首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibronectin is organized into disulfide cross-linked, insoluble pericellular matrix fibrils by fibroblasts in vitro. Two sites, the Arg-Gly-Asp-Ser-containing cell attachment domain and a site located in the first 70 kDa of fibronectin, are required for matrix assembly. The first 70 kDa of fibronectin contain two structural motifs termed type I and type II homologies, which are repeated nine and two times, respectively. Previous work has implicated the amino-terminal region and the carboxyl terminus containing three type I repeats in matrix assembly, suggesting that type I repeats possess binding activity essential for fibronectin matrix assembly. To test this hypothesis, we developed a sensitive capture immunoassay to quantify insoluble matrix fibronectin and tested a panel of fibronectin fragments, containing all of the type I repeats found in the intact protein, for their ability to inhibit matrix assembly. Only fragments containing the first five type I repeats inhibited fibronectin matrix assembly, although sequences carboxyl-terminal to this domain enhanced this activity. Additional evidence for the specific recognition of the amino-terminal type I repeats by matrix assembling cells was found when the reversible, detergent-sensitive binding of a 125I-labeled fragment containing the first five type I repeats (29 kDa) to cell monolayers was studied. Only monolayers of cell lines that incorporate fibronectin into a fibrillar matrix specifically bound 125I-labeled 29 kDa. Binding of the radiolabeled amino-terminal fragment to matrix-forming cells was inhibited by unlabeled fragments containing the first five type I repeats but not by unlabeled fragments containing the remaining seven type I repeats. Matrix assembly is therefore not a generalized property of type I repeats. Rather, a critical site is located within the first 29 kDa of fibronectin.  相似文献   

2.
Fibronectin matrix assembly involves interactions among various regions of the molecule, which contribute to elongation and stabilization of the fibrils. In this study, we examined the possible role of the heparin III domain of fibronectin (repeats III4-5) in fibronectin fibrillogenesis. We show that a recombinant fragment comprising these repeats (FNIII4-5 fragment) blocked fibronectin fibril formation and the incorporation of 125I-fibronectin into cell layers. Binding assays using a biosensor revealed that FNIII4-5 bound fibronectin and the amino-terminal 70 kDa and 29 kDa fragments. It also bound to itself, indicating a previously unidentified self-association site in repeats III4-5. These interactions were specific since FNIII4-5 did not bind to the FNIII7-10 fragment, representing a central region in fibronectin. The fibronectin-binding property of the III4-5 domain, but not its matrix assembly inhibitory function, was apparently cryptic in larger fragments. By mutating the arginine residues in the WTPPRAQITGYRLTVGLTRR proteoglycan-binding sequence (HBP/III5 site) of FNIII4-5 [Moyano, J.V., Carnemolla, B., Albar, J.P., Leprini, A., Gaggero, B., Zardi, L., Garcia-Pardo, A., 1999. Cooperative role for activated alpha4beta1 integrin and chondroitin sulfate proteoglycans in cell adhesion to the heparin III domain of fibronectin. Identification of a novel heparin and cell binding sequence in repeat III5. J. Biol. Chem. 274, 135-142.], we found that the first two arginine residues in HBP/III5 were involved in the fibronectin-binding property of FNIII4-5, while the last two arginine residues in HBP/III5 were required for inhibition of matrix assembly and the binding of 125I-fibronectin to cell layers. Both properties appear to function independently from each other, depending on the conformation of the fibronectin dimer.  相似文献   

3.
Previous studies have indicated that the receptor for urokinase-type plasminogen activator, uPAR, can form functional complexes with integrin receptors thereby modulating integrin activity. In the present study, the role of uPAR in the regulation of alpha5beta1-dependent polymerization of the fibronectin matrix was investigated. Incubation of fibroblast monolayers with the P-25 peptide, a uPAR ligand, resulted in a 12-15-fold increase in the accumulation of exogenous fibronectin in the cell layer. The exogenous fibronectin co-localized in the extracellular matrix with endogenous cell-derived fibronectin, and its deposition into the matrix was inhibited by blocking antibodies against the beta1 integrin receptor. The P-25-dependent increase in fibronectin assembly was associated with a 7-8-fold increase in the expression of matrix assembly sites as well as a 37-fold increase in the rate of transfer of cell surface-bound fibronectin into a detergent-insoluble matrix. The effects of P-25 on the matrix assembly were attenuated by incubating cells with either phospholipase C or with antibodies against uPAR, confirming a role for uPAR in the P-25-dependent increase in matrix assembly. P-25-treated cells exhibited a 10-fold increase in the binding of the 120-kDa cell-binding fragment of fibronectin suggesting an increase in alpha5beta1 affinity for fibronectin. Consistent with this, treatment of cells with P-25 also resulted in a 6-10-fold increase in the binding of two different monoclonal antibodies that recognize the active conformation of the beta1 integrin. These results indicate that P-25 increases matrix assembly by altering the activation state of the alpha5beta1 integrin receptor and suggest that changes in integrin activation affect both the number of matrix assembly sites as well as the rate of transfer of cell-bound fibronectin into a detergent-insoluble matrix. These data provide direct evidence that uPAR and integrin receptors synergistically regulate the levels of fibronectin in the extracellular matrix.  相似文献   

4.
Factor XIIIa cross-links plasma fibronectin as it is being assembled into the extracellular matrix of cultured human skin fibroblasts (Barry, E. L. R., and Mosher, D. F. (1988) J. Biol. Chem. 262, 10464-10469). We have further characterized this process. Fibroblasts were metabolically labeled with proline in the presence or absence of ascorbate and Factor XIIIa. Endogenous fibronectin in the extracellular matrix was cross-linked by Factor XIIIa. There was no evidence for cross-linking of collagenous proteins. Fibro-blast cell layers were incubated with iodinated 27-kDa heparin-binding or 70-kDa collagen- and heparin-binding amino-terminal fibronectin fragments. Factor XIIa cross-linked the fragments into high molecular weight aggregates. The amounts of cross-linked fragments reaches a steady state after 1 to 2 h, whereas intact fibronectin continues to be cross-linked for 24 h. When fibroblast cell layers were pulsed with iodinated fibronectin or amino-terminal fragments and Factor XIIIa was included in the chase media, the high molecular weight aggregates were formed in a step-wise manner. The smallest cross-linking steps were to high molecular weight extracellular matrix molecules forming approximately 270-, 300-, and 440-kDa complexes for the 27-kDa fragment, 70-kDa fragment, and intact fibronectin, respectively. When iodinated fibronectin was bound to fibroblast cell layers and chased into the matrix pool in the absence of Factor XIIIa, it could also be cross-linked into high molecular weight complexes when Factor XIIIa was added to the media. These results, therefore, indicate that both cellular and plasma fibronectin and amino-terminal fragments are cross-linked specifically by Factor XIIIa, that the cross-linking is probably to other fibronectin molecules rather than to collagenous proteins, and that both assembling and assembled fibronectin are substrates for Factor XIIIa.  相似文献   

5.
Radioiodinated human choriogonadotropin was affinity-cross-linked with a cleavable (nondisulfide) homobifunctional reagent to the hormone receptor on porcine granulosa cells and the solubilized sample was electrophoresed. Cross-linked samples revealed four additional bands of slower electrophoretic mobility in addition to the hormone alpha, beta, and alpha beta dimer bands. The four bands corresponded to masses of 68, 74, 102, and 136 kDa whereas the alpha beta dimer band corresponded to 50 kDa. Formation of the four bands requires the 125I-hormone to bind specifically to the receptor with subsequent cross-linking. Binding can be prevented by excess of native hormone but not by follitropin. A monofunctional analog of the cross-linking reagent failed to produce the four bands. They were also produced by cross-linking Triton X-100-solubilized hormone-receptor complexes. Reagent concentration-dependent cross-linking revealed that their formation was sequential; smaller complexes formed first and then larger ones. When gels of the cross-linked sample were treated with reagents that cleave covalent cross-links and then electrophoresed in a second dimension gel, 18-, 24-, 28-, and 34-kDa components were released, in addition to the alpha and beta subunits of the native hormone. Simultaneous peptide mapping of the cross-linked complexes in the gel matrix with Staphylococcus V8 protease or papain revealed progressive proteolysis to generate terminal fragments of 30 or 27 kDa, respectively. These fragments were unique to and commonly present in the 74-, 102-, and 136-kDa hormone-receptor complexes but were not produced by proteolysis of the cross-linked human choriogonadotropin (hCG) alpha beta dimer or the hCG alpha subunit. Apparently, the radioactively labeled segment(s) of the alpha subunit of 125I-hCG was cross-linked to the 24-kDa component. The results demonstrate the protein nature of the receptor and suggest that 125I-hCG was initially cross-linked to the 24-kDa component to generate the 74-kDa complex, then the 28- and 34-kDa components were sequentially cross-linked to the 24-kDa component in the 74-kDa complex to generate the 102- and 134-kDa complexes.  相似文献   

6.
Binding of the N-terminal 70-kDa (70K) fragment of fibronectin to fibroblasts blocks assembly of intact fibronectin and is an accurate indicator of the ability of various agents to enhance or inhibit fibronectin assembly. Such binding is widely thought to be to already assembled fibronectin. We evaluated this hypothesis with fibronectin-null mouse fibroblasts plated on laminin-1 in the absence of intact fibronectin. As a proteolytic fragment or recombinant protein, 70K bound fibronectin-null cells specifically in linear arrays that extended outwards from the periphery of spread cells. At early time points, these arrays were similar to those formed by intact fibronectin. 70K arrays formed within 5 min following ligand addition at concentrations as low as 5 nM, indicating rapid and high affinity binding. Bound 70K was extractable with Triton X-100 or deoxycholate but became insoluble when cross-linked with a membrane-impermeable agent into large SDS-stable complexes. Intact fibronectin, in contrast, became progressively non-extractable in the absence of cross-linking. The detergent-resistant arrays of cross-linked 70K localized to tips of cellular extensions and partially overlapped with alpha6 and beta1 integrin subunits at the base of the extensions. alpha5 did not localize with 70K arrays, but became progressively co-localized with assemblies of intact fibronectin over time. These results support a model in which the 70-kDa region of fibronectin binds to linearly arrayed cell surface molecules of adherent cells to initiate assembly, display of the arrays is controlled by the integrin that mediates adhesion, and fibronectin-binding integrins promote fibronectin-fibronectin interactions during progression of assembly.  相似文献   

7.
Human plasma fibronectin binds with high affinity to the inflammation-induced secreted protein TSG-6. Fibronectin binds to the CUB_C domain of TSG-6 but not to its Link module. TSG-6 can thus act as a bridging molecule to facilitate fibronectin association with the TSG-6 Link module ligand thrombospondin-1. Fibronectin binding to TSG-6 is divalent cation-independent and is conserved in cellular fibronectins. Based on competition binding studies using recombinant and proteolytic fragments of fibronectin, TSG-6 binding localizes to type III repeats 9-14 of fibronectin. This region of fibronectin contains the Arg-Gly-Asp sequence recognized by alpha5beta1 integrin, but deletion of that sequence does not prevent TSG-6 binding, and TSG-6 does not inhibit cell adhesion on fibronectin substrates mediated by this integrin. This region of fibronectin is also involved in fibronectin matrix assembly, and addition of TSG-6 enhances exogenous and endogenous fibronectin matrix assembly by human fibroblasts. Therefore, TSG-6 is a high affinity ligand that can mediate fibronectin interactions with other matrix components and modulate some interactions of fibronectin with cells.  相似文献   

8.
Interactions between fibronectin and tenascin-C within the extracellular matrix provide specific environmental cues that dictate tissue structure and cell function. The major binding site for fibronectin lies within the fibronectin type III-like repeats (TNfn) of tenascin-C. Here, we systematically screened TNfn domains for their ability to bind to both soluble and fibrillar fibronectin. All TNfn domains containing the TNfn3 module interact with soluble fibronectin. However, TNfn domains bind differentially to fibrillar fibronectin. This distinct binding pattern is dictated by the fibrillar conformation of FN. TNfn1-3, but not TNfn3-5, binds to immature fibronectin fibrils, and additional TNfn domains are required for binding to mature fibrils. Multiple binding sites for distinct regions of fibronectin exist within tenascin-C. TNfn domains comprise a binding site for the N-terminal 70-kDa domain of fibronectin that is freely available and a binding site for the central binding domain of fibronectin that is cryptic in full-length tenascin-C. The 70-kDa and central binding domain regions are key for fibronectin matrix assembly; accordingly, binding of several TNfn domains to these regions inhibits fibronectin fibrillogenesis. These data highlight the complexity of protein-protein binding, the importance of protein conformation on these interactions, and the implications for the physiological assembly of complex three-dimensional matrices.  相似文献   

9.
Factor XIII cross-linking of fibronectin at cellular matrix assembly sites   总被引:7,自引:0,他引:7  
We describe the effect of activated Factor XIII (Factor XIIIa, plasma transglutaminase) on the incorporation of plasma fibronectin into extracellular matrix by cultured human fibroblasts. In the absence of added Factor XIIIa, fibronectin binds to cultured fibroblast cell layers and is assembled into disulfide-bonded multimers of the extracellular matrix. When Factor XIIIa was included in the binding medium of skin fibroblasts, accumulation of 125I-fibronectin in the deoxycholate-insoluble matrix was increased. Fibronectin accumulating in the cell layer was cross-linked into nonreducible high molecular weight aggregates. The 70-kDa amino-terminal fragment of fibronectin inhibited the binding and cross-linking of 125I-fibronectin to cell layers, whereas fibrinogen had little effect. When 125I-fibronectin was incubated with isolated matrices or with cell layers pretreated with cytochalasin B, it did not bind and could not be cross-linked by Factor XIIIa into the matrix. HT-1080 human fibrosarcoma cells bound exogenous fibronectin following treatment with dexamethasone; Factor XIIIa cross-linked the bound fibronectin and caused its efficient transfer to the deoxycholate-insoluble matrix. These results indicate that exogenous fibronectin is susceptible to Factor XIIIa-catalyzed cross-linking at cellular sites of matrix assembly. Thus, Factor XIIIa-mediated fibronectin cross-linking complements disulfide-bonded multimer formation in the stabilization of assembling fibronectin molecules and thus enhances the formation of extracellular matrix.  相似文献   

10.
The interaction of cells with fibronectin generates a series of complex signaling events that serve to regulate several aspects of cell behavior, including growth, differentiation, adhesion, and motility. The formation of a fibronectin matrix is a dynamic, cell-mediated process that involves both ligation of the α5β1 integrin with the Arg-Gly-Asp (RGD) sequence in fibronectin and binding of the amino terminus of fibronectin to cell surface receptors, termed “matrix assembly sites,” which mediate the assembly of soluble fibronectin into insoluble fibrils. Our data demonstrate that the amino-terminal type I repeats of fibronectin bind to the α5β1 integrin and support cell adhesion. Furthermore, the amino terminus of fibronectin modulates actin assembly, focal contact formation, tyrosine kinase activity, and cell migration. Amino-terminal fibronectin fragments and RGD peptides were able to cross-compete for binding to the α5β1 integrin, suggesting that these two domains of fibronectin cannot bind to the α5β1 integrin simultaneously. Cell adhesion to the amino-terminal domain of fibronectin was enhanced by cytochalasin D, suggesting that the ligand specificity of the α5β1 integrin is regulated by the cytoskeleton. These data suggest a new paradigm for integrin-mediated signaling, where distinct regions within one ligand can modulate outside-in signaling through the same integrin.  相似文献   

11.
The active form of fibronectin is its extracellular matrix form, which allows for the attachment of cells and influences both the growth and migration of cells. The matrix form is assembled by cells; however, many cells are defective in this regard. Several regions within fibronectin have been shown to play a role in matrix assembly by cells. One such region has been localized into the first type III repeat of fibronectin (Chernousov, M. A., F. J. Fogerty, V. E. Koteliansky, and D. F. Mosher. J. Biol. Chem. 266:10851-10858). We have identified this site as a fibronectin-fibronectin binding site and reproduced it as a synthetic peptide. This site is contained in a 14-kD fragment that corresponds to portions of the first two type III repeats. The 14-kD fragment was found to bind to cell monolayers and to inhibit fibronectin matrix assembly. The 14-kD fragment only slightly reduced the binding of fibronectin to cell surfaces but it significantly inhibited the subsequent incorporation of fibronectin into the extracellular matrix. The 14-kD fragment also bound to purified fibronectin and inhibited fibronectin-fibronectin binding. A synthetic 31-amino acid peptide (P1) representing a segment of the 14-kD fragment retained the ability to inhibit fibronectin-fibronectin binding. Peptide P1 specifically bound fibronectin from plasma in affinity chromatography, whereas a column containing another peptide from the 14-kD fragment did not. These results define a fibronectin-fibronectin binding site that appears to promote matrix assembly by allowing the assembly of fibronectin molecules into nascent fibrils. The 14-kD fragment and the P1 peptide that contain this site inhibit matrix assembly by competing for the fibronectin-fibronectin binding.  相似文献   

12.
The murine interleukin 2 (IL-2) receptor is a 55- to 60-kDa glycoprotein (p58) that binds IL-2 at a high and low affinity. In this investigation, we have identified sublines of EL4 that vary in their capacity to express high affinity IL-2 receptors after transfection of the IL-2 receptor cDNA. These and other cell populations were used to determine whether unique membrane molecules were specifically associated with the high affinity IL-2 receptor. Irreversible chemical cross-linking of [125I]IL-2 to only high affinity IL-2 receptors resulted in detection of IL-2 cross-linked to p58 as a 70- to 75-kDa band and other complexes of 90 to 95 kDa, 115 kDa, 150 kDa, 170 to 190 kDa, and 245 kDa. Antibodies specific for p58 resulted in precipitation of each of these complexes. However, disruption of noncovalent interactions prior to immunoprecipitation resulted in an inability to detect the material at 90 to 95 kDa. Therefore, we conclude that this complex most likely represented IL-2 cross-linked to a 75- to 80-kDa subunit that was noncovalently associated with p58. The other complexes greater than 150 kDa may represent these subunits cross-linked to each other. The detection of all the cross-linked complexes larger than 75 kDa appeared to be directly related to formation of high affinity IL-2 receptors because IL-2 was cross-linked only to p58 for three cell lines that exclusively expressed low affinity IL-2 receptors. Thus, high affinity murine IL-2 receptors are comprised of at least one alpha (p58)- and beta (p75)-subunit. Our data also raise the possibility of a more complex subunit structure.  相似文献   

13.
Human melanoma cells express a novel integrin receptor for laminin   总被引:11,自引:0,他引:11  
This study sought to determine whether human melanoma cells express integrin-related receptors that mediate their adhesion to laminin. We found that antibodies against the integrin beta 1 chain blocked cell attachment to laminin-coated surfaces. Furthermore, immunofluorescence staining demonstrated beta 1 complexes in vinculin-positive focal adhesion plaques on the basal surface of cells attached to laminin substrates. Chromatography of detergent extracts of 125I-surface-labeled cells on laminin-Sepharose columns recovered two major laminin-binding proteins (100 and 130 kDa, reduced) that bound with high affinity to the columns and were eluted with EDTA. Both proteins were specifically immunoprecipitated from column fractions with monoclonal and polyclonal antibodies to the integrin beta 1 subunit, indicating that they form a noncovalent heterodimer complex. The alpha-like subunit is composed of a 30-kDa light chain that is joined by a disulfide bond to the 100-kDa heavy chain. This complex was not recovered from columns of fibronectin- or collagen type I- or IV-Sepharose. Laminin-binding by the alpha beta 1 complex was independent of Arg-Gly-Asp or Tyr-Ile-Gly-Ser-Arg-like sequences, but required the presence of divalent cations. The 100-kDa alpha-like subunit was electrophoretically and immunochemically distinct from the other known alpha subunits, alpha 1-alpha 6. The results indicate that human melanoma cells express a novel laminin-specific integrin beta 1 complex which may mediate the cells' interactions with this ligand.  相似文献   

14.
Fibronectin matrix assembly is a cell-dependent process which is upregulated in tissues at various times during development and wound repair to support the functions of cell adhesion, migration, and differentiation. Previous studies have demonstrated that the alpha 5 beta 1 integrin and fibronectin's amino terminus and III-1 module are important in fibronectin polymerization. We have recently shown that fibronectin's III-1 module contains a conformationally sensitive binding site for fibronectin's amino terminus (Hocking, D.C., J. Sottile, and P.J. McKeown-Longo. 1994. J. Biol. Chem. 269: 19183- 19191). The present study was undertaken to define the relationship between the alpha 5 beta 1 integrin and fibronectin polymerization. Solid phase binding assays using recombinant III-10 and III-1 modules of human plasma fibronectin indicated that the III-10 module contains a conformation-dependent binding site for the III-1 module of fibronectin. Unfolded III-10 could support the formation of a ternary complex containing both III-1 and the amino-terminal 70-kD fragment, suggesting that the III-1 module can support the simultaneous binding of III-10 and 70 kD. Both unfolded III-10 and unfolded III-1 could support fibronectin binding, but only III-10 could promote the formation of disulfide-bonded multimers of fibronectin in the absence of cells. III-10-dependent multimer formation was inhibited by both the anti-III-1 monoclonal antibody, 9D2, and amino-terminal fragments of fibronectin. A fragment of III-10, termed III-10/A, was able to block matrix assembly in fibroblast monolayers. Similar results were obtained using the III-10A/RGE fragment, in which the RGD site had been mutated to RGE, indicating that III-I0/A was blocking matrix assembly by a mechanism distinct from disruption of integrin binding. Texas red- conjugated recombinant III-1,2 localized to beta 1-containing sites of focal adhesions on cells plated on fibronectin or the III-9,10 modules of fibronectin. Monoclonal antibodies against the III-1 or the III-9,10 modules of fibronectin blocked binding of III-1,2 to cells without disrupting focal adhesions. These data suggest that a role of the alpha 5 beta 1 integrin in matrix assembly is to regulate a series of sequential self-interactions which result in the polymerization of fibronectin.  相似文献   

15.
Many factors influence the assembly of fibronectin into an insoluble fibrillar extracellular matrix. Previous work demonstrated that one component in serum that promotes the assembly of fibronectin is lysophosphatidic acid (Zhang, Q., W.J. Checovich, D.M. Peters, R.M. Albrecht, and D.F. Mosher. 1994. J. Cell Biol. 127:1447–1459). Here we show that C3 transferase, an inhibitor of the low molecular weight GTP-binding protein Rho, blocks the binding of fibronectin and the 70-kD NH2-terminal fibronectin fragment to cells and blocks the assembly of fibronectin into matrix induced by serum or lysophosphatidic acid. Microinjection of recombinant, constitutively active Rho into quiescent Swiss 3T3 cells promotes fibronectin matrix assembly by the injected cells. Investigating the mechanism by which Rho promotes fibronectin polymerization, we have used C3 to determine whether integrin activation is involved. Under conditions where C3 decreases fibronectin assembly we have only detected small changes in the state of integrin activation. However, several inhibitors of cellular contractility, that differ in their mode of action, inhibit cell binding of fibronectin and the 70-kD NH2-terminal fibronectin fragment, decrease fibronectin incorporation into the deoxycholate insoluble matrix, and prevent fibronectin's assembly into fibrils on the cell surface. Because Rho stimulates contractility, these results suggest that Rho-mediated contractility promotes assembly of fibronectin into a fibrillar matrix. One mechanism by which contractility could enhance fibronectin assembly is by tension exposing cryptic self-assembly sites within fibronectin that is being stretched. Exploring this possibility, we have found a monoclonal antibody, L8, that stains fibronectin matrices differentially depending on the state of cell contractility. L8 was previously shown to inhibit fibronectin matrix assembly (Chernousov, M.A., A.I. Faerman, M.G. Frid, O.Y. Printseva, and V.E. Koteliansky. 1987. FEBS (Fed. Eur. Biochem. Soc.) Lett. 217:124–128). When it is used to stain normal cultures that are developing tension, it reveals a matrix indistinguishable from that revealed by polyclonal anti-fibronectin antibodies. However, the staining of fibronectin matrices by L8 is reduced relative to the polyclonal antibody when the contractility of cells is inhibited by C3. We have investigated the consequences of mechanically stretching fibronectin in the absence of cells. Applying a 30–35% stretch to immobilized fibronectin induced binding of soluble fibronectin, 70-kD fibronectin fragment, and L8 monoclonal antibody. Together, these results provide evidence that self-assembly sites within fibronectin are exposed by tension.  相似文献   

16.
The electrophoretic mobility of radioiodinated follitropin (FSH) alpha and beta subunits as well as the alpha beta dimer changed markedly depending on the concentration of reducing agents such as dithiothreitol. The changes were more dramatic in the beta subunit than in the alpha subunit. 125I-FSH, complexed to the receptor on porcine granulosa cells or in Triton X-100 extracts, was cross-linked with a cleavable (nondisulfide) homobifunctional reagent, solubilized in sodium dodecyl sulfate without reducing agents, and electrophoresed. The cross-linked sample revealed three bands of high molecular mass, in addition to the hormone subunit and dimer bands. The band of lightest mass, 110 kDa, was the major band and the other two of 76 and 62 kDa were barely noticeable. Upon reduction with dithiothreitol, the 110-kDa band decreased while the 76- and 62-kDa bands increased, indicating the existence of disulfides between components of the 110-kDa complex. Formation of the disulfide-linked complexes requires 125I-FSH, specifically bound to the hormone receptor and cross-linking, and can be prevented with an excess of native FSH but not human choriogonadotropin. Complex formation was independent of blocking free sulfhydryl groups with N-ethylmaleimide. When the cross-linked complexes were reduced in the gel matrix and analyzed on fresh gels, the 76- and 62-kDa complexes were generated from the 110-kDa band, indicating the loss of two components. The lost components were estimated to be at 14 and 34 kDa. The rate of formation and cleavage of the cross-linked complexes indicated a sequential and incremental addition of 22-, 14-, and 34-kDa components to the FSH alpha beta dimer. The results of reduction of the cross-linked complexes demonstrate the existence of disulfide linkage between the three components.  相似文献   

17.
Cultured fibroblasts bind soluble protomeric fibronectin and mediate its conversion to insoluble disulfide-bonded multimers. The disulfide-bonded multimers are deposited in fibrillar pericellular matrix. Antifibronectin monoclonal antibodies were analyzed to identify domains of fibronectin required for assembly into matrix. Two antibodies, L8 and 9D2, inhibited binding and insolubilization of 125I-labeled plasma fibronectin by fibroblasts but did not inhibit binding of labeled amino-terminal 70-kDa fragment of fibronectin to matrix assembly sites. Immunoblotting of fibronectin fragments showed that the epitope for 9D2 is in the first type III homology sequence (III-1) whereas the epitope for L8 requires that the last type I sequence of the gelatin binding region (I-9) be contiguous to III-1 and is sensitive to reduction of disulfides in I-9. A 56-kDa gelatin-binding thermolysin fragment of fibronectin that contains III-1 and the L8 and 9D2 epitopes inhibited binding of fibronectin to cell layers 10-fold better than a 40-kDa gelatin-binding fragment that lacks III-1 and the antigenic sites. This 56-kDa fragment, however, did not bind specifically to cell layers. These results indicate that the I-9 and III-1 modules of fibronectin form a functional unit that mediates an interaction, perhaps between protomers, important in the assembly of fibronectin.  相似文献   

18.
Human plasma fibronectin aggregates in solution and is thought to form fibrils on cell surfaces, perhaps by self-associating and by interacting with other components such as proteoglycans. We have localized the self-association domains by testing the ability of various fragments of fibronectin to interact with each other. Complexation between fluorescamine-labeled fragments and unlabeled fragments or whole molecules was assessed by gel filtration high-performance liquid chromatography. The fragments studied included nonoverlapping fragments that are situated on the fibronectin polypeptide chain in the following order, beginning from the amino terminus: the 29-, 50-, 120-, 35-, and 25-kDa fragments, as well as multiple-domain fragments of 72 kDa containing the 29- and 50-kDa segments, a fragment of 150 kDa containing the 120- and 35-kDa segment, a fragment of 190 kDa containing the 120- and 35-kDa segments, a fragment of 190 kDa containing the 50-, 150-, and 25-kDa segments, and a 45-kDa fragment containing the 35-kDa segment. The amino-terminal 29-kDa fragment bound to the carboxyl-terminal heparin-binding (Hep II) 35-kDa fragment as well as the 150- and 190-kDa fragments that contain the 35-kDa segment. On the other hand, carboxyl-terminal 35- and 45-kDa Hep II containing fragments bound to each other as well as to amino-terminal 29- and 72-kDa fragments and to the 190-kDa fragment. Further, the 25-kDa carboxyl-terminal fibrin-binding fragment bound the 190-kDa fragment, the only fragment containing the 25-kDa segment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Fibroblasts organize the modular cell-adhesive glycoprotein fibronectin into a highly structured pericellular matrix by poorly understood mechanisms. Previous studies implicated an amino-terminal domain in matrix assembly and suggested that fibronectin's cell-adhesive domain and the corresponding fibroblast receptor were not involved in this process. To further elucidate the fibronectin region(s) involved in matrix assembly, we mapped a library of proteolytic fragments and antibodies to various fibronectin domains. The fragments and antibodies were used to probe the role of fibronectin's amino-terminal and cell-adhesive domains in a fibroblast matrix assembly assay. We found that fibronectin fragments including the first 25-kDa sequence of fibronectin and antibodies to amino-terminal domains inhibited pericellular matrix assembly. Polyclonal antibodies to the 40-kDa collagen binding domain following the 25-kDa amino-terminal domain also inhibited matrix assembly. However, collagen binding is not required for matrix assembly as neither monoclonals blocking collagen binding nor purified collagen binding domains themselves inhibited matrix assembly. Therefore, the amino-terminal region of fibronectin contains a site important in matrix assembly, and most activity is present in the first 25-kDa of fibronectin. Fibronectin's cell-adhesive domain and the fibroblast receptor binding to this domain also play an important role in fibronectin matrix assembly. Apart from a monoclonal antibody to the amino-terminal domain, only monoclonal antibodies binding to fibronectin's cell-adhesive domain and inhibiting cell adhesion also inhibited matrix assembly. In addition a 105-kDa fragment containing the cell-adhesive domain inhibited matrix assembly. We conclude that at least two discrete and widely separated sites in fibronectin with different binding properties--the carboxyl-terminal fibroblast cell-adhesive domain and an amino-terminal matrix assembly domain localized primarily within the first 25 kDa--are required for fibronectin pericellular matrix assembly by fibroblasts. Fibronectin's cell-adhesive domain and its cell surface-receptor complex appear to be involved in the matrix assembly process prior to a step involving the amino-terminal domain. We believe that this step is likely to be the initiation of cell-associated fibronectin fibril formation by the fibronectin-adhesive-receptor complex.  相似文献   

20.
African swine fever virus (ASFV) is a large enveloped DNA virus that shares the striking icosahedral symmetry of iridoviruses. To understand the mechanism of assembly of ASFV, we have been studying the biosynthesis and subcellular distribution of p73, the major structural protein of ASFV. Sucrose density sedimentation of lysates prepared from infected cells showed that newly synthesized p73 was incorporated into a complex with a size of 150 to 250 kDa. p73 synthesized by in vitro translation migrated at 70 kDa, suggesting that cellular and/or viral proteins are required for the formation of the 150- to 250-kDa complex. During a 2-h chase, approximately 50% of the newly synthesized pool of p73 bound to the endoplasmic reticulum (ER). During this period, the membrane-bound pool of p73, but not the cytosolic pool, formed large complexes of approximately 50,000 kDa. The complexes were formed via assembly intermediates, and the entire membrane-associated pool of p73 was incorporated into the 50,000-kDa complex within 2 h. The 50,000-kDa complexes containing p73 were also detected in virions secreted from cells. Immunoprecipitation of sucrose gradients with sera taken from hyperimmune pigs suggested that p73 was the major component of the 50,000-kDa complex. It is possible, therefore, that the complex contains between 600 and 700 copies of p73. The kinetics of complex formation and envelopment of p73 were similar, and complex formation and envelopment were both reversibly inhibited by cycloheximide, suggesting a functional link between complex assembly and ASFV envelopment. A protease protection assay detected 50,000-kDa complexes on the inside and outside of the membranes forming the viral envelope. The identification of a complex containing p73 beneath the envelope of ASFV suggests that p73 may be a component of the inner core shell or matrix of ASFV. The outer pool may represent p73 within the outer capsid layer of the virus. In summary, the data suggest that the assembly of the inner core matrix and outer capsid of ASFV takes place on the ER membrane during envelopment and that these structures are not preassembled in the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号