proposed that the MATα2 product negatively regulates expression of unlinked a-specific genes, and that the MATα1 product positively regulates expression of unlinked α-specific genes. The behavior of mutants defective in MATα2, which are deficient in mating and in production of α-factor, can thus be attributed to antagonism between a-specific and α-specific functions expressed simultaneously in matα2? strains. If this view is correct, then elimination by mutation of the specific functions required to mate as α may allow matα2 mutants to mate as a. In order to test this possibility, we examined the interactions between matα2 mutations and various unlinked mutations that cause α cells but not a cells to be mating defective (α-specific STE mutations). Three α-specific mutations (ste3, ste13 and kex2) were found to be non-allelic. Furthermore, although matα2 mutants mate weakly as a, matα2, ste3 double mutants, but not matα2 ste13 or matα2 kex2 double mutants, mate efficiently as a. The ability of matα2 ste3 strains to mate as a supports the view that matα2 mutants express a-specific mating functions, and suggests that a mating functions are expressed constitutively in MATa cells. The mating behaviour of the matα2 ste3 double mutant is consistent with the proposal that STE3 is positively regulated by the MATα1 product.  相似文献   

10.
Hicks JB  Herskowitz I 《Genetics》1976,83(2):245-258
The HO gene promotes interconversion between a and α mating types. As a consequence, homothallic diploid cells are formed by mating between siblings descended from a single α HO or a HO spore. In order to determine the frequency and pattern of the mating-type switch, we have used a simple technique by which the mating phenotype can be assayed without losing the cell to the mating process itself. Specifically, we have performed pedigree analysis on descendants of single homothallic spores, testing these cells for sensitivity to α-factor.

The switch from α to a and vice versa is detectable after a minimum of two cell divisions. 50% of the clones tested showed switching by the four-cell stage. Of the four cells descended from a single cell, only the oldest cell and its immediate daughter are observed to change mating type. This pattern suggests that one event in the switching process has occurred in the first cell division cycle. Restriction of the switched mating-type to two particular cells may reflect the action of the homothallism system followed by nonrandom segregation of DNA strands in mitosis.

The mating behavior of cells which have sustained a change in mating type due to the HO gene is indistinguishable from that of heterothallic strains.

  相似文献   

11.
Saccharomyces cerevisiae cells select bud sites according to one of two predetermined patterns. MATa and MATα cells bud in an axial pattern, and MATa/α cells bud in a bipolar pattern. These budding patterns are thought to depend on the placement of spatial cues at specific sites in the cell cortex. Because cytoskeletal elements play a role in organizing the cytoplasm and establishing distinct plasma membrane domains, they are well suited for positioning bud-site selection cues. Indeed, the septin-containing neck filaments are crucial for establishing the axial budding pattern characteristic of MATa and MATα cells. In this study, we determined the budding patterns of cells carrying mutations in the actin gene or in genes encoding actin-associated proteins: MATa/α cells were defective in the bipolar budding pattern, but MATa and MATα cells still exhibit a normal axial budding pattern. We also observed that MATa/α actin cytoskeleton mutant daughter cells correctly position their first bud at the distal pole of the cell, but mother cells position their buds randomly. The actin cytoskeleton therefore functions in generation of the bipolar budding pattern and is required specifically for proper selection of bud sites in mother MATa/α cells. These observations and the results of double mutant studies support the conclusion that different rules govern bud-site selection in mother and daughter MATa/α cells. A defective bipolar budding pattern did not preclude an sla2-6 mutant from undergoing pseudohyphal growth, highlighting the central role of daughter cell bud-site selection cues in the formation of pseudohyphae. Finally, by examining the budding patterns of mad2-1 mitotic checkpoint mutants treated with benomyl to depolymerize their microtubules, we confirmed and extended previous evidence indicating that microtubules do not function in axial or bipolar bud-site selection.  相似文献   

12.
We have extended the genetic analysis of four mutants carrying defective MATα alleles in order to determine how the mating type locus controls yeast cell types: a, a, and aα. First, we have mapped the defect in the mutant VC73 to the mating type locus by diploid and tetraploid segregation analysis. Second, we have determined that the mutations in these strains define two complementation groups, MATα1 and MATα2. The MATα1 gene is proposed to be a positive regulator of α mating functions. The MATα2 gene product is proposed to have two roles, as a negative regulator of a-specific mating functions and as a regulator of aα cell functions (required for sporulation, for inhibition of mating and other processes). This view of MATα leads to the prediction that matα1?matα2? mutants should have the mating ability of an a cell and that matα1?matα2?/MATα strains should mate as α and be unable to sporulate. Such double mutants have been constructed and behave as predicted. We therefore propose that a-specific mating functions in MATa cells are constitutively expressed due to the absence of the MATα2 gene product and that α-specific mating functions are not expressed due to the absence of the MATα1 gene product.  相似文献   

13.
We investigated sex chromosome diversity in Zygosaccharomyces rouxii (Z. rouxii). In the current study, we show that the organization of the mating-type (MAT) locus is highly variable in the Z. rouxii population, indicating the MAT, HML, and HMR loci are translocation hotspots. Although NBRC1130 and CBS732 were originally two stocks of the type strain of the species, only NBRC1130 retains the original karyotype. A reciprocal translocation between the MAT and HMR loci appears to have occurred during the early passage culture of CBS732, which was used for genome sequencing. In NBRC1733, NBRC0686, NBRC0740 and NBRC1053, the terminal region of the chromosome containing the HMR locus was replaced with the chromosomal region to the left of the MAT or HML loci. The translocation events found in NBRC1733, NBRC0686, NBRC0740, and NBRC1053 were reconstructed under our experimental conditions using the DA2 background, and the reconstruction suggests that the frequency of this type of translocation is approximately 10−7. These results suggest that the MAT and MAT-like loci were the susceptible regions in the genome, and the diversity of mating-type chromosome structures in Z. rouxii was caused by ectopic exchanges between MAT-like loci.  相似文献   

14.
Mating type interconversion in homothallic Saccharomyces cerevisiae has been studied in diploids homozygous for the mating type locus produced by sporulation of a/a/a/α and a/a/α/α tetraploid strains. Mating type switches have been analyzed by techniques including direct observation of cells for changes in α-factor sensitivity. Another method of following mating type switching exploits the observation that a/α cells exhibit polar budding and a/a and α/α cells exhibit medial budding.—These studies indicate the following: (1) The allele conferring the homothallic life cycle (HO) is dominant to the allele conferring the heterothallic life cycle (ho). (2) The action of the HO gene is controlled by the mating type locus—active in a/a and α/α cells but not in a/α cells. (3) The HO (or HO-controlled) gene product can act independently on two mating type alleles located on separate chromosomes in the same nucleus. (4) A switch in mating type is observed in pairs of cells, each of which has the same change.  相似文献   

15.
In Saccharomyces cerevisiae, meiosis and spore formation as well as mating are controlled by mating-type genes. Diploids heterozygous for mating type (aα) can sporulate but cannot mate; homozygous aa and αα diploids can mate, but cannot sporulate. From an αα diploid parental strain, we have isolated mutants which have gained the ability to sporulate. Those mutants which continue to mate as αα cells have been designated CSP (control of sporulation). Upon sporulation, CSP mutants yield asci containing 4α spores. The mutant gene which allows αα cells to sporulate is unlinked to the mating-type locus and also acts to permit sporulation in aa diploid cells. Segregation data from crosses between mutant αα and wild-type aa diploids and vice versa indicate (for all but one mutant) that the mutation which allows constitutive sporulation (CSP) is dominant over the wild-type allele. Some of the CSP mutants are temperature-sensitive, sporulating at 32°, but not at 23°. In addition to CSP mutants, our mutagenesis and screening procedure led to the isolation of mutants which sporulate by virtue of a change in the mating-type locus itself, resulting in loss of ability to mate.  相似文献   

16.
The eukaryotic genome is highly organized in the nucleus, and this organization affects various nuclear processes. However, the molecular details of higher-order organization of chromatin remain obscure. In the present study, we show that the Saccharomyces cerevisiae silenced loci HML and HMR cluster in three-dimensional space throughout the cell cycle and independently of the telomeres. Long-range HML–HMR interactions require the homologous recombination (HR) repair pathway and phosphorylated H2A (γ-H2A). γ-H2A is constitutively present at silenced loci in unperturbed cells, its localization requires heterochromatin, and it is restricted to the silenced domain by the transfer DNA boundary element. SMC proteins and Scc2 localize to the silenced domain, and Scc2 binding requires the presence of γ-H2A. These findings illustrate a novel pathway for heterochromatin organization and suggest a role for HR repair proteins in genomic organization.  相似文献   

17.
Mating-type switching in the yeast Saccharomyces cerevisiae involves the transposition of a copy of a or α information from unexpressed “library” genes, HML or HMR, to replace the sequence at the mating type locus, MAT. In normal homothallic strains, where conversions of MAT may occur as often as every cell division, the switching of MAT alleles does not alter the alleles at HML or HMR. We have discovered that several mutations within or adjacent to MAT that impair the excision of the MAT allele permit conversions of the alleles at HML or HMR in more than 1% of the cells analyzed. The two mutations within the MAT locus (MATa-inc and MATα-inc) can transpose to HML or HMR without being lost at MAT. Thus a MATα-inc HMLα HMRa HO strain can switch to MATα-inc HMLα HMRα-inc HO. Even though the α-inc and a-inc alleles prevent their own replacement at MAT, these sequences are efficiently transposed back from HMLα-inc or HMLa-inc to replace normal MAT alleles. When these alleles reappear at MAT, they are again blocked in excision. Thus the sequences used to remove an allele from MAT must differ from those used to replicate and transpose it. Two cis-acting stk mutations adjacent to MAT that block switching of MATa to MATα also induce the conversion of HMLα to HMLa. However, we have previously shown that these events do not occur in strains carrying a recessive “switch” mutant (swi1) or in strains carrying a defective allele of the HO gene. In stk1 MATa HO strains, HMLα was converted to HMLa in approximately 4% of the subclones examined. In contrast, the HMLα-inc sequence was not converted in similar stk1 MATa HO strains. Thus the excision of the α-inc sequence seems to be prevented at both MAT and HML. These results suggest that the illegal conversions of HML and HMR occur by a mechanism similar to that used for normal conversions of MAT.  相似文献   

18.
The CYC7–H2 mutation causes an approximately 20-fold overproduction of iso–2–cytochromo c in a and α haploid strains of the yeast Saccharomyces cerevisiae due to an alteration in the nontranslated regulatory region that is presumably contiguous with the structural region. In this investigation, we demonstrated that heterozygosity at the mating type locus, a/α or a/a/α/α, prevents expression of the overproduction, while homozygosity, a/a and α/α, and hemizygosity, a/0 and α/0, allow full expression of the CYC7–H2 mutation, equivalent to the expression observed in a and α haploid strains. There is no decrease in the overproduction of iso-2-cytochrome c in a/α diploid strains containing either of the other two similar mutations, CYC7–H1 and CYC7–H3. It appears as if active expression of one or another of the mating-type alleles is required for the overproduction of iso-2-cytochrome c in CYC7–H2 mutants.  相似文献   

19.
Tetraploid cells of Saccharomyces cerevisiae are generated spontaneously in a homothallic MATa/MATα diploid population at low frequency (approximately 10−6 per cell) through the homozygosity of mating-type alleles by mitotic recombination followed by homothallic switching of the mating-type alleles. To isolate tetraploid clones more effectively, a selection method was developed that used a dye plate containing 40 mg each of eosin Y and amaranth in synthetic nutrient agar per liter. It was possible to isolate tetraploid clones on the dye plate at a frequency of 1 to 3% among the colonies colored dark red in contrast to the light red of the original diploid colonies. Isogenic series of haploid to tetraploid clones with homozygous or heterozygous genomic configurations were easily constructed with the tetraploid strains. No significant differences in specific growth rate or fermentative rate were observed corresponding to differences in ploidy, although the haploid clones showed a higher frequency of spontaneous respiratory-deficient cells than did the others. However, a significant increment in the fermentative rate in glucose nutrient medium was observed in the hybrid strains constructed with two independent homozygous cell lines. These observations strongly suggest that the polyploid strains favored by the brewing and baking industries perform well not because of the physical increment of the cellular volume by polyploidy but because of the genetic complexity or heterosis by heterozygosity of the genome in the hybrid polyploid cells.  相似文献   

20.
Takano I  Arima K 《Genetics》1979,91(2):245-254
The possible function of the α-inc allele (an α mating-type allele that is insensitive to the function of the homothallic gene system) was investigated by means of protoplast fusion. The fusion of protoplasts prepared from haploid strains of α-inc HO HMα HMa and α ho hmα HMa gave rise mainly to nonmating clones (58 of 64 isolates) and a few clones (six of 64 isolates) showing α mating type. Thirty of the 58 nonmating clones showed the diploid cell size and 28 clones had a larger cell size. Tetrad analysis of the nonmating clones with diploid cell size indicated that they were a/α-inc diploid; the normal α allele in α/α-inc cells was preferentially switched to an a allele. This observation further indicated that the HO/ho HMα/hmα HMa/HMa genotype is effective for the conversion of the α to a and that the inconvertibility of the α-inc allele is due to the insensitivity of the mating-type allele to the functional combination of the homothallic genes. It was suspected that fusion products larger than diploid cells might have been caused by multiple fusion of protoplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号