首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we investigate the molecular genetic basis for VHa- Ig. Knowing that the expression of VHa allotype Ig is suppressed by neonatal injection of rabbits with anti-VHa allotype antibody, and that the decreased level of VHa allotype Ig, VHa+, in the suppressed rabbits is compensated for by an increase in VHa- Ig, we determined the nucleotide sequences of 41 VDJ genes from a2/a2 rabbits neonatally suppressed for the expression of a2 Ig. We compared these nucleotide sequences to each other and identified two groups of VH sequences. We predict that the molecules of each group are encoded by one germline VH gene. Inasmuch as VHa+ Ig is encoded predominantly by one germline VH gene, VH1, it appears that more than 95% of the VDJ repertoire of rabbits may be encoded by as few as three germline VH genes. A genomic VDJ gene whose VH sequence was similar to those of group I molecules was expressed in vitro and was shown by ELISA to encode molecules of the VHa- allotype, y33. Analysis of the D regions in the VDJ gene indicated that germline D2b and D3 gene segments were preferentially used in the VDJ gene rearrangement. A comparison of sequences of D regions of the 41 VDJ gene rearrangements in 3-, 6-, and 9-wk-old rabbits to sequences of germline D gene segments showed an accumulation of mutations in the D region. Inasmuch as we have previously shown that V regions of rabbit VDJ genes are diversified, in part, by somatic gene conversion, it appears now that rabbit VDJ genes diversify by a combination of somatic mutation and somatic gene conversion.  相似文献   

2.
P Early  H Huang  M Davis  K Calame  L Hood 《Cell》1980,19(4):981-992
We have determined the sequences of separate germline genetic elements which encode two parts of a mouse immunglobulin heavy chain variable region. These elements, termed gene segments, are heavy chain counterparts of the variable (V) and joining (J) gene segments of immunoglobulin light chains. The VH gene segment encodes amino acids 1-101 and the JH gene segment encodes amino acids 107-123 of the S107 phosphorylcholine-binding VH region. This JH gene segment and two other JH gene segments are located 5' to the mu constant region gene (Cmu) in germline DNA. We have also determined the sequence of a rearranged VH gene encoding a complete VH region, M603, which is closely related to S107. In addition, we have partially determined the VH coding sequences of the S107 and M167 heavy chain mRNAs. By comparing these sequences to the germline gene segments, we conclude that the germline VH and JH gene segments do not contain at least 13 nucleotides which are present in the rearranged VH genes. In S107, these nucleotides encode amino acids 102-106, which form part of the third hypervariable region and consequently influence the antigen-binding specificity of the immunoglobulin molecule. This portion of the variable region may be encoded by a separate germline gene segment which can be joined to the VH and JH gene segments. We term this postulated genetic element the D gene segment, referring to its role in the generation of heavy chain diversity. Essentially the same noncoding sequences are found 3' to the VH gene segment and as inverse complements 5' to two JH gene segments. These are the same conserved nucleotides previously found adjacent to light chain V and J gene segments. Each conserved sequence consists of blocks of seven and ten conserved nucleotides which are separated by a spacer of either 11 or 22 nonconserved nucleotides. The highly conserved spacing, corresponding to one or two turns of the DNA helix, maintains precise spatial orientations between blocks of conserved nucleotides. Gene segments which can join to one another (VK and JK, for example) always have spacers of different lengths. Based on these observations, we propose a model for variable region gene rearrangement mediated by proteins which recognize the same conserved sequences adjacent to both light and heavy chain immunoglobulin gene segments.  相似文献   

3.
4.
Strain-dependent expression of VH gene families   总被引:12,自引:0,他引:12  
The tremendous diversity of the antibody specificity repertoire stems from the ability of each developing B cell to select one out of many possible variable, diversity, and joining gene segments by specific rearrangement of the DNA. The mechanism by which V region gene segments is selected is not known. Moreover, evidence for both random and nonrandom expression of VH genes in mature B cells has been presented previously. In this report, the technique of in situ hybridization is used to accurately measure at the single cell level VH gene family expression in LPS-induced cells from several strains. In this way, at least one-third of the B cells are stimulated and a large sampling of activated splenocytes from each strain analyzed. The use of in situ hybridization eliminates any potential biases resulting from transformation protocols. In addition, because all populations of cells are analyzed by both in situ hybridization and immunocytochemical staining with anti-IgM, the proportion of cells detected by in situ hybridization could be compared with the proportion of B cells, blasts, and plasma cells in the population. It was concluded from these comparisons that the cells being detected by in situ hybridization under the conditions described are plasmablasts and plasma cells. Therefore, an accurate measure of the functional and expressed VH gene repertoire could be made. The results clearly demonstrate strain-dependent variation in VH gene family expression, particularly VH 7183 and VH J558 with up to three-fold differences observed. Thus, either there is considerable strain variation in the number of functional VH gene family segments or the expression of VH genes is not entirely random.  相似文献   

5.
Analysis of VH gene replacement events in a B cell lymphoma   总被引:5,自引:0,他引:5  
We have analyzed a series of recombinational events at the IgH chain locus of the B cell lymphoma, NFS-5. Each of these recombinational events results in the replacement of the VH gene segment of the rearranged H chain gene (VhDJh) with that of an upstream germline gene segment. Replacements on the productive and nonproductive alleles have been observed. In each case, the recombination occurs in close proximity to a highly conserved heptameric sequence (5'TACTGTG3') which is located at the 3' end of the VH coding region. In the two examples of recombination on the productive allele that have been analyzed, the initial VHQ52 gene is replaced by different VH7183 genes. On the non-productive allele, sequential replacement events have been analyzed: the initial VHQ52 rearrangement is first replaced by a closely related VHQ52 gene, followed by a second replacement using a VHQ52 pseudogene. Southern blot analysis using VH probes indicates that these recombinations may be accompanied by the deletion of germline VH genes belonging to both the VHQ52 and VH7183 families, suggesting that these gene families are interspersed in the NFS/N mouse.  相似文献   

6.
The V regions of channel catfish H chain cDNA clones have been analyzed. Based upon sequence relationships and hybridization analyses, five different groups of VH genes are identified whose definition is consistent with that of five different VH families. Genomic Southern blots indicate that as many as 100 different germ-line VH genes are likely represented by these families. The sequence diversity between identified members of these different families is similar in magnitude to the divergence represented between members of different human or mouse VH families. The FR regions are the most conserved regions when members of different catfish VH families are compared; specific amino acid positions appear to be highly conserved in phylogeny. Equally important is that diversity is represented in complementarity-determining regions CDR1 and CDR2 in members of the different families as well as in members of the same VH family. These results suggest that an extensive repertoire of VH genes can contribute to antibody diversity in this lower vertebrate. Sequence comparisons indicate that one of the catfish VH families shares considerable structural similarity to several higher vertebrate VH gene families--a relationship which suggests that this VH family may be ancestral to some VH gene families of higher vertebrates. Characteristic of the genomic organization of higher vertebrate H chains, catfish appear to have different VH families wherein a VH gene likely undergoes functional recombination with putative DH gene segments and one of apparently several different JH segments. The recombined V region is expressed with the same C region gene. These combined results suggest that bony fishes are the earliest known phylogenetic representatives to have evolved extensive V region gene families.  相似文献   

7.
The gene families encoding the immunoglobulin variable regions of heavy (VH) and light (VL) chains in vertebrates are composed of many genes. However, the gene number and the extent of diversity among VH and VL gene copies vary with species. To examine the causes of this variation and the evolutionary forces for these multigene families, we conducted a phylogenetic analysis of VH and VL genes from the species of amniotes. The results of our analysis showed that for each species, VH and VL genes have the same pattern of clustering in the trees, and, according to this clustering pattern, the species can be divided into two groups. In the first group of species (humans and mice), VH and VL genes were extensively intermingled with genes from other organisms; in the second group of species (chickens, rabbits, cattle, sheep, swine, and horses), the genes tended to form clusters within the same group of organisms. These results suggest that the VH and VL multigene families have evolved in the same fashion: they have undergone coordinated contraction and expansion of gene repertoires such that each group of organisms is characterized by a certain level of diversity of VH and VL genes. The extent of diversity among copies of VH and VL genes in each species is related to the mechanism of generation of antibody variety. In humans and mice, DNA rearrangement of immunoglobulin variable, diversity, and joining-segment genes is a main source of antibody diversity, whereas in chickens, rabbits, cattle, sheep, swine, and horses, somatic hypermutation and somatic gene conversion play important roles. The evolutionary pattern of VH and VL multigene families is consistent with the birth-and-death model of evolution, yet different levels of diversifying selection seem to operate in the VH and VL genes of these two groups of species.   相似文献   

8.
M A Walter  U Surti  M H Hofker    D W Cox 《The EMBO journal》1990,9(10):3303-3313
Two dimensional DNA electrophoresis (2D-DE) was used to map the variable (VH) region of the human heavy chain immunoglobulin gene cluster. Seventy-six VH gene segments were mapped to specific SfiI, BssHI and NotI fragments by 2D-DE. We have determined that a common insertion/deletion polymorphism of 80 kb, involving three VH gene segments, occurs in the VH region. The physical map suggests that the evolution of the human IGH gene complex involved duplication of blocks containing different VH families. This physical map will allow comparison of the usage of VH loci in human ontogeny with their proximity to the CH region. Knowledge of the germline repertoire of a particular DNA source studied in essential as the number of the dispersed VH gene segments of VH families, especially of the VH5 family, is variable. 2D-DE, as illustrated here for the IGH gene cluster, has general application in the development of large scale physical maps of gene and repeat families.  相似文献   

9.
R S Becker  K L Knight 《Cell》1990,63(5):987-997
Rabbits preferentially utilize only one of their multiple functional germline immunoglobulin VH genes. This preferential usage of one gene, VH1, raises the question of how rabbits generate antibody diversity. VDJ diversification was analyzed by cloning and sequencing VH1 gene rearrangements. Comparison of these sequences with that of germline VH1 identified clusters of nucleotide changes, including codon insertions and deletions. To investigate whether gene conversion was involved in this somatic diversification, we searched a data base of rabbit germline VH gene sequences for donor VH genes; potential donors were identified for five diversified regions. We conclude that somatic gene conversion has a major role in generating antibody diversity in rabbits. These studies provide clear evidence for somatic gene conversion of mammalian VDJ genes.  相似文献   

10.
J B Cohen  D Givol 《The EMBO journal》1983,2(11):2013-2018
The nucleotide sequence of two germline immunoglobulin heavy chain variable region (VH) genes of mouse BALB/c origin was determined. These two genes are highly homologous to each other. They both have the unusual codon CCT for proline at position 7, which so far has been found only in a specific set of VH genes, called the NPb family. We show that the two VH genes belong to this set. One of our BALB/c genes, VH124, is more homologous to a C57BL/6 NPb VH gene than to any BALB/c VH gene, and we propose that these two genes are alleles. A comparison of the substitutions between these two genes with published sequences of all other BALB/c and C57BL/6 NPb VH genes reveals evidence for past homologous recombination events between related germline VH genes Homologous recombination may play an important role in the diversification of germline immunoglobulin VH genes.  相似文献   

11.
Organization of human immunoglobulin heavy chain diversity gene loci   总被引:43,自引:3,他引:40       下载免费PDF全文
The variable region of immunoglobulin heavy chain is encoded by three separate genes on the germline genome: variable (VH), diversity (DH) and joining (JH) genes. Most human DH genes are encoded in 9-kb repeating sequences. We determined the nucleotide sequence of a 15-kb DNA fragment containing more than one and a half of these repeating units, and identified 12 different DH genes. Based on the sequence similarities of DH coding and the surrounding regions, they can be classified into six different DH gene families (DXP, DA, DK, DN, DM and DLR). Nucleotide sequences of DH genes belonging to different families diverge greatly, while those belonging to the same families are well conserved. Since the 9-kb DNA containing the six DH genes are multiplied at least five times, the total number of DH genes must be approximately 30. These DH genes are sandwiched by 12-nucleotide spacer signals. Most of the somatic DH sequences found in the published VH-DH-JH structures (the somatic DH segment being defined as the region which is not encoded either by germline VH or JH gene) were assigned to one of the germline DH genes. Other than these typical DH genes, however, we found a new kind of DH gene (which we termed DIR) the spacer lengths of whose neighbouring signals were irregular. The DIR gene appears to be involved in DIR-DH or DH-DIR joining by inversion or deletion. Two of the somatic DH sequences were assigned to the DIR genes. Long N segments might, therefore, originate from DIR genes.  相似文献   

12.
Common variable immunodeficiency, a disorder characterized by diminished antibody production, manifests clinically as an increased susceptibility to bacterial infections. We have investigated the Ig H chain V and C region gene segments in 33 patients with common variable immunodeficiency, to identify the possible role these genes may have in the molecular basis of the defect. No major deletions were recognized for the VH gene segments of the VH2, VH5, and VH6 families, nor were there any differences in the RFLP patterns of mu- or alpha- switch regions or of C gamma genes. Two new deletion haplotypes were identified for the C region genes, the first encompassing C gamma 1 on a different haplotype from the C gamma 1 deletion described previously, and the second a novel deletion encompassing both C gamma 2 and C gamma 4. Based on these and previously described deletions in the IGHC region, we postulate that homologous regions are involved in the deletion process and that other new deletions likely exist in the population.  相似文献   

13.
The heavy chain variable region genes of 5 human polyreactive mAbs generated in our laboratory have been cloned and sequenced using polymerase chain reaction(PCR) technique.We found that 2 and 3 mAbs utilized genes of the VHIV and VHⅢ families,respectively.The former 2 VH segments were in germline configuration.A common VH segment,with the best similarity of 90.1% to the published VHⅢ germline genes,was utilized by 2 different rearranged genes encoding the V regions of other 3 mAbs.This strongly suggests that the common VH segment is a unmutated copy of an unidentified germline VHⅢ gene.All these polyreactive mAbs displayed a large NDN region(VH-D-JH junction).The entire H chain V regions of these polyreactive mAbs are unusually basic.The analysis of the charge properties of these mAbs as well as those of other poly-and mono-reactive mAbs from literatures prompts us to propose that the charged amino acids with a particular distribution along the H chain V region,especially the binding sites(CDRs),may be an important structural feature involved in antibody polyreactivity.  相似文献   

14.
Mice have more than 1000 VH gene segments, and each pre-B cell must choose a single one for rearrangement to encode the V portion of the antibody H chain. Presumably, all or most of the functional VH gene segments must be chosen by the population of B lymphocytes if the organism is to express the diversity that is observed in the immune system. Control of the selection of a VH gene segment for expression is not understood. We have found that the members of the VH gene family closest to the constant genes, the 7183 family, are transcribed in a manner that is specific for the stage of B cell development after pre-B cells derived from spleens of 6- to 8-wk-old nude mice are induced to differentiate in vitro by a mixture of dendritic cells and mitogen-activated T lymphocytes (DC-T). DC-T from spleens and lymph nodes induce transient high levels of synthesis of RNA from the 7183 VH family, whereas DC-T from Peyer's patches of mice of the same age as those from which spleen and lymph node DC-T were prepared did not induce the expression of RNA from that gene family. Spleen and Peyer's patch DC-T induce secretion of similar total amounts of antibody. Therefore, the RNA synthesis from members of at least one VH gene family is specific both for the lymphoid tissue in which B cell differentiation occurs and for the developmental stage of the B lymphoid cells.  相似文献   

15.
We have used the polymerase chain reaction and VH family-based primers to clone and sequence 74 human germline VH segments from a single individual and built a directory to include all known germline sequences. The directory contains 122 VH segments with different nucleotide sequences, 83 of which have open reading frames. The directory indicates that the structural diversity of the germline repertoire for antigen binding is fixed by about 50 groups of VH segments: each group encodes identical hypervariable loops. The directory should help in mapping the VH locus, in estimating somatic mutation and VH segment usage and in designing and constructing synthetic antibody libraries.  相似文献   

16.
Based on their fine specificity, two groups of antibodies against the phosphorylcholine (PC) hapten have been described. Group I antibodies react predominantly with the PC moiety of the hapten and group II are directed against the entire hapten including the azophenyl spacer to the protein carrier. We have analyzed the VH gene segment utilization of hybridomas from the memory response to PC by Southern blot analysis and nucleotide sequencing of the functional VDJ rearrangements. Three main specificities of anti-PC antibodies could be distinguished. Anti-PC hybridomas with group I fine specificity utilize the VH1-DFL 16.1-JH1 rearrangement. A major portion of group II antibodies recognized the phenyl-PC part and expressed the same VH1 gene in combination with a member of the SP2 family and JH1 or JH2. The other anti-PC antibodies either used the PJ14-DFL16-JH3 rearrangement in combination with a lambda 1 L chain or a member of the VGam3.8 VH family rearranged to the DFL16.1 and the JH3 gene segments. The PJ14 and VGam3.8 V gene expressing antibodies were directed to the phenyl group and were either not or barely inhibitable by PC chloride. Thus, specific VDJ gene combinations contribute to the fine specificity of antibodies in the memory response to the PC hapten. The use of the S107, Q52, and VGam3.8. VH gene families, together with FL16.1 or SP2 D segments and JH1, JH2, or JH3 results in different fine specificities to the PC, phenyl-PC, or the azophenyl moiety of the PC hapten. These fine specificities of the memory response use V, D, and J segments of the initial T15Id+ response in combination with gene segments usually related to phenyl specificity.  相似文献   

17.
The T cell-specific gamma gene family is organized into four V, J and C gene segments containing clusters (gamma 1, gamma 2, gamma 3, gamma 4) in germline DNA. We found that the V, J and C elements of gamma 2 are physically linked on a stretch of 6 kb of DNA while those of gamma 3 are found within a 15-kb region. Rearrangements take place only within the clusters, explaining the rigid rearrangement patterns seen in T lymphocytes. New V gamma, J gamma and C gamma gene segments were discovered and characterized allowing the better understanding of the potential germline diversity of the gamma gene family. No correlation with T cell function, i.e. cytolytic or helper, and the type of the productive gamma rearrangement could be established. In contrast we found that functional T cell clones have been able to mature without any functional gamma chain genes.  相似文献   

18.
Previous studies have shown that dextran B1355 (DEX)- and (4-hydroxy-3-nitrophenyl) acetyl (NP)-coupled antigens triggered, respectively, BALB/c and C57BL/6 (B6) lymphocytes in which the V lambda 1 gene and a specific VH gene (VHDEX and VHNPb) have functionally rearranged. In this paper, we studied whether the closely-related V lambda 2 gene can be utilized in association with these VH genes to generate antigen-specific lymphocytes. We found that the VHDEX gene was restrictedly utilized by the V1 lambda 1 gene to generate anti-DEX lymphocytes, and in contrast, both the V lambda 1 and V lambda 2 genes were utilized together with a VHNPb germline gene to form anti-NP lymphocytes. Southern blot and DNA sequencing of an anti-NP hybridoma confirmed that the germline form of the (186-2) VHNPb gene can be used in association with either the V lambda 1 or V lambda 2 genes.  相似文献   

19.
Approximately 50% of the primary antibody response of BALB/c mice to the A/PR/8/34 influenza virus hemagglutinin is directed to the Cb site, one of the four major antigenic regions of the molecule. To determine the structural basis of the anti-Cb site response, we have examined the paratypic and genetic diversity exhibited by a panel of 24 primary and 4 secondary response mAb specific for this antigenic region. Reactivity pattern analysis demonstrated 20 distinct fine specificities among these antibodies, and V region gene sequence analysis showed that they are encoded by 17 different VH gene segments from 6 VH gene families and 14 different VK gene segments from 6 VK gene groups. Despite this overall diversity, many of the antibodies can be placed in a limited number of sets based on the shared expression of VH and/or VK genes. One set contains antibodies encoded by a single gene of the VK4/5 group in combination with one of two closely related genes from the J558 VH family. This set accounts for half of the Cb site-specific primary response hybridomas, indicating that the representation of the various anti-Cb site B cell specificities during the primary response to A/PR/8/34 influenza virus is not uniform. The preferential participation of B cells expressing this VH/VK combination is largely responsible for the dominance of anti-Cb site antibodies in the primary anti-hemagglutinin response.  相似文献   

20.
We present a detailed analysis of the content and organization of the human immunoglobulin VH locus. Human VH genes representing five distinct families were isolated, including novel members belonging to two out of three of the known VH gene families (VH1 and VH3) as well as members of three new families (VH4, VH5, and VH6). We report the nucleotide sequence of 21 novel human VH genes, many of which belong to the three new VH gene families. In addition, we provide a preliminary analysis of the organization of these gene segments over the full extent of the locus. We find that the five multi-segment families (VH1-5) have members interspersed over nearly the full 1500-2000 kb of the VH locus, and estimate that the entire heavy chain locus covers 2500 kb or less. Finally, we provide the first report of the physical linkage of the variable and constant loci of a human Ig gene family by demonstrating that the most proximal known human VH segments lie within 100 kb of the constant region locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号