首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Skin morphogenesis occurs following a continuous series of cell-cell interactions which can be subdivided into three main stages: 1- the formation of a dense dermis and its overlying epidermis in the future appendage fields (macropattern); 2- the organization of these primary homogeneous fields into heterogeneous ones by the appearance of cutaneous appendage primordia (micropattern) and 3- cutaneous appendage organogenesis itself. In this review, we will first show, by synthesizing novel and previously published data from our laboratory, how heterogenetic and heterospecific dermal/epidermal recombinations have allowed us to distinguish between the respective roles of the dermis and the epidermis. We will then summarize what is known from the work of many different research groups about the molecular signaling which mediates these interactions in order to introduce the following articles of this Special Issue and to highlight what remains to done.  相似文献   

2.
The dermis promotes the development and maintains the functional components of skin, such as hair follicles, sweat glands, nerves and blood vessels. The dermis is also crucial for wound healing and homeostasis of the skin. The dermis originates from the somites, the lateral plate mesoderm and the cranial neural crest. Despite the importance of the dermis in the structural and functional integrity of the skin, genetic analysis of dermal development in different parts of the embryo is incomplete. The signaling requirements for ventral dermal cell development have not been established in either the chick or the mammalian embryo. We have shown previously that Wnt signaling specifies the dorsal dermis from the somites. In this study, we demonstrate that Wnt/beta-catenin signaling is necessary for the survival of early ventral dermal progenitors. In addition, we show that, at later stages, Wnt/beta-catenin signaling is sufficient for ventral dermal cell specification. Consistent with the different origins of dorsal and ventral dermal cells, our results demonstrate both conserved and divergent roles of beta-catenin/Wnt signaling in dermal development.  相似文献   

3.
Bone morphogenetic protein (BMP) signaling is known to be involved in multiple inductive events during embryogenesis including the development of amniote skin. Here, we demonstrate that early application of BMP-2 to the lateral trunk of chick embryos induces the formation of dense dermis, which is competent to participate in feather development. We show that BMPs induce the dermis markers Msx-1 and cDermo-1 and lead to dermal proliferation, to expression of β-catenin, and eventually to the formation of ectopic feather tracts in originally featherless regions of chick skin. Moreover, we present a detailed analysis of cDermo-1 expression during early feather development. The data implicate that cDermo-1 is located downstream of BMP in a signaling pathway that leads to condensation of dermal cells. The roles of BMP and cDermo-1 during development of dermis and feather primordia are discussed.  相似文献   

4.
5.
The migration of dermal cells during blastema formation in axolotls   总被引:1,自引:0,他引:1  
Using the diploid/triploid cell marker in the axolotl (Ambystoma mexicanum) we have examined the movement of cells from the dermis into the early limb blastema. Cells of dermal origin begin to migrate beneath the wound epithelium at about 5 days postamputation, and by 10 days they are widely distributed across the amputation surface. By 15 days, a dense accumulation of blastema cells is present beneath the apical cap, and these cells are preferentially oriented in a circumferential direction. These results are discussed in relation to previous studies showing that the progeny of dermal cells become widely distributed during regeneration, and that cells of dermal origin are a major source of blastema cells. The results are also discussed in relation to ideas about how growth and patterning of the new appendage occur.  相似文献   

6.
The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle. Using Oil Red O staining, immunohistochemistry, quantitative RT-PCR and TUNEL staining we confirmed previous observations of a close spatio-temporal link between hair follicle development and the process of adipogenesis. However, unlike previous studies, we observed that the skin adipose layer was created from cells within the lower dermis. By day 16 of embryonic development (e16) the lower dermis was demarcated from the upper dermal layer, and commitment to adipogenesis in the lower dermis was signalled by expression of FABP4, a marker of adipocyte differentiation. In mature mice the skin adipose layer is separated from underlying subcutaneous adipose tissue by the panniculus carnosus. We observed that the skin adipose tissue did not combine or intermix with subcutaneous adipose tissue at any developmental time point. By transplanting skin isolated from e14.5 mice (prior to the start of adipogenesis), under the kidney capsule of adult mice, we showed that skin adipose tissue develops independently and without influence from subcutaneous depots. This study has reinforced the developmental link between hair follicles and skin adipocyte biology. We argue that because skin adipocytes develop from cells within the dermis and independently from subcutaneous adipose tissue, that it is accurately termed dermal adipose tissue and that, in laboratory mice at least, it represents a separate adipose depot.  相似文献   

7.
Keratin proteins synthesized by dorsal or tarsometatarsal embryonic chick epidermis in heterotopic and heterospecific epidermal-dermal recombinants were analyzed by polyacrylamide gel electrophoresis and were compared to those produced by normal nondissociated dorsal and tarsometatarsal embryonic skin, as well as to those produced by control homotopic recombinants. Recombinant skins were grafted on the chick chorioallantoic membrane and grown for 8 or 11 days. Recombinants comprising dorsal feather-forming dermis formed feathers, irrespective of the origin of the epidermis. The electrophoretic band patterns of the keratins extracted from these feathers were of typical feather type. Conversely recombinants comprising tarsometatarsal scale-forming dermis formed scales, irrespective of the origin of the epidermis. The band patterns of the keratins extracted from the epidermis of these scales were of typical scale type. Heterospecific recombinants comprising chick dorsal feather-forming epidermis and mouse plantar dermis gave rise to six footpads arranged in a typical mouse pattern. In these recombinants, the chick epidermis produced keratins, the band pattern of which was of typical chick scale type. These results demonstrate that the dermis not only induces the formation of cutaneous appendages in confirmity with its regional origin, but also triggers off in the epidermis the biosynthesis of either of two different keratin types, in accordance with the regional type (feather, scale, or pad) of cutaneous appendages induced. The possible relationship between region-specific morphogenesis and cytodifferentiation is discussed in comparison with results obtained in other kinds of epithelial-mesenchymal interactions.  相似文献   

8.
We studied proline-rich divergent homeobox gene Hex/Prh expression in the dorsal skin of chick embryo during feather bud development. Hex mRNA expression was first observed in the dorsolateral ectoderm and mesenchyme at 5 days, then in the epithelium and the dermis of the dorsal skin before placode (primordium of feather bud) formation and then was restricted to the placode and the dermis under the placode. Afterward, Hex expression was seen in the epidermis and the dermis of the posterior region of short bud. In accordance with Hex mRNA expression in the placode, Hex protein was observed in the epidermis as well as in the dermis of the placode. Immunoelectron microscopic study indicated that the protein located both in the nuclei and cytoplasm of the epidermis and the dermis at the short bud stage. The Wnt signaling pathway plays an essential role in the early inductive events in hair (Wnt3a and 7a) and feather (Wnt7a) follicles. The pattern of Hex expression in the epidermis was similar to that of Wnt7a, while little, if any, expression of Wnt7a was detected in the dermis under the placode or the dermis of the short bud compared with that of Hex, suggesting that Hex plays an important role in the initiation of feather morphogenesis.  相似文献   

9.
Summary The problem of the regional specification of snout vibrissae and dorsal pelage hairs has been analysed in mouse embryos. Reconstituted homo-and heterotopic skin explants, consisting of epidermis and dermis from both regions, were cultured on the chorioallantoic membrane of the chick embryo.Recombinants of 12.5-day upper lip dermis and 12.5-day dorsal epidermis developed a small number of large vibrissal type follicles arranged in a recognizable rectangular vibrissal pattern. The reverse combinations of 12.5- or 14.5-day dorsal dermis and 11- to 12.5-day upper lip epidermis formed a single population of numerous and small follicles arranged in a typical pelage hair pattern (trio groups) or gave rise to a mixed population of follicles with both whiskers and pelage hairs.It is concluded that the dermis is responsible for the regional specification of the cutaneous appendages and their distribution pattern. However, at the time it was isolated, the upper lip epidermis already possesses the information for the morphogenesis of vibrissae, but remains malleable and responsive to the dermal influence.This work was supported in part by DGRST and CNRS  相似文献   

10.
The development of skin appendages such as hairs, teeth, and mammary glands is regulated by signaling molecules of the Wnt, FGF, TGFbeta, and Hedgehog pathways. Last decade has also revealed a pivotal role for the TNF family ligand ectodysplasin (Eda) in multiple steps of epithelial appendage morphogenesis, from initiation to differentiation. Surprisingly, other members of the TNF superfamily such as Rank ligand, lymphotoxins, and TNF have recently been linked with specific aspects of skin appendage biology including branching of the mammary gland, hair shaft formation, and hair follicle cycling. This review focuses on the novel discoveries of Eda and other TNF related cytokines in skin appendage development made since the previous review on this topic in Cytokine and Growth Factor reviews in 2003.  相似文献   

11.
The biology of hair follicle   总被引:1,自引:0,他引:1  
The human hair follicle is a unique appendage which results from epithelio-mesenchymal interactions initiated around the 3rd month of development. This appendage has a very complex structure, with more than 20 different cell types distributed into 6 main compartments, namely the connective tissue sheath, the dermal papilla, the outer root sheath, the inner root sheath, the shaft and the sebaceous gland. The pigmentation unit, responsible for hair color, is made of fully active melanocytes located on top of the dermal papilla. This complex appendage has a unique behavior in mammals since, after a hair production phase, it involutes in situ before entering a resting phase after which it renews in a cyclical but stochastic fashion, out of a double reservoir of pluripotent stem cells also to able regenerate epidermis. The pigmentation unit also renews in a cyclical fashion, out of a melanocyte progenitor reservoir which progressively declines with time, provoking the hair whitening process. Finally, the shape of the hair shaft is programmed from the bulb. The hair follicle thus behaves as a fully autonomous skin appendage with its own hormonal control, its own autocrine and paracrine network, its own cycle, appearing as an incredibly complex and stable structure which summarizes the main rules of tissue homeostasis.  相似文献   

12.
In the development of structures formed by the interaction of an epithelium and its underlying mesenchyme, the mesenchyme appears to be generally responsible for inducing the initiation of development. On the other hand, the epithelium must be competent to respond to the inductive stimulus if a structure is to be produced. One of the effects of the autosomal recessive mouse mutation downless is to suppress tail hair follicle initiation. Failure of initiation could therefore be due to failure in either the epidermal or the dermal component of the system, or both. Reciprocal recombinations between downless homozygote and heterozygote tail epidermis and dermis were made prior to the time when the first signs of follicle formation are visible in the tails of normal mice, and the recombined elements were allowed to continue growth and differentiation on the chick chorioallantoic membrane. The results suggest that the primary mutant effect is restricted to the epidermis. Explants composed of heterozygote epidermis with either heterozygote or homozygote dermis produced follicles, whereas explants composed of homozygote epidermis with either homozygote or heterozygote dermis did not.  相似文献   

13.
The human hair follicle is a unique appendage which results from epithelio-mesenchymal interactions initiated around the 3rd month of development. This appendage has a very complex structure, with a dermal compartment and an epithelial compartment. The dermal compartment comprises the connective tissue sheath and the dermal papilla, both of which are irrigated by microvessels. The epithelial compartment is made of highly replicating matrix cells giving rise to three concentrical domains, namely the outer root sheath, the inner root sheath and the hair shaft. The pigmentation unit, responsible for hair color, is made of fully active melanocytes located on top of the dermal papilla. Altogether a hair follicle contains more than 20 different cell types, engaged in different differentiation pathways and/or interacting with each other. This complex appendage has a unique behavior in mammals since, after a hair production phase, it involutes in place before entering a resting phase after which it renews itself under a cyclical but stochastic way, out of a double reservoir of pluripotent stem cells able to also regenerate epidermis. For yet unknown reasons, this well ordered process can be disturbed, provoking alopecia. The pigmentation unit also renews itself under a cyclical way, out of a melanocyte progenitor reservoir which progressively declines with time, provoking the hair whitening process. Finally, the shape of the hair shaft is programmed from the bulb. What makes this appendage unique and fascinating is its high degree of autonomy, its incredibly complex though stable structure, the number of different cell types interacting under an equilibrated way and its potential of regeneration. It represents a true paradigm of tissue homeostasis, exemplifying in a small living cylinder all the fundamental laws of cell-cell and tissue interactions. This life is revealed in this short synthesis.  相似文献   

14.
Newly formed centrioles in cycling cells undergo a maturation process that is almost two cell cycles long before they become competent to function as microtubule-organizing centers and basal bodies. As a result, each cell contains three generations of centrioles, only one of which is able to form cilia. It is not known how this long and complex process is regulated. We show that controlled Plk1 activity is required for gradual biochemical and structural maturation of the centrioles and timely appendage assembly. Inhibition of Plk1 impeded accumulation of appendage proteins and appendage formation. Unscheduled Plk1 activity, either in cycling or interphase-arrested cells, accelerated centriole maturation and appendage and cilia formation on the nascent centrioles, erasing the age difference between centrioles in one cell. These findings provide a new understanding of how the centriole cycle is regulated and how proper cilia and centrosome numbers are maintained in the cells.  相似文献   

15.
SUMMARY Every vertebrate species has its own unique morphology adapted to a particular lifestyle and habitat. Limbs and fins are strikingly diversified in size, shape, and position along the body axis. This diversity in morphology suggests the existence of a variety of embryonic developmental programs. However, comparisons of various embryos suggest common mechanisms underlying limb/fin formation. Here, we report the existence of continuous stripes of competency for appendage formation along the dorsal midline and the lateral trunk of all of the major jawed vertebrate (gnathostome) groups. We also show that the developing fin buds of cartilaginous fish share a mechanism of anterior–posterior axis formation as well as an shh (sonic hedgehog) expression domain in the posterior bud. We hypothesize a continuous distribution of competent stripes that represents the common developmental program at the root of appendage formation in gnathostomes. This schema would have permitted subsequent divergence into various levels of limbs/fins in each animal group.  相似文献   

16.
Many members of the animal kingdom display coat or skin color differences along their dorsoventral axis. To determine the mechanisms that control regional differences in pigmentation, we have studied how a classical mouse mutation, droopy ear (de(H)), affects dorsoventral skin characteristics, especially those under control of the Agouti gene. Mice carrying the Agouti allele black-and-tan (a(t)) normally have a sharp boundary between dorsal black hair and yellow ventral hair; the de(H) mutation raises the pigmentation boundary, producing an apparent dorsal-to-ventral transformation. We identify a 216 kb deletion in de(H) that removes all but the first exon of the Tbx15 gene, whose embryonic expression in developing mesenchyme correlates with pigmentary and skeletal malformations observed in de(H)/de(H) animals. Construction of a targeted allele of Tbx15 confirmed that the de(H) phenotype was caused by Tbx15 loss of function. Early embryonic expression of Tbx15 in dorsal mesenchyme is complementary to Agouti expression in ventral mesenchyme; in the absence of Tbx15, expression of Agouti in both embryos and postnatal animals is displaced dorsally. Transplantation experiments demonstrate that positional identity of the skin with regard to dorsoventral pigmentation differences is acquired by E12.5, which is shortly after early embryonic expression of Tbx15. Fate-mapping studies show that the dorsoventral pigmentation boundary is not in register with a previously identified dermal cell lineage boundary, but rather with the limb dorsoventral boundary. Embryonic expression of Tbx15 in dorsolateral mesenchyme provides an instructional cue required to establish the future positional identity of dorsal dermis. These findings represent a novel role for T-box gene action in embryonic development, identify a previously unappreciated aspect of dorsoventral patterning that is widely represented in furred mammals, and provide insight into the mechanisms that underlie region-specific differences in body morphology.  相似文献   

17.
Drosophila oogenesis provides a useful system to study signal transduction pathways and their interactions. Through clonal analysis, we found that brinker (brk), a repressor of Dpp signaling, plays an important role in the Drosophila ovary, where its function is essential for dorsal appendage formation. In the absence of brk, operculum fates are specified at the expense of dorsal appendage fates. Brk is expressed by most of the oocyte associated follicle cells, starting from stage 8 of oogenesis. Transforming Growth Factor beta (TGFbeta) signaling represses brk expression in both the early stage egg chambers and in the anterior follicle cells. In brk mutant follicle cell clones at the dorsal anterior region, Broad Complex (BR-C) expression is down-regulated in a larger domain than in wild type. We show that BR-C is required for dorsal appendage development. In large anterior BR-C mutant clones, dorsal appendages are absent, and instead, the eggshell has an enlarged operculum like region at the anterior. In addition, we show that the Epidermal Growth Factor (EGF) receptor signaling represses the TGFbeta signaling in oogenesis by up-regulating brk expression. From our results and previously published data, it appears that anterior follicle cells integrate the levels of EGF receptor activation and TGFbeta receptor activation. Operculum fate results when the sum of the level of activation of both pathways reaches a threshold level, and reduction of activity of one pathway can be compensated to some extent by increase in the other pathway.  相似文献   

18.
Though initially identified as necessary for neural migration, Disconnected and its partially redundant paralog, Disco-related, are required for proper head segment identity during Drosophila embryogenesis. Here, we present evidence that these genes are also required for proper ventral appendage development during development of the adult fly, where they specify medial to distal appendage development. Cells lacking the disco genes cannot contribute to the medial and distal portions of ventral appendages. Further, ectopic disco transforms dorsal appendages toward ventral fates; in wing discs, the medial and distal leg development pathways are activated. Interestingly, this appendage role is conserved in the red flour beetle, Tribolium (where legs develop during embryogenesis), yet in the beetle we found no evidence for a head segmentation role. The lack of an embryonic head specification role in Tribolium could be interpreted as a loss of the head segmentation function in Tribolium or gain of this function during evolution of flies. However, we suggest an alternative explanation. We propose that the disco genes always function as appendage factors, but their appendage nature is masked during Drosophila embryogenesis due to the reduction of limb fields in the maggot style Drosophila larva.  相似文献   

19.
小鼠皮肤及其毛囊早期发育的组织学观察   总被引:1,自引:0,他引:1  
目的探讨小鼠皮肤及其毛囊的早期发育规律。方法采用常规石蜡切片和H-E染色技术,观察昆明系小鼠出生前后皮肤及其毛囊的形态发育。结果(1)孕龄16 d胎鼠的皮肤表面形成凹凸不平的深褶皱,但在生后3 d~5 d不仅皱褶的数量减少,而且凹陷变浅;(2)胎鼠孕龄16 d至19 d,其皮肤的表皮、真皮及皮肤总厚度呈现平稳增厚。但是,出生后,其表皮、真皮和皮肤总厚度急剧降低;在生后第1天至第9天,表皮呈现平稳增厚,而真皮则在生后快速厚度,第7天达到最高值(1861.50μm);(3)孕龄16 d的胎鼠皮肤中可观察到初级毛囊,至生后第7天其密度呈现平稳增长;与其相比,次级毛囊从18 d胎鼠开始出现,其密度增长非常迅速,出生后第7天达到1257.14/mm;毛囊的总密度与次级毛囊呈现相似的变化趋势。出生第7天后,由于毛囊的数量急剧增加,无法观察初级毛囊和次级毛囊的变化规律;(4)初级毛囊和次级毛囊的长度与深度变化在出生前后的相对缓慢,与其相比在第3天以后至第7天呈现迅速变化趋势。结论小鼠皮肤及其毛囊的生长性发育发生在胎儿晚期和生后的早期,而其周期性变化可能从出生后的第9天以后开始出现;在孕期16 d至生后第7天可能是检测毛囊特异性基因表达的最佳期。  相似文献   

20.
Hair follicle formation depends on reciprocal epidermal-dermal interactions and occurs during skin development, but not in adult life. This suggests that the properties of dermal fibroblasts change during postnatal development. To examine this, we used a PdgfraEGFP mouse line to isolate GFP-positive fibroblasts from neonatal skin, adult telogen and anagen skin and adult skin in which ectopic hair follicles had been induced by transgenic epidermal activation of β-catenin (EF skin). We also isolated epidermal cells from each mouse. The gene expression profile of EF epidermis was most similar to that of anagen epidermis, consistent with activation of β-catenin signalling. By contrast, adult dermis with ectopic hair follicles more closely resembled neonatal dermis than adult telogen or anagen dermis. In particular, genes associated with mitosis were upregulated and extracellular matrix-associated genes were downregulated in neonatal and EF fibroblasts. We confirmed that sustained epidermal β-catenin activation stimulated fibroblasts to proliferate to reach the high cell density of neonatal skin. In addition, the extracellular matrix was comprehensively remodelled, with mature collagen being replaced by collagen subtypes normally present only in developing skin. The changes in proliferation and extracellular matrix composition originated from a specific subpopulation of fibroblasts located beneath the sebaceous gland. Our results show that adult dermis is an unexpectedly plastic tissue that can be reprogrammed to acquire the molecular, cellular and structural characteristics of neonatal dermis in response to cues from the overlying epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号