首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unravelling rhizosphere-microbial interactions: opportunities and limitations   总被引:11,自引:0,他引:11  
The rhizosphere is a biologically active zone of the soil around plant roots that contains soil-borne microbes including bacteria and fungi. Plant-microbe interactions in the rhizosphere can be beneficial to the plant, the microbes or to neither of them. One of the major difficulties that plant biologists and microbiologists face when studying these interactions is that many groups of microbes that inhabit this zone are not cultivable in the laboratory. Recent developments in molecular biology methods are shedding some light on rhizospheric microbial diversity. This review discusses recent findings and future challenges in the study of plant-microbe interactions in the rhizosphere.  相似文献   

2.
Biological systems display stunning capacities to self-organize. Moreover, their subcellular architectures are dynamic and responsive to changing needs and conditions. Key to these properties are manifold weak “quinary” interactions that have evolved to create specific spatial networks of macromolecules. These specific arrangements of molecules enable signals to be propagated over distances much greater than molecular dimensions, create phase separations that define functional regions in cells, and amplify cellular responses to changes in their environments. A major challenge is to develop biochemical tools and physical models to describe the panoply of weak interactions operating in cells. We also need better approaches to measure the biases in the spatial distributions of cellular macromolecules that result from the integrated action of multiple weak interactions. Partnerships between cell biologists, biochemists, and physicists are required to deploy these methods. Together these approaches will help us realize the dream of understanding the biological “glue” that sustains life at a molecular and cellular level.  相似文献   

3.
CAPRI is a communitywide experiment to assess the capacity of protein-docking methods to predict protein-protein interactions. Nineteen groups participated in rounds 1 and 2 of CAPRI and submitted blind structure predictions for seven protein-protein complexes based on the known structure of the component proteins. The predictions were compared to the unpublished X-ray structures of the complexes. We describe here the motivations for launching CAPRI, the rules that we applied to select targets and run the experiment, and some conclusions that can already be drawn. The results stress the need for new scoring functions and for methods handling the conformation changes that were observed in some of the target systems. CAPRI has already been a powerful drive for the community of computational biologists who development docking algorithms. We hope that this issue of Proteins will also be of interest to the community of structural biologists, which we call upon to provide new targets for future rounds of CAPRI, and to all molecular biologists who view protein-protein recognition as an essential process.  相似文献   

4.
5.
6.
Our understanding of microbial adaptations to diverse and threatening environments is limited by the assumption that the behavior of individual bacteria can be accurately determined by measuring the behavior of populations. Recent advances in gene expression reporter systems, fluorescence microscopy and flow cytometry allow microbiologists to explore the complex interactions between bacteria and their environment with single cell resolution. The application of these technologies has been particularly useful in systems, such as host-pathogen interactions, where genetic analysis is often cumbersome. Recently, flow cytometry is increasingly being applied to study host-pathogen interactions.  相似文献   

7.
The ESF–EMBO Conference on ‘Bacterial Networks’ (BacNet13) was held in March 2013, in Pultusk, Poland. It brought together 164 molecular microbiologists, bacterial systems biologists and synthetic biologists to discuss the architecture, function and dynamics of regulatory networks in bacteria.  相似文献   

8.
Production of sustainable aviation fuels (SAFs) using microbes still requires huge research efforts to fulfill the needs of aviation, both in the biological utilization of raw materials as well as in the biological processes to convert these materials (oils, sugars, aromatic compounds and others) into SAFs. However, we should also be aware of the microbiology constraints that, in some cases, will not allow us to reach the commercial level and that, by creating false expectations we will harm the credibility of microbiologists. However, in our opinion microbiologists can and should continue to find new avenues for producing SAFs, and for evaluating the advantages and feasibility of their production. This last step will require a close collaboration between researchers and industry.  相似文献   

9.
R D Edstrom  X R Yang  G Lee  D F Evans 《FASEB journal》1990,4(13):3144-3151
Two new microscopic techniques make it possible to obtain images of biologically interesting molecules directly in air, vacuum, or under water. Scanning tunneling microscopy and atomic force microscopy both have the capacity to visualize atoms on the surface of rigid structures and provide details of molecular structure for lipids, proteins, carbohydrates, and nucleic acids. In addition to providing visualizations of individual molecules, these scanning probe techniques allow direct imaging of complexes between molecules or between molecules and higher-order subcellular structures such as membranes and cytoskeletal components. Both microscopes can be operated under a variety of ambient conditions ranging from high vacuum to above atmospheric pressure. Specimens need not be dry; both techniques have been used to image molecules in aqueous media under nearly physiological conditions. It is proposed that as these techniques mature they will allow direct observation of many molecular interactions under physiological conditions or even in vivo while they are occurring within the cell.  相似文献   

10.
H R Clarke  J A Leigh  C J Douglas 《Cell》1992,71(2):191-199
The field of plant-microbe interactions has witnessed several recent breakthroughs, such as the molecular details of vir gene induction, identification of Nod factors, and the cloning and characterization of avr genes. Other breakthroughs, such as the cloning and characterization of R genes, appear imminent. Parallels to mammalian systems are emerging in the world of plant-microbe interactions, for example, ion channels formed by Rhizobium proteins, similarities of hrp genes to pathogenicity genes of mammalian pathogens, and plant signal transduction via calcium and protein phosphorylation. We remain, however, largely ignorant of many facets of signaling in plant-microbe interactions. We know little about how microbial signals are perceived by plants or how subsequent signal transduction occurs within plant cells and are probably unaware of many of the microbe-generated signals to which plants respond or of plant-generated signals to which bacteria and fungi respond. Contributions from those working on the genetics, molecular biology, and physiology of bacteria, fungi, and plants will be required to address these questions. The many nonpathogenic plant-microbe interactions in addition to the Rhizobium-plant interaction remain relatively unexplored. Genetic and molecular approaches are being initiated to investigate the signaling that is likely to underlie interactions such as those between mycorrhizal fungi and plant roots and between epiphytic bacteria and plant leaf surfaces. The importance of these interactions to plant growth and development makes it likely that they will figure more prominently at future symposia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Structure-function relationships in eukaryotic nuclei.   总被引:15,自引:0,他引:15  
It may be that eukaryotic nuclei contain a collection of operationally independent units (genes), each controlled through its interactions with soluble protein factors which diffuse at random throughout the nucleoplasmic space. Alternatively, nuclei might be organized in such a sophisticated fashion that specific genes occupy distinct sites and that spatially ordered RNA synthesis, processing and transport delivers mature RNAs to predestined sites in the cytoplasm. Different fields of research support each of these extreme views. Molecular biologists inspecting the precise details of specific interactions, usually in vitro, inevitably favour the former, while cell biologists working with far more complicated systems generally assume that more elaborate arrangements exist. In considering the importance of nuclear architecture, I have attempted to relate a collection of experiments each of which intimates some close relationship between structural aspects of chromatin organization and the precise mechanisms underlying nuclear function. I will argue that higher-order structures are crucial for achieving the observed efficiency and coordination of many nuclear processes.  相似文献   

12.
In recent years, molecular biologists have uncovered a wealth of information about the proteins controlling cell growth and division in eukaryotes. The regulatory system is so complex that it defies understanding by verbal arguments alone. Quantitative tools are necessary to probe reliably into the details of cell cycle control. To this end, we convert hypothetical molecular mechanisms into sets of nonlinear ordinary differential equations and use standard analytical and numerical methods to study their solutions. First, we present a simple model of the antagonistic interactions between cyclin-dependent kinases and the anaphase promoting complex, which shows how progress through the cell cycle can be thought of as irreversible transitions (Start and Finish) between two stable states (G1 and S-G2-M) of the regulatory system. Then we add new pieces to the "puzzle" until we obtain reasonable models of the control systems in yeast cells, frog eggs, and cultured mammalian cells.  相似文献   

13.
Model organisms are central to contemporary biology and studies of embryogenesis in particular. Biologists utilize only a small number of species to experimentally elucidate the phenomena and mechanisms of development. Critics have questioned whether these experimental models are good representatives of their targets because of the inherent biases involved in their selection (e.g., rapid development and short generation time). A standard response is that the manipulative molecular techniques available for experimental analysis mitigate, if not counterbalance, this concern. But the most powerful investigative techniques and molecular methods are applicable to single-celled organisms (‘microbes’). Why not use unicellular rather than multicellular model organisms, which are the standard for developmental biology? To claim that microbes are not good representatives takes us back to the original criticism leveled against model organisms. Using empirical case studies of microbes modeling ontogeny, we break out of this circle of reasoning by showing: (a) that the criterion of representation is more complex than earlier discussions have emphasized; and, (b) that different aspects of manipulability are comparable in importance to representation when deciding if a model organism is a good model. These aspects of manipulability harbor the prospect of enhancing representation. The result is a better understanding of how developmental biologists conceptualize research using experimental models and suggestions for underappreciated avenues of inquiry using microbes. More generally, it demonstrates how the practical aspects of experimental biology must be scrutinized in order to understand the associated scientific reasoning.  相似文献   

14.
While horticulture tools and methods have been extensively developed to improve the management of crops, systems to harness the rhizosphere microbiome to benefit plant crops are still in development. Plants and microbes have been coevolving for several millennia, conferring fitness advantages that expand the plant’s own genetic potential. These beneficial associations allow the plants to cope with abiotic stresses such as nutrient deficiency across a wide range of soils and growing conditions. Plants achieve these benefits by selectively recruiting microbes using root exudates, positively impacting their nutrition, health and overall productivity. Advanced knowledge of the interplay between root exudates and microbiome alteration in response to plant nutrient status, and the underlying mechanisms there of, will allow the development of technologies to increase crop yield. This review summarizes current knowledge and perspectives on plant–microbial interactions for resource acquisition and discusses promising advances for manipulating rhizosphere microbiomes and root exudation.  相似文献   

15.
Communication among Oral Bacteria   总被引:22,自引:0,他引:22       下载免费PDF全文
Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities.  相似文献   

16.
Extracellular respiration   总被引:3,自引:0,他引:3  
Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term 'extracellular respiration' is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as 'soluble' are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists.  相似文献   

17.
Communication among oral bacteria.   总被引:6,自引:0,他引:6  
Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities.  相似文献   

18.
Are there universal molecular mechanisms associated with cell contact phenomena during metazoan ontogenesis? Comparison of adhesion systems in disparate model systems indicates the existence of unifying principles. Requirements for multicellularity are (a) the construction of three‐dimensional structures involving a crucial balance between adhesiveness and motility; and (b) the establishment of integration at molecular, cellular, tissue, and organismal levels of organization. Mechanisms for (i) cell–cell and cell–substrate adhesion, (if) cell movement, (Hi) cell‐cell communication, (iv) cellular responses, (v) regulation of these processes, and (vi) their integration with patterning, growth, and other developmental processes are all crucial to metazoan development, and must have been present for the emergence and radiation of Metazoa. The principal unifying themes of this review are the dynamics and regulation of cell contact phenomena. Our knowledge of the dynamic molecular mechanisms underlying cell contact phenomena remains fragmentary. Here we examine the molecular bases of cell contact phenomena using extant model developmental systems (representing a wide range of phyla) including the simplest i.e. sponges, and the eukaryotic protist Dictyostelium discoideum, the more complex Drosophila melanogaster, and vertebrate systems. We discuss cell contact phenomena in a broad developmental context. The molecular language of cell contact phenomena is complex; it involves a plethora of structurally and functionally diverse molecules, and diverse modes of intermolecular interactions mediated by protein and/or carbohydrate moieties. Reasons for this are presumably the necessity for a high degree of specificity of inter‐molecular interactions, the requirement for a multitude of different signals, and the apparent requirement for an increasingly large repertoire of cell contact molecules in more complex developmental systems, such as the developing vertebrate nervous system. However, comparison of molecular models for dynamic adhesion in sponges and in vertebrates indicates that, in spite of significant differences in the details of the way specific cell–cell adhesion is mediated, similar principles are involved in the mechanisms employed by members of disparate phyla. Universal requirements are likely to include (a) rapidly reversible intermolecular interactions; (b) low‐affinity intermolecular interactions with fast on–off rates; (c) the compounding of multiple intermolecular interactions; (d) associated regulatory signalling systems. The apparent widespread employment of molecular mechanisms involving cadherin‐like cell adhesion molecules suggests the fundamental importance of cadherin function during development, particularly in epithelial morphogenesis, cell sorting, and segregation of cells.  相似文献   

19.
Tzlil S  Kuruvilla R 《EMBO reports》2011,12(9):877-879
The second edition of the EMBO Spatial meeting took place in May 2011 in Engelberg, Switzerland. Although the work presented at the meeting covered a challengingly broad range of topics, it accomplished the rare goal of promoting interactions between cell biologists, neuroscientists, systems biologists and mathematicians, all united by a common interest in understanding how cells integrate signals in space and time.  相似文献   

20.
The scientific techniques used in molecular biological research and drug discovery have changed dramatically over the past 10 years due to the influence of genomics, proteomics and bioinformatics. Furthermore, genomics and functional genomics are now merging into a new scientific approach called chemogenomics. Advancements in the study of molecular cell biology are dependent upon "omics" researchers realizing the importance of and using the experimental tools currently available to cell biologists. For example, novel microscopic techniques utilizing advanced computer imaging allow for the examination of live specimens in a fourth dimension, viz., time. Yet, molecular biologists have not taken full advantage of these and other traditional and novel cell biology techniques for the further advancement of genomic and proteomic-oriented research. The application of traditional and novel cellular biological techniques will enhance the science of genomics. The authors hypothesize that a stronger interdisciplinary approach must be taken between cell biology (and its closely related fields) and genomics, proteomics and bio-chemoinformatics. Since there is a lot of confusion regarding many of the "omics" definitions, this article also clarifies some of the basic terminology used in genomics, and related fields. It also reviews the current status and future potential of chemogenomics and its relationship to cell biology. The authors also discuss and expand upon the differences between chemogenomics and the relatively new term--chemoproteomics. We conclude that the advances in cell biology methods and approaches and their adoption by "omics" researchers will allow scientists to maximize our knowledge about life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号