首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The site-specific recombination mechanism through which the plasmid RP4 has been previously shown to integrate into the chromosome of Myxococcus xanthus has been investigated further. Once integrated in one of the numerous chromosomal sites from two different strains, through a precise site on the plasmid, the latter can be excised either precisely or after a definite 14.5-kb deletion. In some cases, the integration is followed by different DNA rearrangements that yield a higher rate of excision and integration. A model for the site-specific integration and excision of the plasmid is proposed.  相似文献   

2.
A new plasmid series has been created for Agrobacterium-mediated plant transformation. The pBECKS2000 series of binary vectors exploits the Cre/loxP site-specific recombinase system to facilitate the construction of complex T-DNA vectors. The new plasmids enable the rapid generation of T-DNA vectors in which multiple genes are linked, without relying on the availability of purpose-built cassette systems or demanding complex, and therefore inefficient, ligation reactions. The vectors incorporate facilities for the removal of transformation markers from transgenic plants, while still permitting simple in vitro manipulations of the T-DNA vectors. A `shuttle' or intermediate plasmid approach has been employed. This permits independent ligation strategies to be used for two gene sets. The intermediate plasmid sequence is incorporated into the binary vector through a plasmid co-integration reaction which is mediated by the Cre/loxP site-specific recombinase system. This reaction is carried out within Agrobacterium cells. Recombinant clones, carrying the co-integrative binary plasmid form, are selected directly using the antibiotic resistance marker carried on the intermediate plasmid. This strategy facilitates production of co-integrative T-DNA binary vector forms which are appropriate for either (1) transfer to and integration within the plant genome of target and marker genes as a single T-DNA unit; (2) transfer and integration of target and marker genes as a single T-DNA unit but with a Cre/loxP facility for site-specific excision of marker genes from the plant genome; or (3) co-transfer of target and marker genes as two independent T-DNAs within a single-strain Agrobacterium system, providing the potential for segregational loss of marker genes. Received: 30 July 1998 / Accepted: 2 November 1998  相似文献   

3.
A new plasmid series has been created for Agrobacterium-mediated plant transformation. The pBECKS2000 series of binary vectors exploits the Cre/loxP site-specific recombinase system to facilitate the construction of complex T-DNA vectors. The new plasmids enable the rapid generation of T-DNA vectors in which multiple genes are linked, without relying on the availability of purpose-built cassette systems or demanding complex, and therefore inefficient, ligation reactions. The vectors incorporate facilities for the removal of transformation markers from transgenic plants, while still permitting simple in vitro manipulations of the T-DNA vectors. A `shuttle' or intermediate plasmid approach has been employed. This permits independent ligation strategies to be used for two gene sets. The intermediate plasmid sequence is incorporated into the binary vector through a plasmid co-integration reaction which is mediated by the Cre/loxP site-specific recombinase system. This reaction is carried out within Agrobacterium cells. Recombinant clones, carrying the co-integrative binary plasmid form, are selected directly using the antibiotic resistance marker carried on the intermediate plasmid. This strategy facilitates production of co-integrative T-DNA binary vector forms which are appropriate for either (1) transfer to and integration within the plant genome of target and marker genes as a single T-DNA unit; (2) transfer and integration of target and marker genes as a single T-DNA unit but with a Cre/loxP facility for site-specific excision of marker genes from the plant genome; or (3) co-transfer of target and marker genes as two independent T-DNAs within a single-strain Agrobacterium system, providing the potential for segregational loss of marker genes.  相似文献   

4.
The mode of insertion of the broad-host-range plasmid RP4 into the chromosome of Myxococcus xanthus strain DZ1 has been analyzed. The plasmid integrated in numerous sites of the chromosome and generated insertional mutations. There is a hot spot of integration located between 31.5 and 34.5 kb clockwise from the EcoRI site of the plasmid. In the absence of this segment the insertion can, however, take place, but much less efficiently. The presence of transposable elements on the plasmid decreases severely the insertion frequency. Once integrated, RP4 could be transferred back to Escherichia coli, either by precise excision or with a segment of the Myxococcus chromosome. The role of site-specific recombination in RP4 integration is discussed.  相似文献   

5.
A plasmid system for site-specific integration into and excision and recovery of gene constructs and lacZ gene fusions from the Escherichia coli chromosome was developed. Plasmid suicide vectors utilizing the origin of replication of R6K plasmids and containing the attP sequence of bacteriophage lambda, multiple cloning site, and antibiotic resistance markers facilitate reversible integration into the E. coli chromosome by site-specific recombination. Additional vectors permit construction of lacZ gene fusions in three possible reading frames for recombination with the bacterial chromosome. These suicide vectors can be propagated in newly constructed E. coli strains that harbor different pir alleles. Two helper plasmids that encode the necessary gene products for integration (Int) and excision (Int and Xis) were also constructed. This plasmid system was shown to be a reliable and efficient means to integrate and subsequently recover plasmids from the E. coli attB site.  相似文献   

6.
Transgene integration mediated by heterologous site-specific recombination (SSR) systems into the dedicated genomic sites has been demonstrated in a few different plant species. This approach of plant transformation generates a precise site-specific integration (SSI) structure consisting of a single copy of the transgene construct. As a result, stable transgene expression correlated with promoter strength and gene copy number is observed among independent transgenic lines and faithfully transmitted through subsequent generations. Site-specific integration approaches use selectable marker genes, removal of which is necessary for the implementation of this approach as a biotechnology application. As SSR systems are also excellent tools for excising marker genes from transgene locus, a molecular strategy involving gene integration followed by marker excision, each mediated by a distinct recombination system, was earlier proposed. Experimental validation of this approach is the focus of this work. Using FLPe-FRT system for site-specific gene integration and heat-inducible Cre-lox for marker gene excision, marker-free SSI lines were developed in the first generation itself. More importantly, progeny derived from these lines inherited the marker-free locus, indicating efficient germinal transmission. Finally, as the transgene expression from SSI locus was not altered upon marker excision, this method is suitable for streamlining the production of marker-free SSI lines.  相似文献   

7.
SLP1int (integrated [int] form of Streptomyces lividans plasmid 1 [SLP1]) is a Streptomyces coelicolor A3(2) transmissible sequence capable of autonomous replication as well as site-specific integration into and excision from the S. coelicolor chromosome. We report here that the plasmid and chromosomal loci involved in the integration of SLP1 and the two loci at which the recombination occurs during excision all share at least 111 base pairs of a 112-base-pair DNA sequence. Recombinational cross-over during integration or excision occurred nonrandomly within the common att sequence at or near a 25-base-pair inverted repeat. We suggest that chromosomally integrated plasmidogenic segments such as SLP1int may be involved in the acquisition and structural organization of genes encoding the diverse metabolic capabilities observed in different streptomycetes.  相似文献   

8.
Site-specific recombination systems, such as FLP–FRT and Cre–lox, carry out precise recombination reactions on their respective targets in plant cells. This has led to the development of two important applications in plant biotechnology: marker-gene deletion and site-specific gene integration. To draw benefits of both applications, it is necessary to implement them in a single transformation process. In order to develop this new process, the present study evaluated the efficiency of FLP–FRT system for excising marker gene from the transgene locus developed by Cre–lox mediated site-specific integration in rice. Two different FLP recombinases, the wild-type FLP (FLPwt) and its thermostable derivative, FLPe, were used for the excision of marker gene flanked by FLP recombination targets (FRT). While marker excision mediated by FLPwt was undetectable, use of FLPe resulted in efficient marker excision in a number of transgenic lines, with the relative efficiency reaching up to ~100%. Thus, thermo-stability of FLP recombinase in rice cells is critical for efficient site-specific recombination, and use of FLPe offers practical solutions to FLP–FRT-based biotechnology applications in plants.  相似文献   

9.
The chloramphenicol-resistance transposon Tn4451 undergoes precise conjugative deletion from its parent plasmid piP401 in Clostridium perfringens and precise spontaneous excision from multicopy plasmids in Escherichia coli. The complete nucleotide sequence of the 6338 bp transposon was determined and it was found to encode six genes. Genetic analysis demonstrated that the largest Tn4451-encoded gene, tnpX, was required for the spontaneous excision of the transposon in both E. coli and C. perfringens, since a Tn4451 derivative that lacked a functional tnpX gene was completely stable in both organisms. Because the ability of this derivative to excise was restored by providing the tnpX gene on a compatible plasmid, it was concluded that this gene encoded a trans-acting site-specific recombinase. Allelic exchange was used to introduce the tnpXΔ allele onto plP401 and it was shown that TnpX was also required for the conjugative excision of Tn4451 in C. perfringens. It was also shown by hybridization and polymerase chain reaction (PCR) studies that TnpX-mediated transposon excision resulted in the formation of a circular form of the transposon. The TnpX recombinase was unique because it potentially contained the motifs of two independent site-specific recombinase families, namely the resolvase/invertase and integrase families. Sequence analysis indicated that the resolvase/invertase domain of TnpX was likely to be involved in the excision process by catalysing the formation of a 2bp staggered nick on either side of the GA dinucleotide located at the ends of the transposon and at the junction of the circular form. The other Tn4451-encoded genes include tnpZ, which appears to encode a second potential site-specific recombinase. This protein has similarity to plasmid-encoded Mob/Pre proteins, which are involved in plasmid mobilization and multimer formation. Located upstream of the tnpZ gene was a region with similarity to the site of interaction of these mobilization proteins.  相似文献   

10.
Functions required for site-specific integration and excision of the Staphylococcus aureus serotype F virulence-converting phages φ13 and φ42 were localized and characterized. Like other temperate phages, integration of φ13 and φ42 sequences was found to require the product of an int gene located close to the phage attP site. Both int genes are almost identical, express proteins possessing characteristic features of the Int (integrase) family of recombinases, but share very little homology with previously described int genes, including those of the serotype B S. aureus phages L54a and φ11. Nevertheless, all four S. aureus phages share an almost identical short sequence located immediately 5′ to these distinct int genes, suggesting a common mechanism of int gene regulation. Upstream from these common sequences, the sequences of φ13 and φ42 are quite distinct from each other, and from the corresponding regions of φ11 and L54a which encode the Xis proteins that are required with Int to mediate site-specific excision of the latter phages. Surprisingly, φ13 and φ42 sequences encompassing the attP sites and int genes, but lacking either an adjacent or more distant phage excision protein gene, were sufficient to mediate site-specific excision of integrated phage DNA sequences.  相似文献   

11.
Summary Pseudomonas syringae pv. phaseolicola strain LR719 contains a 150 kilobase pair (kb) plasmid pMC7105, stably integrated into its chromosome. Occasionally, single colony isolates of this strain contain an excision plasmid. Eight unique excision plasmids were selected and characterized by BamHI restriction endonuclease and blot hybridization analyses. These plasmids ranged in size from 35 to 270 kb; the largest contained approximately 130 kb of chromosomal DNA sequences. Restriction maps of pMC7105 were developed to deduce the site of integration and to identify the fragments in which recombination occurred to produce each excision plasmid. The eight excision plasmids were arranged into five classes based on the sites where excision occurs. A 20 kb region of pMC7105, which includes BamHI fragment 9 and portions of adjacent fragments, is present in all excision plasmids and thought to contain the origin of replication. The site of integration on pMC7105 maps within BamHI fragment 8. This fragment shows homology with seven other BamHI fragments of pMC7105 and with five chromosomal fragments identified among the excision plasmids. The data strongly suggest that the integration of pMC7105 may have occurred at a repetitive sequence present on the chromosome and on the plasmid.  相似文献   

12.
The activity of the Integrase (Int) protein encoded by coliphage HK022 was tested in a human cell culture. Plasmids were constructed as substrates that carry the sites of the integration reaction (attP and attB) or the sites of excision (attL and attR). The site-specific recombination reactions were monitored in cis and in trans configurations by the expression of the green fluorescent protein (GFP) as a reporter. Cells cotransfected with the substrate plasmid(s) and with a plasmid that expresses the wild-type Int show efficient integration as well as excision in both configurations. The wild-type Int was active in the human cells without the need to supply the accessory proteins integration host factor (IHF) and excisionase (Xis) that are indispensable for the reaction in the bacterial host.  相似文献   

13.
The presence of marker genes conferring antibiotic resistance in transgenic plants represents a serious obstacle for their public acceptance and future commercialization. In addition, their elimination may allow gene stacking by the same selection strategy. In apricot, selection using the selectable marker gene nptII, that confers resistance to aminoglycoside antibiotics, is relatively effective. An attractive alternative is offered by the MAT system (multi-auto-transformation), which combines the ipt gene for positive selection with the recombinase system R/RS for removal of marker genes from transgenic cells after transformation. Transformation with an MAT vector has been attempted in the apricot cultivar ‘Helena’. Regeneration from infected leaves with Agrobacterium harboring a plasmid containing the ipt gene was significantly higher than that from non-transformed controls in a non-selective medium. In addition, transformation efficiencies were much higher than those previously reported using antibiotic selection, probably due to the integration of the regeneration-promoting ipt gene. However, the lack of an ipt expression-induced differential phenotype in apricot made difficult in detecting the marker genes excision and plants had to be evaluated at different times. PCR analysis showed that cassette excision start occurring after 6 months approximately and 1 year in culture was necessary for complete elimination of the cassette in all the transgenic lines. Excision was confirmed by Southern blot analysis. We report here for the first time in a temperate fruit tree that the MAT vector system improves regeneration and transformation efficiency and would allow complete elimination of marker genes from transgenic apricot plants by site-specific recombination.  相似文献   

14.
 The stability of integration and amplification of an integrational plasmid in Bacillus subtilis was analyzed. A cat-containing plasmid was constructed that could be integrated into the amy locus to facilitate measurement of excision events. Pulse-field gel electrophoresis was used to measure the copy number in strains that were resistant to different levels of chloramphenicol. The stability of the amplified unit in strains containing from 2 to 18 tandem copies of the amplicon in the presence and absence of chloramphenicol and through different generation times was then determined. Our results demonstrate that, for any given strain, the copy number of the amplicon remains stable. Furthermore, this stability is maintained when a clone containing an amplicon of defined size is cultured through as many as 100 generations in the absence of selective pressure. Received: 27 October 1995/Received revision: 3 February 1996/Accepted: 11 March 1996  相似文献   

15.
We have tested the CinH-RS2 and ParA-MRS site-specific deletion systems in tomato (Solanum lycopersicum L.). The ParA-MRS system is derived from the broad-host-range plasmid RK2, where the 222 aa ParA recombinase recognizes a 133 bp multimer resolution site (MRS). The CinH-RS2 system is derived from Acinetobacter plasmids pKLH2 and pKLH204, where the 188 amino acid CinH recombinase recognizes a 113-bp recombination site known as RS2. In this study, target lines containing a DNA segment flanked by recombination sites were crossed to recombinase-expressing lines producing CinH or ParA recombinase. CinH-mediated recombination of RS2 substrates was detected in 2 of 3 F1 plants that harbor both the target and recombinase loci. On the other hand, recombination mediated by ParA was not detected among F1 plants, but was found among 13 of 47 F2 plants. These data show that both systems can mediate site-specific DNA deletion in the tomato genome, and, upon further refinement, can provide additional molecular tools for tomato improvement through precise genome manipulation. As the target construct also contains additional recombination sites for site-specific integration by other recombination systems, these tomato lines could be used for future testing of gene stacking through site-specific integration.  相似文献   

16.
The integrase (Int) protein of coliphage HK022 catalyzes the site-specific integration and excision of the phage into and from its Escherichia coli host chromosome. Int expressed from a plasmid in COS1 monkey cells is localized in the nucleus, as is a fusion protein between Int and the green fluorescent protein (GFP). Mutation analysis of the GFP-Int fusion has revealed in Int two regions of positively charged amino acid residues that cooperate in the nuclear localization. One region harbors residues Arg90 and Arg93. The other, which spans residues 307-340 belongs to the catalytic domain of Int, is rich in basic residues and is strongly conserved within the Int protein family. Being localized in the nucleus renders Int of HK022 as a potential recombinase for site-specific gene manipulations in mammals.  相似文献   

17.
By application of prophage integration and subsequent intended excision, a method to maintain an introduced DNA sequence stably onto a bacterial chromosome has been proposed. Recently-constructed integration plasmids using Campbell-type prophage integration system in Lactobacillus casei strain Shirota and its temperate phage phi FSW was modified for this purpose and a chloramphenicol (Cm)-resistance gene was used as a model passenger DNA. On the integration plasmid having an erythromycin (Em)-resistance gene as a selection marker, N- and C-terminally-truncated Cm-resistance genes were inserted into both sides of the attP of phi FSW, within which the site-specific recombination took place with the attB of phi FSW on the recipient chromosome through the phi FSW integrase. Primary integrants of the modified plasmid (integration-excision vector) exhibiting Em-resistant and Cm-sensitive phenotype generated Em-sensitive and Cm-resistant derivatives under the nonselective conditions. Sequence analyses showed that one copy of the complete Cm-resistance gene resided at the attachment site on the host chromosome and the other vector-derived sequences were excised probably by endogenous homologous recombination in the host cells to derive final integrants. The Cm-resistant phenotype of the final integrants was stable for more than 50 generations under non-selective conditions. Frequency of the homologous recombination suggests that negative selection is also adoptable. Thus, this method using the integration-excision vector gives a stable and safe derivatives of the strain and is likely to be applicable to various bacteria, since Campbell-type prophage integration system and homologous recombination are prevalent among bacteria.  相似文献   

18.
Attachment site of the genetic element e14.   总被引:5,自引:5,他引:5       下载免费PDF全文
The Escherichia coli K-12 genetic element, e14, contains a 216-base-pair region that is homologous to a portion of the host chromosome. This region serves as the integration site for the element. The 216-base-pair homology is interrupted by 28 mismatches distributed through the sequence. The actual integrative crossover occurs within the first 11 base pairs from one end of the region. To test factors which affect e14 site-specific recombination, we cloned the attachment sites of free e14 and the host chromosome into the same plasmid. The cloned attachment sites recombined intramolecularly in a process that required the presence of a chromosomal copy of e14 in the host cell as well as the induction of SOS. Recombination events that mimicked both integration and excision occurred under the same conditions and to roughly the same extent.  相似文献   

19.
SLP1 is a 17.2-kbp genetic element indigenous to the Streptomyces coelicolor chromosome. During conjugation, SLP1 can undergo excision and subsequent site-specific integration into the chromosomes of recipient cells. We report here the localization, nucleotide sequences, and initial characterization of the genes mediating these recombination events. A region of SLP1 adjacent to the previously identified site of integration, attP, was found to be sufficient to promote site-specific integration of an unrelated Streptomyces plasmid. Nucleotide sequence analysis of a 2.2-kb segment of this region reveals two open reading frames that are adjacent to and transcribed toward the attP site. One of these, the 1,365-bp int gene of SLP1, encodes a predicted 50.6-kDa basic protein having substantial amino acid sequence similarity to a family of site-specific recombinases that includes the Escherichia coli bacteriophage lambda integrase. A linker insertion in the 5' end of the cloned int gene prevents integration, indicating that Int is essential for promoting integration. An open reading frame (orf61) lying immediately 5' to int encodes a predicted 7.1-kDa basic peptide showing limited sequence similarity to the excisionase (xis) genes of other site-specific recombination systems.  相似文献   

20.
The excision of specific DNA sequences from integrated transgenes in insects permits the dissection in situ of structural elements that may be important in controlling gene expression. Furthermore, manipulation of potential control elements in the context of a single integration site mitigates against insertion site influences of the surrounding genome. The cre-loxP site-specific recombination system has been used successfully to remove a marker gene from transgenic yellow fever mosquitoes, Aedes aegypti. A total of 33.3% of all fertile families resulting from excision protocols showed evidence of cre-loxP-mediated site-specific excision. Excision frequencies were as high as 99.4% within individual families. The cre recombinase was shown to precisely recognize loxP sites in the mosquito genome and catalyze excision. Similar experiments with the FLP/FRT site-specific recombination system failed to demonstrate excision of the marker gene from the mosquito chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号