首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies that specifically recognize signaling proteins (or individual phosphorylation events at specific residues in proteins of interest) have become important tools in the study of signaling pathways. However, the recognition properties of many commercially available antibodies have not been fully characterized. In the course of studies exploring PKC- phosphorylation mechanisms in cardiomyocytes, we have demonstrated that a BD Transduction Laboratories anti-PKC- MAb (generally viewed as an anti-PKC- protein antibody) recognizes PKC- in resting, but not in PMA-treated, cardiomyocytes. The observations that PKC- immunoreactivity is preserved when cultures are treated with PMA in the presence of a the PKC inhibitor GF-109203X and that PKC- immunoreactivity is restored by in vitro acid phosphatase treatment indicate that the epitope recognized by the BD Transduction Laboratories anti-PKC- MAb is masked by phosphorylation. The BD Transduction Laboratories MAb is poorly suited for studies that compare PKC- expression in resting and agonist-activated samples (or in studies of the relationship between PKC- phosphorylation and PKC- downregulation) because it artifactually displays PKC- phosphorylation as a decline in total PKC- protein. Other studies have shown that two anti-PKC--pY311 antibodies (manufactured by Cell Signaling Technology, Beverly, MA, and BioSource International, Camarillo, CA, respectively) specifically recognize stimulus-induced changes in PKC--Y311 phosphorylation on the endogenous PKC- enzyme, but the Cell Signaling Technology anti-PKC--pY311 antibody provides a better measure of Y311 phosphorylation in overexpressed PKC-. Collectively, these studies have identified features of anti-PKC- antibodies that affect the interpretation of immunoblot analysis experiments. These findings related to PKC- may be symptomatic of a more pervasive feature of immunoblot analysis studies of phosphoproteins in general. protein phosphorylation; signal transduction pathways; cardiomyocytes  相似文献   

2.
Direct binding of nonmuscle F-actin and the C2-like domain of PKC- (C2-like domain) is involved in hormone-mediated activation of epithelial Na-K-2Cl cotransporter isoform 1 (NKCC1) in a Calu-3 airway epithelial cell line. The goal of this study was to determine the site of actin binding on the 123-amino acid C2-like domain. Truncations of the C2-like domain were made by restriction digestion and confirmed by nucleotide sequencing. His6-tagged peptides were expressed in bacteria, purified, and analyzed with a Coomassie blue stain for predicted size and either a 6xHis protein tag stain or an INDIA His6 probe for expression of the His6 tag. Truncated peptides were tested for competitive inhibition of binding of activated, recombinant PKC- with nonmuscle F-actin. Peptides from the NH2-terminal region, but not the COOH-terminal region, of the C2-like domain blocked binding of activated PKC- to F-actin. The C2-like domain and three NH2-terminal truncated peptides of 17, 83, or 108 amino acids blocked binding, with IC50 values ranging from 1.2 to 2.2 nmol (6–11 µM). NH2-terminal C2-like peptides also prevented methoxamine-stimulated NKCC1 activation and pulled down endogenous actin from Calu-3 cells. The proximal NH2 terminus of the C2-like domain encodes a 1-sheet region. The amino acid sequence of the actin-binding domain is distinct from actin-binding domains in other PKC isotypes and actin-binding proteins. Our results indicate that F-actin likely binds to the 1-sheet region of the C2-like domain in airway epithelial cells. truncation; protein kinase C-; C2-like domain; slot blot assay; inhibitory constant; bumetanide; Na-K-2Cl cotransporter  相似文献   

3.
Protein kinase D (PKD) is a novel protein serine kinase that has recently been implicated in diverse cellular functions, including apoptosis and cell proliferation. The purpose of our present study was 1) to define the activation of PKD in intestinal epithelial cells treated with H2O2, an agent that induces oxidative stress, and 2) to delineate the upstream signaling mechanisms mediating the activation of PKD. We found that the activation of PKD is induced by H2O2 in both a dose- and time-dependent fashion. PKD phosphorylation was attenuated by rottlerin, a selective PKC- inhibitor, and by small interfering RNA (siRNA) directed against PKC-, suggesting the regulation of PKD activity by upstream PKC-. Activation of PKD was also blocked by a Rho kinase (ROK)-specific inhibitor, Y-27632, as well as by C3, a Rho protein inhibitor, demonstrating that the Rho/ROK pathway also mediates PKD activity in intestinal cells. In addition, H2O2-induced PKC- phosphorylation was inhibited by C3 treatment, further suggesting that PKC- is downstream of Rho/ROK. Interestingly, H2O2-induced intestinal cell apoptosis was enhanced by PKD siRNA. Together, these results clearly demonstrate that oxidative stress induces PKD activation in intestinal epithelial cells and that this activation is regulated by upstream PKC- and Rho/ROK pathways. Importantly, our findings suggest that PKD activation protects intestinal epithelial cells from oxidative stress-induced apoptosis. These findings have potential clinical implications for intestinal injury associated with oxidative stress (e.g., necrotizing enterocolitis in infants). Rho kinase; protein kinase C-  相似文献   

4.
Protein kinase C (PKC) is involved in the process of ischemic preconditioning (IPC), although the precise mechanism is still a subject of debate. Using specific PKC inhibitors, we investigated which PKC isoforms were involved in IPC of the human atrial myocardium sections and to determine their temporal relationship to the opening of mitochondrial potassium-sensitive ATP (mitoKATP) channels. Right atrial muscles obtained from patients undergoing elective cardiac surgery were equilibrated and then randomized to receive any of the following protocols: aerobic control, 90-min simulated ischemia/120-min reoxygenation, IPC using 5-min simulated ischemia/5-min reoxygenation followed by 90-min simulated ischemia/120-min reoxygenation and finally, PKC inhibitors were added 10 min before and 10 min during IPC followed by 90-min simulated ischemia/120-min reoxygenation. The PKC isoforms inhibitors investigated were V1–2 peptide, GO-6976, rottlerin, and LY-333531 for PKC-, -, - and -, respectively. To investigate the relation of PKC isoforms to mitoKATP channels, PKC inhibitors found to be involved in IPC were added 10 min before and 10 min during preconditioning by diazoxide followed by 90-min simulated ischemia/120-min reoxygenation in a second experiment. Creatine kinase leakage and methylthiazoletetrazolium cell viability were measured. Phosphorylation of PKC isoforms after activation of the sample by either diazoxide or IPC was detected by using Western blot analysis and then analyzed by using Scion image software. PKC- and - inhibitors blocked IPC, whereas PKC- and - inhibitors did not. The protection elicited by diazoxide, believed to be via mitoKATP channels opening, was blocked by the inhibition of PKC- but not - isoforms. In addition, diazoxide caused increased phosphorylation of PKC- to the same extent as IPC but did not affect the phosphorylation of PKC-, a process believed to be critical in PKC activation. The results demonstrate that PKC- and - are involved in IPC of the human myocardium with PKC- being upstream and PKC- being downstream of mitoKATP channels. cardioprotection; protein kinase C isoforms  相似文献   

5.
Airway goblet cell mucin secretion is controlled by agonist activation of P2Y2 purinoceptors, acting through Gq/PLC, inositol-1,4,5-trisphosphate (IP3), diacylglycerol, Ca2+ and protein kinase C (PKC). Previously, we showed that SPOC1 cells express cPKC, nPKC, nPKC, and nPKC; of these, only nPKC translocated to the membrane in correlation with mucin secretion (Abdullah LH, Bundy JT, Ehre C, Davis CW. Am J Physiol Lung Physiol 285: L149–L160, 2003). We have verified these results and pursued the identity of the PKC effector isoform by testing the effects of altered PKC expression on regulated mucin release using SPOC1 cell and mouse models. SPOC1 cells overexpressing cPKC, nPKC, and nPKC had the same levels of ATPS- and phorbol-1,2-myristate-13-acetate (PMA)-stimulated mucin secretion as the levels in empty retroviral vector expressing cells. Secretagogue-induced mucin secretion was elevated only in cells overexpressing nPKC (14.6 and 23.5%, for ATPS and PMA). Similarly, only SPOC1 cells infected with a kinase-deficient nPKC exhibited the expected diminution of stimulated mucin secretion, relative to wild-type (WT) isoform overexpression. ATPS-stimulated mucin secretion from isolated, perfused mouse tracheas was diminished in P2Y2-R null mice by 82% relative to WT mice, demonstrating the utility of mouse models in studies of regulated mucin secretion. Littermate WT and nPKC knockout (KO) mice had nearly identical levels of stimulated mucin secretion, whereas mucin release was nearly abolished in nPKC KO mice relative to its WT littermates. We conclude that nPKC is the effector isoform downstream of P2Y2-R activation in the goblet cell secretory response. The translocation of nPKC observed in activated cells is likely not related to mucin secretion but to some other aspect of goblet cell biology. protein kinase C; mucins; goblet cells; exocytosis; airways; epithelium; lung  相似文献   

6.
Previous studies demonstrated a requirement for multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) in PDGF-stimulated vascular smooth muscle (VSM) cell migration. In the present study, molecular approaches were used specifically to assess the role of the predominant CaMKII isoform (2 or C) on VSM cell migration. Kinase-negative (K43A) and constitutively active (T287D) mutant forms of CaMKII2 were expressed using recombinant adenoviruses. CaMKII activities were evaluated in vitro by using a peptide substrate and in intact cells by assessing the phosphorylation of overexpressed phospholamban on Thr17, a CaMKII-selective phosphorylation site. Expression of kinase-negative CaMKII2 inhibited substrate phosphorylation both in vitro and in the intact cell, indicating a dominant-negative function with respect to exogenous substrate. However, overexpression of the kinase-negative mutant failed to inhibit endogenous CaMKII2 autophosphorylation on Thr287 after activation of cells with ionomycin, and in fact, these subunits served as a substrate for the endogenous kinase. Constitutively active CaMKII2 phosphorylated substrate in vitro without added Ca2+/calmodulin and in the intact cell without added Ca2+-dependent stimuli, but it inhibited autophosphorylation of endogenous CaMKII2 on Thr287. Basal and PDGF-stimulated cell migration was significantly enhanced in cells expressing kinase-negative CaMKII2, an effect opposite that of KN-93, a chemical inhibitor of CaMKII activation. Expression of the constitutively active CaMKII2 mutant inhibited PDGF-stimulated cell migration. These studies point to a role for the CaMKII2 isoform in regulating VSM cell migration. An inclusive interpretation of results using both pharmacological and molecular approaches raises the hypothesis that CaMKII2 autophosphorylation may play an important role in PDGF-stimulated VSM cell migration. calcium/calmodulin-dependent protein kinase II; cell migration; adenovirus; autophosphorylation; chemotaxis; platelet-derived growth factor  相似文献   

7.
Protein kinase C (PKC) plays a critical role in diseases such as cancer, stroke, and cardiac ischemia and participates in a variety of signal transduction pathways including apoptosis, cell proliferation, and tumor suppression. Here, we demonstrate that PKC is proteolytically cleaved and translocated to the nucleus in a time-dependent manner on treatment of desferroxamine (DFO), a hypoxia-mimetic agent. Specific knockdown of the endogenous PKC by RNAi (sh-PKC) or expression of the kinase-dead (Lys376Arg) mutant of PKC (PKCKD) conferred modulation on the cellular adaptive responses to DFO treatment. Notably, the time-dependent accumulation of DFO-induced phosphorylation of Ser-139-H2AX (-H2AX), a hallmark for DNA damage, was altered by sh-PKC, and sh-PKC completely abrogated the activation of caspase-3 in DFO-treated cells. Expression of Lys376Arg-mutated PKC-enhanced green fluorescent protein (EGFP) appears to abrogate DFO/hypoxia-induced activation of endogenous PKC and caspase-3, suggesting that PKCKD-EGFP serves a dominant-negative function. Additionally, DFO treatment also led to the activation of Chk1, p53, and Akt, where DFO-induced activation of p53, Chk1, and Akt occurred in both PKC-dependent and -independent manners. In summary, these findings suggest that the activation of a PKC-mediated signaling network is one of the critical contributing factors involved in fine-tuning of the DNA damage response to DFO treatment. DNA damage; caspase-3; Akt  相似文献   

8.
TNF is implicated in the attenuation of neutrophil constitutive apoptosis during sepsis. Antiapoptotic signaling is mediated principally through the TNF receptor-1 (TNFR-1). In adherent neutrophils, when -integrin signaling is activated, TNF phosphorylates TNFR-1 and activates prosurvival and antiapoptotic signaling. Previously, we identified the -PKC isotype and phosphatidylinositol (PI) 3-kinase as critical regulators of TNF signaling in adherent neutrophils. Both kinases associate with TNFR-1 in response to TNF and are required for TNFR-1 serine phosphorylation, NF-B activation, and inhibition of apoptosis. The purpose of this study was to examine the role of -PKC and PI 3-kinase in the assembly of TNFR-1 signaling complex that regulates NF-B activation and antiapoptotic signaling. Coimmunoprecipitation studies established that PI 3-kinase, -PKC, and TNFR-1 formed a signal complex in response to TNF. -PKC recruitment required both -PKC and PI 3-kinase activity, whereas PI 3-kinase recruitment was -PKC independent, suggesting that PI 3-kinase acts upstream of -PKC. An important regulatory step in control of antiapoptotic signaling is the assembly of the TNFR-1-TNFR-1-associated death domain protein (TRADD)-TNFR-associated factor 2 (TRAF2)-receptor interacting protein (RIP) complex that controls NF-B activation. Inhibition of either -PKC or PI 3-kinase decreased TNF-mediated recruitment of RIP and TRAF2 to TNFR-1. In contrast, TRADD recruitment was enhanced. Thus -PKC and PI 3-kinase are positive regulators of TNF-mediated association of TRAF2 and RIP with TNFR-1. Conversely, these kinases are negative regulators of TRADD association. These results suggest that -PKC and PI 3-kinase regulate TNF antiapoptotic signaling at the level of the TNFR-1 through control of assembly of a TNFR-1-TRADD-RIP-TRAF2 complex. inflammation; tumor necrosis factor receptor-1-associated death domain protein; receptor interacting protein; tumor necrosis factor receptor-associated factor 2; antiapoptotic signaling  相似文献   

9.
Activation of PLC-delta1 by Gi/o-coupled receptor agonists   总被引:1,自引:0,他引:1  
The mechanism of phospholipase (PLC)- activation by G protein-coupled receptor agonists was examined in rabbit gastric smooth muscle. Ca2+ stimulated an eightfold increase in PLC-1 activity in permeabilized muscle cells. Treatment of dispersed or cultured muscle cells with three Gi/o-coupled receptor agonists (somatostatin, -opioid agonist [D-Pen2,D-Pen5]enkephalin, and A1 agonist cyclopentyl adenosine) caused delayed increase in phosphoinositide (PI) hydrolysis (8- to 10-fold) that was strongly inhibited by overexpression of dominant-negative PLC-1(E341R/D343R; 65–76%) or constitutively active RhoA(G14V). The response coincided with capacitative Ca2+ influx and was not observed in the absence of extracellular Ca2+, but was partly inhibited by nifedipine (16–30%) and strongly inhibited by SKF-96365, a blocker of store-operated Ca2+ channels. Treatment of the cells with a Gq/13-coupled receptor agonist, CCK-8, caused only transient, PLC-1-mediated PI hydrolysis. Unlike Gi/o-coupled receptor agonists, CCK-8 activated RhoA and stimulated RhoA:PLC-1 association. Inhibition of RhoA activity with C3 exoenzyme or by overexpression of dominant-negative RhoA(T19N) or G13 minigene unmasked a delayed increase in PI hydrolysis that was strongly inhibited by coexpression of PLC-1(E341R/D343R) or by SKF-96365. Agonist-independent capacitative Ca2+ influx induced by thapsigargin stimulated PI hydrolysis (8-fold), which was partly inhibited by nifedipine (25%) and strongly inhibited by SKF-96365 (75%) and in cells expressing PLC-1(E341R/D343R). Agonist-independent Ca2+ release or Ca2+ influx via voltage-gated Ca2+ channels stimulated only moderate PI hydrolysis (2- to 3-fold), which was abolished by PLC-1 antibody or nifedipine. We conclude that PLC-1 is activated by Gi/o-coupled receptor agonists that do not activate RhoA. The activation is preferentially mediated by Ca2+ influx via store-operated Ca2+ channels. phospholipase C; G protein  相似文献   

10.
We investigated the involvement of PKC- in apical actin remodeling in carbachol-stimulated exocytosis in reconstituted rabbit lacrimal acinar cells. Lacrimal acinar PKC- cosedimented with actin filaments in an actin filament binding assay. Stimulation of acini with carbachol (100 µM, 2–15 min) significantly (P 0.05) increased PKC- recovery with actin filaments in two distinct biochemical assays, and confocal fluorescence microscopy showed a significant increase in PKC- association with apical actin in stimulated acini as evidenced by quantitative colocalization analysis. Overexpression of dominant-negative (DN) PKC- in lacrimal acini with replication-defective adenovirus (Ad) resulted in profound alterations in apical and basolateral actin filaments while significantly inhibiting carbachol-stimulated secretion of bulk protein and -hexosaminidase. The chemical inhibitor GF-109203X (10 µM, 3 h), which inhibits PKC-, -, -, and -, also elicited more potent inhibition of carbachol-stimulated secretion relative to Gö-6976 (10 µM, 3 h), which inhibits only PKC- and -. Transduction of lacrimal acini with Ad encoding syncollin-green fluorescent protein (GFP) resulted in labeling of secretory vesicles that were discharged in response to carbachol stimulation, whereas cotransduction of acini with Ad-DN-PKC- significantly inhibited carbachol-stimulated release of syncollin-GFP. Carbachol also increased the recovery of secretory component in culture medium, whereas Ad-DN-PKC- transduction suppressed its carbachol-stimulated release. We propose that DN-PKC- alters lacrimal acinar apical actin remodeling, leading to inhibition of stimulated exocytosis and transcytosis. lacrimal gland; acinar epithelial cell; exocytosis; polymeric immunoglobulin A receptor  相似文献   

11.
There is accumulating evidence that Ca2+-dependent signaling pathways regulate proliferation and migration of vascular smooth muscle (VSM) cells, contributing to the intimal accumulation of VSM that is a hallmark of many vascular diseases. In this study we investigated the role of the multifunctional serine/threonine kinase, calmodulin (CaM)-dependent protein kinase II (CaMKII), as a mediator of Ca2+ signals regulating VSM cell proliferation. Differentiated VSM cells acutely isolated from rat aortic media express primarily CaMKII gene products, whereas passaged primary cultures of de-differentiated VSM cells express primarily CaMKII2, a splice variant of the gene. Experiments examining the time course of CaMKII isoform modulation revealed the process was rapid in onset following initial dispersion and primary culture of aortic VSM with a significant increase in CaMKII2 protein and a significant decrease in CaMKII protein within 30 h, coinciding with the onset of DNA synthesis and cell proliferation. Attenuating the initial upregulation of CaMKII2 in primary cultured cells using small-interfering RNA (siRNA) resulted in decreased serum-stimulated DNA synthesis and cell proliferation in primary culture. In passaged VSM cells, suppression of CaMKII2 activity by overexpression of a kinase-negative mutant, or suppression of endogenous CaMKII content using multiple siRNAs, significantly attenuated serum-stimulated DNA synthesis and cell proliferation. Cell cycle analysis following either inhibitory approach indicated decreased proportion of cells in G1, an increase in proportion of cells in G2/M, and an increase in polyploidy, corresponding with accumulation of multinucleated cells. These results indicate that CaMKII2 is specifically induced during modulation of VSM cells to the synthetic phenotypic and is a positive regulator of serum-stimulated proliferation. calmodulin kinase II; phenotype modulation  相似文献   

12.
Direct association of RhoA with specific domains of PKC-alpha   总被引:1,自引:0,他引:1  
Previous studies performed at our laboratory have shown that agonist-induced contraction of smooth muscle is associated with translocation of protein kinase C (PKC)- and RhoA to the membrane and that this interaction is due to a direct protein-protein interaction. To determine the domains of PKC- involved in direct interaction with RhoA, His-tagged PKC- proteins of individual domains and different combinations of PKC- domains were used to perform in vitro binding assays with the fusion protein glutathione-S-transferase (GST)-RhoA. Coimmunoprecipitation was also performed using smooth muscle cells transfected with truncated forms of PKC- in this study. The data indicate that RhoA directly bound to full-length PKC-, both in vitro (82.57 ± 15.26% above control) and in transfected cells. RhoA bound in vitro to the C1 domain of PKC- [PKC- (C1)] (70.48 ± 20.78% above control), PKC- (C2) (72.26 ± 29.96% above control), and PKC- (C4) (90.58 ± 26.79% above control), but not to PKC- (C3) (0.64 ± 5.18% above control). RhoA bound in vitro and in transfected cells to truncated forms of PKC-, PKC- (C2, C3, and C4), and PKC- (C3 and C4) (94.09 ± 12.13% and 85.10 ± 16.16% above control, respectively), but not to PKC- (C1, C2, and C3) or to PKC- (C2 and C3) (0.47 ± 1.26% and 7.45 ± 10.76% above control, respectively). RhoA bound to PKC- (C1 and C2) (60.78 ± 13.78% above control) only in vitro, but not in transfected cells, and PKC- (C2, C3, and C4) and PKC- (C3 and C4) bound well to RhoA. These data suggest that RhoA bound to fragments that may mimic the active form of PKC-. The studies using cells transfected with truncated forms of PKC- indicate that PKC- (C1 and C2), PKC- (C1, C2, and C3), and PKC- (C2 and C3) did not associate with RhoA. Only full-length PKC-, PKC- (C2, C3, and C4), and PKC- (C3 and C4) associated with RhoA. The association increased upon stimulation with acetylcholine. These results suggest that the functional association of PKC- with RhoA may require the C4 domain. domains; histidine; fusion proteins  相似文献   

13.
Transforming growth factor- (TGF-) stimulates myofibroblast transdifferentiation, leading to type I collagen accumulation and fibrosis. We investigated the function of Src in TGF--induced collagen I accumulation. In human mesangial cells, PTyr416 Src (activated Src) was 3.3-fold higher in TGF--treated cells than in controls. Src activation by TGF- was blocked by rottlerin and by a dominant negative mutant of protein kinase C (PKC), showing that TGF- activates Src by a PKC-based mechanism. Pharmacological inhibitors and a dominant negative Src mutant prevented the increase in collagen type I secretion in cells exposed to TGF-. Similarly, on-target Src small interference RNA (siRNA) prevented type I collagen secretion in response to TGF-, but off-target siRNA complexes had no effect. It is well established in mesangial cells that upregulation of type I collagen by TGF- requires extracellular signal-regulated kinase 1/2 (ERK1/2), and we found that activation of ERK1/2 by TGF- requires Src. In conclusion, these results suggest that stimulation of collagen type I secretion by TGF- requires a PKC-Src-ERK1/2 signaling motif. mesangial cells; fibrosis; glomerulus; transforming growth factor-  相似文献   

14.
We studied the functions of -subunits of Gi/o protein using the Xenopus oocyte expression system. Isoproterenol (ISO) elicited cAMP production and slowly activating Cl currents in oocytes expressing 2-adrenoceptor and the protein kinase A-dependent Cl channel encoded by the cystic fibrosis transmembrane conductance regulator (CFTR) gene. 5-Hydroxytryptamine (5-HT), [D-Ala2, D-Leu5]-enkephalin (DADLE), and baclofen enhanced ISO-induced cAMP levels and CFTR currents in oocytes expressing 2-adrenoceptor-CFTR and 5-HT1A receptor (5-HT1AR), -opioid receptor, or GABAB receptor, respectively. 5-HT also enhanced pituitary adenylate cyclase activating peptide (PACAP) 38-induced cAMP levels and CFTR currents in oocytes expressing PACAP receptor, CFTR and 5-HT1AR. The 5-HT-induced enhancement of Gs-coupled receptor-mediated currents was abrogated by pretreatment with pertussis toxin (PTX) and coexpression of G transducin (Gt). The 5-HT-induced enhancement was further augmented by coexpression of the G-activated form of adenylate cyclase (AC) type II but not AC type III. Thus -subunits of Gi/o protein contribute to the enhancement of Gs-coupled receptor-mediated responses. 5-HT and DADLE did not elicit any currents in oocytes expressing 5-HT1AR or -opioid receptor alone. They elicited Ca2+-activated Cl currents in oocytes coexpressing these receptors with the G-activated form of phospholipase C (PLC)-2 but not with PLC-1. These currents were inhibited by pretreatment with PTX and coexpression of Gt, suggesting that -subunits of Gi/o protein activate PLC-2 and then cause intracellular Ca2+ mobilization. Our results indicate that -subunits of Gi/o protein participate in diverse intracellular signals, enhancement of Gs-coupled receptor-mediated responses, and intracellular Ca2+ mobilization. G protein-coupled receptor; cystic fibrosis transmembrane conductance regulator gene; cross talk; electrophysiology  相似文献   

15.
G protein-gated inward rectifier (Kir3) channels are inhibited by activation of Gq/11-coupled receptors and this has been postulated to involve the signaling molecules protein kinase C (PKC) and/or phosphatidylinositol 4,5-bisphosphate (PIP2). Their precise roles in mediating the inhibition of this family of channels remain controversial. We examine here their relative roles in causing inhibition of Kir3.1/3.2 channels stably expressed in human embryonic kidney (HEK)-293 cells after muscarinic M3 receptor activation. In perforated patch mode, staurosporine prevented the Gq/11-mediated, M3 receptor, inhibition of channel activity. Recovery from M3-mediated inhibition was wortmannin sensitive. Whole cell currents, where the patch pipette was supplemented with PIP2, were still irreversibly inhibited by M3 receptor stimulation. When adenosine A1 receptors were co-expressed, inclusion of PIP2 rescued the A1-mediated response. Recordings from inside-out patches showed that catalytically active PKC applied directly to the intracellular membrane face inhibited the channels: a reversible effect modulated by okadaic acid. Generation of mutant heteromeric channel Kir3.1S185A/Kir3.2C-S178A, still left the channel susceptible to receptor, pharmacological, and direct kinase-mediated inhibition. Biochemically, labeled phosphate is incorporated into the channel. We suggest that PKC- mediates channel inhibition because recombinant PKC- inhibited channel activity, M3-mediated inhibition of the channel, was counteracted by overexpression of two types of dominant negative PKC- constructs, and, by using confocal microscopy, we have demonstrated translocation of green fluorescent protein-tagged PKC- to the plasma membrane on M3 receptor stimulation. Thus Kir3.1/3.2 channels are sensitive to changes in membrane phospholipid levels but this is contingent on the activity of PKC- after M3 receptor activation in HEK-293 cells. phosphatidylinositol 4,5-bisphosphate; phorbol 12-myristate 13-acetate; receptor for activated C kinase; A kinase anchoring protein; carbachol; 5'-N-ethylcarboxyamidoadenosine  相似文献   

16.
-Syntrophin is a component of the dystrophin glycoprotein complex (DGC). It is firmly attached to the dystrophin cytoskeleton via a unique COOH-terminal domain and is associated indirectly with -dystroglycan, which binds to extracellular matrix laminin. Syntrophin contains two pleckstrin homology (PH) domains and one PDZ domain. Because PH domains of other proteins are known to bind the -subunits of the heterotrimeric G proteins, whether this is also a property of syntrophin was investigated. Isolated syntrophin from rabbit skeletal muscle binds bovine brain G-subunits in gel blot overlay experiments. Laminin-1-Sepharose or specific antibodies against syntrophin, - and -dystroglycan, or dystrophin precipitate a complex with G from crude skeletal muscle microsomes. Bacterially expressed syntrophin fusion proteins and truncation mutants allowed mapping of G binding to syntrophin's PDZ domain; this is a novel function for PDZ domains. When laminin-1 is bound, maximal binding of Gs and G occurs and active Gs, measured as GTP-35S bound, decreases. Because intracellular Ca2+ is elevated in Duchenne muscular dystrophy and Gs is known to activate the dihydropyridine receptor Ca2+ channel, whether laminin also altered intracellular Ca2+ was investigated. Laminin-1 decreases active (GTP-S-bound) Gs, and the Ca2+ channel is inhibited by laminin-1. The laminin 1-chain globular domains 4 and 5 region, the region bound by DGC -dystroglycan, is sufficient to cause an effect, and an antibody that specifically blocks laminin binding to -dystroglycan inhibits G binding by syntrophin in C2C12 myotubes. These observations suggest that DGC is a matrix laminin, G protein-coupled receptor. Duchenne muscular dystrophy; protein G -subunit; pleckstrin homology domain  相似文献   

17.
Using intestinal Caco-2 cells, we previously showed that assembly of cytoskeleton is required for monolayer barrier function, but the underlying mechanisms remain poorly understood. Because the -isoform of PKC is present in wild-type (WT) intestinal cells, we hypothesized that PKC- is crucial for changes in cytoskeletal and barrier dynamics. We have created the first multiple sets of gastrointestinal cell clones transfected with varying levels of cDNA to stably inhibit native PKC- (antisense, AS; dominant negative, DN) or to express its activity (sense). We studied transfected and WT Caco-2 cells. First, relative to WT cells, AS clones underexpressing PKC- showed monolayer injury as indicated by decreased native PKC- activity, reduced tubulin phosphorylation, increased tubulin disassembly (decreased polymerized and increased monomeric pools), reduced architectural integrity of microtubules, reduced stability of occludin, and increased barrier hyperpermeability. In these AS clones, PKC- was substantially reduced in the particulate fractions, indicating its inactivation. In WT cells, 82-kDa PKC- was constitutively active and coassociated with 50-kDa tubulin, forming an endogenous PKC-/tubulin complex. Second, DN transfection to inhibit the endogenous PKC- led to similar destabilizing effects on monolayers, including cytoskeletal hypophosphorylation, depolymerization, and instability as well as barrier disruption. Third, stable overexpression of PKC- led to a mostly cytosolic distribution of -isoform (<10% in particulate fractions), indicating its inactivation. In these sense clones, we also found disruption of occludin and microtubule assembly and increased barrier dysfunction. In conclusion, 1) PKC- isoform is required for changes in the cytoskeletal assembly and barrier permeability in intestinal monolayers, and 2) the molecular event underlying this novel biological effect of PKC- involves changes in phosphorylation and/or assembly of the subunit components of the cytoskeleton. The ability to alter the cytoskeletal and barrier dynamics is a unique function not previously attributed to PKC-. microtubules; tubulin; occludin; epithelial barrier permeability; protein kinase C isoform  相似文献   

18.
Sex hormone status has emerged as an important modulator of coronary physiology and cardiovascular disease risk in both males and females. Our previous studies have demonstrated that testosterone increases protein kinase C (PKC) expression and activity in coronary smooth muscle (CSMC). Because PKC has been implicated in regulation of proliferation and apoptosis in other cell types, we sought to determine if testosterone modulates CSMC proliferation and/or apoptosis through PKC. Porcine CSMC cultures (passages 2–6) from castrated males were treated with testosterone for 24 h. Testosterone (20 and 100 nM) decreased [3H]thymidine incorporation in proliferating CSMC to 59 ± 5.3 and 33.1 ± 4.5% of control. Flow cytometric analysis demonstrated that testosterone induced G1 arrest in CSMC with a concomitant reduction in the S phase cells. Testosterone reduced protein levels of cyclins D1 and E and phosphorylation of retinoblastoma protein while elevating levels of p21cip1 and p27kip1. There were no significant differences in the levels of cyclins D3, CDK2, CDK4, or CDK6. Testosterone significantly reduced kinase activity of CDK2 and -6, but not CDK4, -7, or -1. PKC small interfering RNA (siRNA) prevented testosterone-mediated G1 arrest, p21cip1 upregulation, and cyclin D1 and E downregulation. Furthermore, testosterone increased CSMC apoptosis in a dose-dependent manner, which was blocked by either PKC siRNA or caspase 3 inhibition. These findings demonstrate that the anti-proliferative, pro-apoptotic effects of testosterone on CSMCs are substantially mediated by PKC. androgens; coronary; smooth muscle; cell cycle  相似文献   

19.
Previous studies have shown that inhibition of L-type Ca2+ current (ICa) by cytosolic free Mg2+ concentration ([Mg2+]i) is profoundly affected by activation of cAMP-dependent protein kinase pathways. To investigate the mechanism underlying this counterregulation of ICa, rat cardiac myocytes and tsA201 cells expressing L-type Ca2+ channels were whole cell voltage-clamped with patch pipettes in which [Mg2+] ([Mg2+]p) was buffered by citrate and ATP. In tsA201 cells expressing wild-type Ca2+ channels (1C/2A/2), increasing [Mg2+]p from 0.2 mM to 1.8 mM decreased peak ICa by 76 ± 4.5% (n = 7). Mg2+-dependent modulation of ICa was also observed in cells loaded with ATP--S. With 0.2 mM [Mg2+]p, manipulating phosphorylation conditions by pipette application of protein kinase A (PKA) or phosphatase 2A (PP2A) produced large changes in ICa amplitude; however, with 1.8 mM [Mg2+]p, these same manipulations had no significant effect on ICa. With mutant channels lacking principal PKA phosphorylation sites (1C/S1928A/2A/S478A/S479A/2), increasing [Mg2+]p had only small effects on ICa. However, when channel open probability was increased by 1C-subunit truncation (1C1905/2A/S478A/S479A/2), increasing [Mg2+]p greatly reduced peak ICa. Correspondingly, in myocytes voltage-clamped with pipette PP2A to minimize channel phosphorylation, increasing [Mg2+]p produced a much larger reduction in ICa when channel opening was promoted with BAY K8644. These data suggest that, around its physiological concentration range, cytosolic Mg2+ modulates the extent to which channel phosphorylation regulates ICa. This modulation does not necessarily involve changes in channel phosphorylation per se, but more generally appears to depend on the kinetics of gating induced by channel phosphorylation. voltage-gated Ca2+ channel; cardiac myocytes; human embryonic kidney cells; protein kinase A; protein phosphatase 2A  相似文献   

20.
We have examined the effects of the cannabinoid anandamide (AEA) and its stable analog, methanandamide (methAEA), on large-conductance, Ca2+-activated K+ (BK) channels using human embryonic kidney (HEK)-293 cells, in which the -subunit of the BK channel (BK-), both - and 1-subunits (BK-1), or both - and 4-subunits (BK-4) were heterologously expressed. In a whole cell voltage-clamp configuration, each cannabinoid activated BK-1 within a similar concentration range. Because methAEA could potentiate BK-, BK-1, and BK-4 with similar efficacy, the -subunits may not be involved at the site of action for cannabinoids. Under cell-attached patch-clamp conditions, application of methAEA to the bathing solution increased BK channel activity; however, methAEA did not alter channel activity in the excised inside-out patch mode even when ATP was present on the cytoplasmic side of the membrane. Application of methAEA to HEK-BK- and HEK-BK-1 did not change intracellular Ca2+ concentration. Moreover, methAEA-induced potentiation of BK channel currents was not affected by pretreatment with a CB1 antagonist (AM251), modulators of G proteins (cholera and pertussis toxins) or by application of a selective CB2 agonist (JWH133). Inhibitors of CaM, PKG, and MAPKs (W7, KT5823, and PD-98059) did not affect the potentiation. Application of methAEA to mouse aortic myocytes significantly increased BK channel currents. This study provides the first direct evidence that unknown factors in the cytoplasm mediate the ability of endogenous cannabinoids to activate BK channel currents. Cannabinoids may be hyperpolarizing factors in cells, such as arterial myocytes, in which BK channels are highly expressed. anandamide; channel opener  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号