首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A subline of the rat hepatoma (H-35) cells has been identified which responds to hepatocyte-stimulating factors (HSFs) of human squamous carcinoma cells by increased synthesis of all major rat acute phase plasma proteins. The regulation occurs at the level of mRNA. Two HSFs (HSF-I and HSF-II) have been purified from conditioned medium of the squamous carcinoma cells. HSF-I is a protein with an Mr = 18,000 and pI 5.5, and HSF-II is a glycoprotein with an Mr = 34,000 and a broad, neutral to basic charge. In H-35 cells, HSF-I predominantly stimulates the synthesis of complement C3 and haptoglobin and acts synergistically with dexamethasone to stimulate alpha 1-acid glycoprotein. HSF-II stimulates cysteine protease inhibitor, alpha 1-antichymotrypsin, alpha 1-antitrypsin, fibrinogen, and hemopexin, and acts synergistically with dexamethasone to stimulate alpha 2-macroglobulin. Each HSF is between 10 and 100 times less effective in regulating proteins of the other set. Human tumor necrosis factor and interleukin-1 increase complement C3, haptoglobin, and alpha 1-acid glycoprotein, as does HSF-I, but are unable to modulate any of the other acute phase proteins. The monokines differ from HSF-I is their low activity in HepG2 cells and rat hepatocytes.  相似文献   

2.
Human keratinocytes and activated monocytes produces factors which can stimulate the proliferation of thymocytes. The same activity has also been implicated in regulating the expression of plasma proteins in liver cells during the acute phase reaction. To assess whether factors produced by such cells can directly influence liver cells to change the production of acute phase plasma proteins, we studied in tissue culture the response pattern of hepatic cells from three species: human hepatoma cells ( HepG2 cells), and primary cultures of rat and mouse hepatocytes. Conditioned media from the squamous carcinoma COLO-16 cells, normal epidermal cells, and activated peripheral monocytes were able to stimulate the synthesis of specific acute phase plasma proteins: alpha 1-antichymotrypsin in HepG -2 cells, alpha 1-antichymotrypsin, alpha 1-acid glycoprotein, alpha 1-acute phase protein, and alpha 2-macroglobulin in rat hepatocytes, and alpha 1-acid glycoprotein, haptoglobin, and hemopexin in mouse hepatocytes. Only in rat cells, dexamethasone was found to have further enhancing effect. The increased production of plasma proteins could be explained by an elevated level of functional mRNA. Comparing thymocyte-stimulating activities with the effects on plasma protein production, we found some difference both between the conditioned media of epidermal cells and monocytes, and between the responses of the three hepatic cell systems. Furthermore, gel chromatography of conditioned media resulted in partial separation of activities regulating liver cells and thymocytes. Since there is no strict correlation between thymocyte- and hepatocyte-stimulating activities, the presence of different sets of specific factors is assumed.  相似文献   

3.
Human squamous carcinoma (COLO-16) cells synthesize and secrete hepatocyte-stimulating factor-III (HSF-III), a glycoprotein with Mr = 39,000, which stimulates the synthesis of several acute phase plasma proteins in human hepatoma (HepG2) cells. The qualitative response of HepG2 cells to HSF-III is essentially the same as that elicited by human recombinant interleukin-6 (IL-6). Although similar in hepatocyte-stimulating activity, HSF-III and IL-6 are distinct molecules which differ not only in size and charge but also in immunologic properties: no cross-recognition of HSF-III and IL-6 occurs using neutralizing antibodies against IL-6 and HSF-III, respectively. In addition, Northern blot hybridization of IL-6 cDNA to mRNA from COLO-16 cells revealed no detectable IL-6 message. HSF-III does not compete for binding to the IL-6 receptors suggesting that HepG2 cells carry receptors specific for each hormone. Both receptor types may trigger similar intracellular processes explaining the identical regulation of acute phase protein expression.  相似文献   

4.
The coordinate increase in the hepatic production of the acute phase plasma proteins appears to be mediated by several cytokines produced by different cell types. One factor, hepatocyte-stimulating factor III (HSF-III), constitutively produced by human squamous carcinoma (COLO-16) cells, stimulates the synthesis of the same set of acute phase plasma proteins as the structurally distinct IL-6. The physicochemical properties of HSF-III coincide with those of the T cell-derived leukemia-inhibitory factor (LIF). Human rLIF, tested on hepatoma cells, indicated a liver-regulating activity identical to HSF-III. The LIF activity is specifically neutralized by HSF-III antibodies. COLO-16 cells contain an LIF mRNA which is characteristic for lectin-stimulated T cells, suggesting that HSF-III is an epidermal cell-derived form of LIF. This result provides additional evidence for the close relationship between acute phase regulation of the liver and control of proliferation and differentiation of hemopoietic cells by identical cytokines.  相似文献   

5.
6.
Conditioned medium from human monocytes contains a partially characterized hepatocyte-stimulating factor that simultaneously elevates the mRNA levels of the acute-phase protein beta-fibrinogen and decreases albumin mRNA in rat hepatoma cells. We demonstrate that recombinant human B-cell stimulatory factor 2, which is identical to interferon-beta 2/26 kDa protein and interleukin-HP1, exhibits the same activity as hepatocyte-stimulating factor. Furthermore, a specific antibody against B-cell stimulatory factor 2 was able to inhibit hepatocyte-stimulating factor in conditioned medium from human monocytes. Our data show that hepatocyte-stimulating factor and B-cell stimulatory factor 2 are functionally and immunologically related proteins.  相似文献   

7.
Human hepatoma (HepG2) cells respond to unfractionated conditioned media of human squamous carcinoma (COLO-16) cells and lipopolysaccharide-stimulated human peripheral blood monocytes by increasing the synthesis of alpha 1-acid glycoprotein, haptoglobin, complement C3, alpha 1-antichymotrypsin, alpha 1-antitrypsin, and fibrinogen, while decreasing the synthesis of albumin. The regulation of the acute phase proteins is mediated by hepatocyte-stimulating factors (HSF) and interleukin 1 (IL-1) present in the conditioned medium. Purified HSF-I from COLO-16 cells stimulates preferentially alpha 1-acid glycoprotein synthesis, whereas COLO-HSF-II stimulates preferentially the synthesis of haptoglobin, fibrinogen, and alpha 1-antitrypsin. HSF from monocytes, which has been identified as interferon-beta 2 (B cell stimulating factor-2), displayed the same activity as COLO-HSF-II. Dexamethasone alone had no effect on acute phase plasma protein synthesis but enhanced the response to various HSF severalfold. IL-1 had a relatively low stimulatory activity on the synthesis of alpha 1-acid glycoprotein, haptoglobin, and alpha 1-antichymotrypsin but strongly reduced the basal expression of fibrinogen. The only synergistic action between IL-1 and HSF (or interferon-beta 2) was noted for the synthesis of alpha 1-acid glycoprotein. Tumor necrosis factor active on other hepatic cells failed to modulate significantly the expression of any plasma proteins in HepG2 cells. These studies showed that for an optimal HepG2-cell response a combination of HSF (or interferon-beta 2), IL-1, and dexamethasone is needed. This finding might indicate the identity of some of those hormones involved in regulation of the hepatic acute phase response in vivo.  相似文献   

8.
9.
Human rIL-6, produced either in COS cells or Escherichia coli, similarly stimulates the production of acute phase plasma proteins in cultured human and rat hepatoma cells. This anabolic effect in hepatoma cells suggested a potential in vivo role of the cytokine in mediating the hepatic response to inflammation. Injection of IL-6 into adult male rats elicited a cytokine-specific change in the liver expression of acute phase proteins. As predicted from in vitro studies, glucocorticoids were needed to achieve a maximal IL-6 response in vivo. Optimal conditions were found to be two i.p. injections of 35 to 120 micrograms IL-6 and 65 micrograms dexamethasone per kg body weight administered at 12-h intervals. Within 24 h, the plasma concentrations for alpha 2-macroglobulin, fibrinogen, thiostatin, and hemopexin were increased to levels approximating those observed in acute phase animals. These results support the notion that direct interaction of IL-6 with the liver is an essential part in initiating the hepatic acute phase reaction.  相似文献   

10.
Because a number of different cytokines have been reported to regulate the synthesis of human, murine, and rat acute phase proteins (APP), we studied the effect of cytokines on production of several major human APP in a single system, the human hepatoma cell line Hep 3B. Conditioned medium (CM) prepared from human blood monocytes activated with LPS in the presence of dexamethasone led to substantial induction of serum amyloid A (SAA) and C-reactive protein (CRP) synthesis whereas the defined cytokines IL-1 beta, TNF alpha, and medium from a human keratinocyte cell line (COLO-16), containing hepatocyte-stimulating factor activity, failed to induce these two major APP. Induction of SAA and CRP was accompanied by an increase in concentration of their specific mRNA. Size fractionation of CM from activated monocytes by fast protein liquid chromatography indicated that SAA- and CRP-inducing activity eluted as a single peak with a Mr of approximately 18 kDa. alpha 1-Antitrypsin, which also failed to respond to IL-1 beta or TNF alpha, was induced by both CM and medium from COLO-16 cells. The induction of AT by CM was accompanied by an increase in specific mRNA. Induction of ceruloplasmin and alpha 1-antichymotrypsin and decrease in the synthesis of albumin was achieved by both CM and IL-1 beta. Ceruloplasmin and albumin responded in a comparable fashion to both TNF alpha and medium from COLO-16 cells; the response of ACT to these cytokines was not evaluated. These results indicate that human SAA and CRP are induced in Hep 3B cells by products of activated monocytes but not by IL-1 beta, TNF-alpha, or some hepatocyte-stimulating factor preparations and that a group of heterogeneous mechanisms are involved in the induction of the various human APP.  相似文献   

11.
Human squamous carcinoma (COLO-16) cells release factors which specifically stimulate the synthesis of major acute-phase plasma proteins in human and rodent hepatic cells. Anion exchange, hydroxyapatite, lectin, and gel chromatography of conditioned medium of COLO-16 cells result in separation into three distinct forms of hepatocyte-stimulating factors (designated HSF-I, HSF-II, and HSF-III) with apparent molecular weights of 30,000, 50,000 and 70,000, respectively. None of the preparations contains detectable amounts of thymocyte-stimulating activity. Each of the three HSF forms stimulates the accumulation of mRNA for alpha 1-antichymotrypsin in the human hepatoma cell line, HepG2. When the same factors were added to primary cultures of adult rat hepatocytes, the expression of the same set of plasma proteins was modulated as by nonfractionated medium. The hormonally induced accumulation of mRNA for acute phase proteins is qualitatively comparable to that occurring in the liver of inflamed rats. Unlike in human cells, in rat liver cells dexamethasone acts additively and synergistically with HSFs. The only functional difference between the three HSF forms lies in the level of maximal stimulation. HSF-I represents the predominant form produced by normal human keratinocytes and closely resembles in molecular size and isoelectric point the activity produced by activated peripheral blood monocytes while the larger molecular weight forms are more prevalent in human as well as mouse squamous carcinoma cells. The observation that HSFs from different sources elicit essentially the same pleiotropic response in hepatic cells led to the hypothesis that the species-specific reaction of adult liver cells to inflammatory stimuli is pre-programmed and that the function of any HSF is to trigger and tune the execution of this fixed cellular process.  相似文献   

12.
Adult mouse hepatocytes respond in vivo to experimentally induced acute inflammation by an increased synthesis and secretion of alpha 1-acid glycoprotein, haptoglobin, hemopexin, and serum amyloid A. Concurrently, the production of albumin and apolipoprotein A-1 is reduced. To define possible mediators of this response and to study their action in tissue culture, we established primary cultures of hepatocytes. Various hormones and factors that have been proposed to regulate the hepatic acute phase reaction were tested for their ability to modulate the expression of plasma proteins in these cells. Acute phase plasma and conditioned medium from activated monocytes influenced the production of most acute phase plasma proteins, and the regulation appears to occur at the level of functional mRNA. Purified hormones produced a significant anabolic response in only a few cases: dexamethasone was found to be effective in maintaining differentiated expression of the cells; and glucagon produced a specific inhibition of haptoglobin synthesis. When cells were treated with a combination of conditioned monocyte medium and dexamethasone, secretion of proteins was markedly reduced. The carbohydrate moieties of all plasma glycoproteins were incompletely modified, apparently as a result of decreased intracellular transport of newly synthesized plasma proteins. Although primary hepatocytes were not phenotypically stable in tissue culture, the cells nevertheless retained a broad response spectrum to exogenous signals. We propose this as a useful system to study the production of plasma proteins and thereby pinpoint the nature and activity of effectors mediating the hepatic acute phase reaction.  相似文献   

13.
14.
Abstract : In injured peripheral nerves, hemopexin mRNA is expressed by fibroblasts, Schwann cells, and invading blood macrophages, and the protein accumulates in the extracellular matrix. This and its absence of regulation in injured central optic nerve suggest that hemopexin could play a positive role in peripheral nerve repair. Here, we studied the regulation of hemopexin expression in degenerating and regenerating nerves. After a sciatic nerve injury, both the synthesis of hemopexin and the level of its mRNA increase sharply during the first 2 days, leading to an accumulation of hemopexin in the nerve. Afterward, hemopexin expression decreases progressively in regenerating nerves. In permanently degenerated nerves, it is again transiently increased and then strongly decreased, whereas hemopexin from blood origin is accumulating. As part of the elucidation of the complex regulation of hemopexin expression in injured nerves, we demonstrate that interleukin-6 increases hemopexin synthesis in intact nerves, whereas adult rat serum, but not purified hemopexin, inhibits it in degenerated nerves. Hemopexin, known as acute-phase protein, is therefore one of the molecules rapidly and specifically up-regulated in injured peripheral nerves. More generally, our findings suggest that the acute phase could be not only a systemic liverspecific response but also a reaction of injured tissues themselves.  相似文献   

15.
16.
17.
Heme–hemopexin supports and stimulates proliferation of human acute T-lymphoblastic (MOLT-3) cells, suggesting the participation of heme in cell growth and division. MOLT-3 cells express approximately 58,000 hemopexin receptors per cell (apparent Kd20 nM), of which about 20% are on the cell surface. Binding is dose- and temperature-dependent, and growth in serum-free IMDM medium is stimulated by 100–1000 nMheme–hemopexin, consistent with the high affinity of the receptor for hemopexin, and maximal growth is seen in response to 500 nMcomplex. Growth was similar in defined minimal medium supplemented with either low concentrations of heme–hemopexin or iron-transferrin, and either of these complexes were about 80% as effective as a serum supplement. Heme–hemopexin, but not apo–hemopexin, reversed the growth inhibition caused by desferrioxamine showing that heme–iron derived from heme catabolism is used for cell growth. Cobalt-protoporphyrin (CoPP)–hemopexin, which binds to the receptor but is not transported intracellularly [Smithet al.,(1993)J. Biol. Chem.268, 7365], also stimulated cell proliferation in serum-free IMDM but did not “rescue” the cells from desferrioxamine. Furthermore, CoPP–hemopexin effectively competed for the hemopexin receptor with heme–hemopexin and diminished its growth stimulatory effects. In addition, protein kinase C (PKC) is translocated to the plasma membrane within 5 min after heme–hemopexin is added to the medium, reaches maximum activity within 5–10 min, and declines to unstimulated levels by 30 min. Heme–hemopexin and CoPP-hemopexin both augmented MOLT-3 cell growth stimulated by serum. Thus, heme–hemopexin not only functions as an iron source for T-cells but occupancy of the hemopexin receptor itself triggers signaling pathway(s) involved in the regulation of cell growth. The stimulation of growth of human T-lymphocytes by heme–hemopexin is likely to be a physiologically relevant mechanism at sites of injury, infection, and inflammation.  相似文献   

18.
Using human erythroleukemia K562 cells, existence of receptors for hemopexin has been investigated. Hemopexin was bound to the cells in saturable, time- and temperature-dependent manner. The cells exhibited approximately 8,400 binding sites/cell for hemopexin and apohemopexin. The dissociation constants (Kd) for hemopexin and apohemopexin were 4.79 nM and 10.8 nM, respectively. Specific binding of labeled hemopexin was inhibited with increasing concentrations of unlabeled hemopexin and apohemopexin, but unaffected by transferrin and serum albumin. Heme bound to hemopexin was incorporated into the cells at 37 degrees C, but not at 4 degrees C. These results indicate that heme in hemopexin was taken up by K562 cells via the receptors for hemopexin.  相似文献   

19.
20.
IL-6, which is also known as IFN-beta 2, hybridoma growth factor, hepatocyte-stimulating factor, and B cell differentiation factor, mediates acute phase responses including fever, has lymphocyte-stimulating capacities, and antiviral activity. IL-6 is produced by monocytes, fibroblasts, certain lymphocytes, and various tumor cells. The present study demonstrates that this multifunctional cytokine is released also by normal human epidermal cells (EC) and human epidermoid carcinoma cell lines (A431, KB). Accordingly, supernatants derived from freshly isolated EC, long term keratinocyte cultures, A431, or KB cells stimulated the proliferation of a hybridoma growth factor/IL-6-dependent plasmacytoma cell line (B9). IL-6 constitutively was produced in the presence of serum proteins. The addition of IL-1 alpha, IL-1 beta, or the tumor promoter PMA significantly enhanced the synthesis and release of EC-derived IL-6 (EC-IL 6). Like monocyte or fibroblast-derived IL-6, EC-IL-6 exhibited Mr microheterogeneity within 21 and 28 kDa. Similarly in Western blotting experiments an antiserum directed against human rIFN-beta 2/IL-6 detected the different Mr forms of EC-IL-6. Moreover, this antiserum was able to block the B9 cell growth-promoting capacity of EC-IL-6 strongly suggesting that this EC-derived mediator is closely related, if not identical with IL-6. This was further confirmed by Northern blot analysis detecting IL-6 specific mRNA both in long term cultured keratinocytes and A431 cells by hybridization with a cDNA fragment encoding for B cell differentiating factor 2/IL-6. Therefore, in addition to the production of other cytokines as previously reported, EC and in particular keratinocytes also synthesize and release IL-6. This further supports the important regulatory role of the epidermis during the pathogenesis of inflammatory, autoimmune, and neoplastic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号