首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Detection and quantification of cellulolytic bacteria with oligonucleotide probes showed that Ruminococcus flavefaciens was the predominant species in the pony and donkey cecum. Fibrobacter succinogenes and Ruminococcus albus were present at low levels. Four isolates, morphologically resembling R. flavefaciens, differed from ruminal strains by their carbohydrate utilization and their end products of cellobiose fermentation.  相似文献   

2.
An ~32-kDa protein (albusin B) that inhibited growth of Ruminococcus flavefaciens FD-1 was isolated from culture supernatants of Ruminococcus albus 7. Traditional cloning and gene-walking PCR techniques revealed an open reading frame (albB) encoding a protein with a predicted molecular mass of 32,168 Da. A BLAST search revealed two homologs of AlbB from the unfinished genome of R. albus 8 and moderate similarity to LlpA, a recently described 30-kDa bacteriocin from Pseudomonas sp. strain BW11M1.  相似文献   

3.
The origin of cell nitrogen and amino acid nitrogen during growth of ruminal cellulolytic bacteria in different growth media was investigated by using 15NH3. At high concentrations of peptides (Trypticase, 10 g/liter) and amino acids (15.5 g/liter), significant amounts of cell nitrogen of Fibrobacter succinogenes BL2 (51%), Ruminococcus flavefaciens 17 (43%), and Ruminococcus albus SY3 (46%) were derived from non-NH3-N. With peptides at 1 g/liter, a mean of 80% of cell nitrogen was from NH3. More cell nitrogen was formed from NH3 during growth on cellobiose compared with growth on cellulose in all media. Phenylalanine was essential for F. succinogenes, and its 15N enrichment declined more than that of other amino acids in all species when amino acids were added to the medium.  相似文献   

4.
Nutrition and physiology of Ruminococcus flavefaciens   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

5.
Some physico-chemical and heat-induced gelling properties of myosin heavy chains (MHCs) from rabbit skeletal muscle were studied. MHCs were found to be almost devoid of ATPase activity, possibly because of the absence of myosin light chains. MHCs formed precipitates below and ionic strength of 0.3, and above this ionic strength MHCs became soluble. On heating to 65°C at low concentrations of the protein, MHCs lost their solubility and formed aggregates even at high ionic conditions. Partially irreversible change in the conformation of MHC (from helical to random coil) also occurred in heated MHCs.

The heat-induced gel strength of MHCs was found to be almost equal to that of intact myosin molecules with identical protein concentrations. This suggests that the gelling potential of myosin is solely confined in MHC. Although myosin light chains do not seem to contribute to the gelling power of myosin, possibly they provide some stability to the gel if the pH is varied above the optimum value, i.e., 6.0. The addition of actin to a MHC system weakened the gel strength of the latter proportionally to the quantity of added actin.  相似文献   

6.
7.
A genetic transformation system with similarities to those reported for gram-negative bacteria was found to be associated with membrane vesicles of the ruminal cellulolytic genus Ruminococcus. Double-stranded DNA was recovered from the subcellular particulate fraction of all the cellulolytic ruminococci examined. Electron microscopy revealed that the only particles present resembled membrane vesicles. The likelihood that the DNA was associated with membrane vesicles (also known to contain cellulosomes) was further supported by the adherence of the particles associated with the subcellular DNA to cellulose powder added to culture filtrates. The particle-associated DNA comprised a population of linear molecules ranging in size from <20 kb to 49 kb (Ruminococcus sp. strain YE73) and from 23 kb to 90 kb (Ruminococcus albus AR67). Particle-associated DNA from R. albus AR67 represented DNA derived from genomic DNA of the host bacterium having an almost identical HindIII digestion pattern and an identical 16S rRNA gene. Paradoxically, particle-associated DNA was refractory to digestion with EcoRI, while the genomic DNA was susceptible to extensive digestion, suggesting that there is differential restriction modification of genomic DNA and DNA exported from the cell. Transformation using the vesicle-containing fraction of culture supernatant of Ruminococcus sp. strain YE71 was able to restore the ability to degrade crystalline cellulose to two mutants that were otherwise unable to do so. The ability was heritable and transferred to subsequent generations. It appears that membrane-associated transformation plays a role in lateral gene transfer in complex microbial ecosystems, such as the rumen.  相似文献   

8.
An approximately 32-kDa protein (albusin B) that inhibited growth of Ruminococcus flavefaciens FD-1 was isolated from culture supernatants of Ruminococcus albus 7. Traditional cloning and gene-walking PCR techniques revealed an open reading frame (albB) encoding a protein with a predicted molecular mass of 32,168 Da. A BLAST search revealed two homologs of AlbB from the unfinished genome of R. albus 8 and moderate similarity to LlpA, a recently described 30-kDa bacteriocin from Pseudomonas sp. strain BW11M1.  相似文献   

9.
Abstract A cellulase gene from Ruminococcus flavefaciens FD-1 had previously been cloned in Escherichia coli . The product of this gene, CelA, was purified from E. coli and characterised. This 39 kDa cellulase is antigenically related, and of similar mass, to a protein in R. flavefaciens . The enzyme has cellodextrinase activity with predominantly exo-type action. CelA activity was optimal at pH 6.5 and 41°C, and was inhibited in the presence of divalent metal cations. The K m and V max were determined as 0.68 mM and 1.89 μmol min−1 mg−1 of CelA, respectively. Cellobiose was the major end product of cellodextrin hydrolysis, and our results suggest that celluboise is competitive inhibitor of CelA.  相似文献   

10.
Seventeen Ruminococcus albus and Ruminococcus flavefaciens strains have been screened for naturally occurring antibiotic resistance, as determined by zones of inhibition from antibiotic disks. These strains were also examined for extrachromosomal DNA content. All strains screened are resistant to low levels (10-200 micrograms/mL) of streptomycin. In contrast to the previously reported data, we have found that R. flavefaciens C-94 is now susceptible to both kanamycin and tetracycline. However, R. flavefaciens FD-1 is not susceptible to kanamycin (minimum inhibitory concentration (MIC) = 40 micrograms/mL). Furthermore, R. albus 8 is resistant to tetracycline (MIC = 40 micrograms/mL), and erythromycin (MIC = 100 micrograms/mL). Six freshly isolated strains showed resistance to tetracycline (35-70 micrograms/mL), and all tetracycline-resistant strains also showed resistance to minocycline. None of these Ruminococcus determinants share homology with the streptococcal tetL, tetM, or tetN determinants. All 17 strains were screened for extrachromosomal DNA content. Nine different techniques for the detection and isolation of extrachromosomal DNA were tested. However, owing to difficulties in demonstrating or isolating plasmid DNA, it has not been possible to determine if these antibiotic resistance genes are plasmid borne. Evidence is presented to suggest that the presence of oxygen may affect the quality of the DNA obtained from Ruminococcus.  相似文献   

11.
Ruminococcus flavefaciens adhered instantly to cellulose, while Fibrobacter succinogenes had the highest percentage of adherent cells after about 25 min of contact between bacteria and cellulose. Adhesion of R. flavefaciens was unaffected by high concentrations of sugars (5%), temperature, pH, oxygen, metabolic inhibitors, and lack of Na+. In contrast, the attachment was affected by the removal of divalent cations (Mg2+ and Ca2+), the presence of cellulose derivatives (methylcellulose and hydroxyethylcellulose), and cystine. Adhesion of F. succinogenes was sensitive to low and high temperatures, high concentrations of glucose and cellobiose (5%), hydroxyethylcellulose (0.1%), redox potential, pH, lack of monovalent cations, and the presence of an inhibitor of membrane ATPases or lasalocid and monensin. Cells of F. succinogenes heated at 100°C no longer were adherent. On the other hand, adhesion was insensitive to the lack of divalent cations (Mg2+ and Ca2+), the presence of 2,4-dinitrophenol, tetrachlorosalicylanilide, or inhibitors of the electron transfer chains. Adhesion of F. succinogenes seems to be related to the metabolic functions of the cell. External proteins and/or cellulases themselves might play a part in the attachment process. Several mechanisms are probably involved in the adhesion of R. flavefaciens, the main one being the interaction between the large glycocalyx and the divalent cations Ca2+ and Mg2+. Hydrophobic bonds and enzymes may also be involved.  相似文献   

12.
The mechanisms by which cellulolytic enzymes and enzyme complexes in Ruminococcus spp. bind to cellulose are not fully understood. The product of the newly isolated cellulase gene endB from Ruminococcus flavefaciens 17 was purified as a His-tagged product after expression in Escherichia coli and found to be able to bind directly to crystalline cellulose. The ability to bind cellulose is shown to be associated with a novel cellulose-binding module (CBM) located within a region of 200 amino acids that is unrelated to known protein sequences. EndB (808 amino acids) also contains a catalytic domain belonging to glycoside hydrolase family 44 and a C-terminal dockerin-like domain. Purified EndB is also shown to bind specifically via its dockerin domain to a polypeptide of ca. 130 kDa present among supernatant proteins from Avicel-grown R. flavefaciens that attach to cellulose. The protein to which EndB attaches is a strong candidate for the scaffolding component of a cellulosome-like multienzyme complex recently identified in this species (S.-Y. Ding et al., J. Bacteriol. 183:1945-1953, 2001). It is concluded that binding of EndB to cellulose may occur both through its own CBM and potentially also through its involvement in a cellulosome complex.  相似文献   

13.
Sequence extension of the scaffoldin gene cluster from Ruminococcus flavefaciens revealed a new gene (scaE) that encodes a protein with an N-terminal cohesin domain and a C terminus with a typical gram-positive anchoring signal for sortase-mediated attachment to the bacterial cell wall. The recombinant cohesin of ScaE was recovered after expression in Escherichia coli and was shown to bind to the C-terminal domain of the cellulosomal structural protein ScaB, as well as to three unknown polypeptides derived from native cellulose-bound Ruminococcus flavefaciens protein extracts. The ScaB C terminus includes a cryptic dockerin domain that is unusual in its sequence, and considerably larger than conventional dockerins. The ScaB dockerin binds to ScaE, suggesting that this interaction occurs through a novel cohesin-dockerin pairing. The novel ScaB dockerin was expressed as a xylanase fusion protein, which was shown to bind tenaciously and selectively to a recombinant form of the ScaE cohesin. Thus, ScaE appears to play a role in anchoring the cellulosomal complex to the bacterial cell envelope via its interaction with ScaB. This sortase-mediated mechanism for covalent cell-wall anchoring of the cellulosome in R. flavefaciens differs from those reported thus far for any other cellulosome system.  相似文献   

14.
Cells from glucose-limited chemostat cultures of Cytophaga johnsonae were subjected to a sudden relaxation of substrate limitation by injecting the cells into fresh batch cultures. Starvation experiments were carried out by injecting glucose-limited cells into batch cultures lacking glucose. Transient responses of biomass, glucose uptake and mineralization, ATP content, and viability on different agar media were monitored during these nutrient-shift experiments. Cells reacted differently depending on growth rate and time spent in the chemostat. Fast-growing cells showed an immediate adaptation to the new growth conditions, despite some initial overshoot reactions in ATP and uptake potential. In contrast, slowly growing cells and long-term-adapted cells showed extensive transient growth responses. Glucose uptake and mineralization potentials changed considerably during the transient growth phase before reaching new levels. During the starvation experiments, all cell types displayed a fast decrease in ATP, but the responses of the substrate uptake and mineralization potentials were strongly dependent upon the previous growth rate. Both potentials decreased rapidly in cells with high growth rates. On the other hand, cells with low growth rates maintained 80% of their uptake and mineralization potentials after 8 h of starvation. Thus, slowly growing cells are much better adapted for starvation than are fast-growing cells.  相似文献   

15.
Competition for adhesion to cellulose among the three main ruminal cellulolytic bacterial species was studied using differential radiolabeling (14C/3H) of cells. When added simultaneously to cellulose, Ruminococcus flavefaciens FD1 and Fibrobacter succinogenes S85 showed some competition; however, both species were surpassed competitively by Ruminococcus albus 20. When R. flavefaciens FD1 and F. succinogenes S85 were already adherent, R. albus 20 adhesion occurred without inhibition but involved R. flavefaciens FD1 detachment. Received: 28 October 1996 / Accepted: 28 January 1997  相似文献   

16.
A (1,3)-beta-D-glucanase [(1,3)-beta-D-glucan-3-glucanohydrolase] from Ruminococcus flavefaciens grown on milled filter paper was purified 3,700-fold (19% yield) and appeared as a single major protein and activity band upon polyacrylamide gel electrophoresis. The enzyme did not hydrolyze 1,6-beta linkages (pustulan) or 1,3-beta linkages in glucans with frequent 1,6-beta-linkage branch points (scleroglucan). Curdlan and carboxymethylpachyman were hydrolyzed at 50% the rate of laminarin. The enzyme had a Km of 0.37 mg of laminarin per ml, a pH optimum of 6.8, and a temperature optimum of 55 degrees C and was stable to heating at 40 degrees C for 60 min. The molecular mass of the enzyme was estimated to be 26 kDa by gel filtration and 25 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was completely inhibited by 1 mM Hg2+, Cu2+, and KMnO4, 75% by 1 mM Ag2+, and Ni2+, and 50% by 1 mM Mn2+ and Fe3+. In a 2-h incubation with laminaridextrins (seven to nine glucose units) or curdlan and excess enzyme, the major products were glucose (30 to 37%), laminaribiose (17 to 23%), laminaritriose (18 to 28%), laminaritetraose (13 to 21%), and small amounts of large laminarioligosaccharides. With laminarihexaose and laminaripentaose, the products were equal quantities of laminaribiose and glucose (30%) and laminaritetraose and laminaritriose (18 to 21%). Laminaribiose or laminaritriose were not hydrolyzed, indicating a requirement for at least four contiguous 1,3-beta-linked glucose units for enzyme activity. The enzyme appeared to have the properties of both an exo- and an endoglucanase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Summary A cellulase gene (endA) was isolated from a library of Ruminococcus flavefaciens strain 17 DNA fragments inserted in pUC13. The endA product showed activity against acid-swollen cellulose, carboxymethyl-cellulose, lichenan, cellopentaose and cellotetraose, but showed no activity against cellotriose or binding to avicel. Nucleotide sequencing indicated an encoded product of 455 amino acids which showed significant sequence similarity (ranging from 56% to 61%) with three endoglucanases from Ruminococcus albus, and with Clostridium thermocellum endoglucanase E. Little relatedness was found with a cellodextrinase previously isolated from R. flavefaciens FD1.  相似文献   

18.
The mechanisms by which cellulolytic enzymes and enzyme complexes in Ruminococcus spp. bind to cellulose are not fully understood. The product of the newly isolated cellulase gene endB from Ruminococcus flavefaciens 17 was purified as a His-tagged product after expression in Escherichia coli and found to be able to bind directly to crystalline cellulose. The ability to bind cellulose is shown to be associated with a novel cellulose-binding module (CBM) located within a region of 200 amino acids that is unrelated to known protein sequences. EndB (808 amino acids) also contains a catalytic domain belonging to glycoside hydrolase family 44 and a C-terminal dockerin-like domain. Purified EndB is also shown to bind specifically via its dockerin domain to a polypeptide of ca. 130 kDa present among supernatant proteins from Avicel-grown R. flavefaciens that attach to cellulose. The protein to which EndB attaches is a strong candidate for the scaffolding component of a cellulosome-like multienzyme complex recently identified in this species (S.-Y. Ding et al., J. Bacteriol. 183:1945–1953, 2001). It is concluded that binding of EndB to cellulose may occur both through its own CBM and potentially also through its involvement in a cellulosome complex.  相似文献   

19.

Background

The bovine rumen maintains a diverse microbial community that serves to break down indigestible plant substrates. However, those bacteria specifically adapted to degrade cellulose, the major structural component of plant biomass, represent a fraction of the rumen microbiome. Previously, we proposed scaC as a candidate for phylotyping Ruminococcus flavefaciens, one of three major cellulolytic bacterial species isolated from the rumen. In the present report we examine the dynamics and diversity of scaC-types both within and between cattle temporally, following a dietary switch from corn-silage to grass-legume hay. These results were placed in the context of the overall bacterial population dynamics measured using the 16S rRNA.

Principal Findings

As many as 117 scaC-types were estimated, although just nineteen were detected in each of three rumens tested, and these collectively accounted for the majority of all types present. Variation in scaC populations was observed between cattle, between planktonic and fiber-associated fractions and temporally over the six-week survey, and appeared related to scaC phylogeny. However, by the sixth week no significant separation of scaC populations was seen between animals, suggesting enrichment of a constrained set of scaC-types. Comparing the amino-acid translation of each scaC-type revealed sequence variation within part of the predicted dockerin module but strong conservation in the N-terminus, where the cohesin module is located.

Conclusions

The R. flavefaciens species comprises a multiplicity of scaC-types in-vivo. Enrichment of particular scaC-types temporally, following a dietary switch, and between fractions along with the phylogenetic congruence suggests that functional differences exist between types. Observed differences in dockerin modules suggest at least part of the functional heterogeneity may be conferred by scaC. The polymorphic nature of scaC enables the relative distribution of R. flavefaciens strains to be examined and represents a gene-centric approach to investigating the intraspecific adaptation of an important specialist population.  相似文献   

20.
Summary A recombinant strain of Saccharomyces cerevisiae secreting bacterial cellodextrinase was constructed. The Ruminococcus flavefaciens cellodextrinase gene (celA) was inserted between a yeast expression-secretion cassette and yeast gene terminator, and cloned into a yeast-centromeric shuttle vector. Enzyme assays revealed growth-associated production of biologically active cellodextrinase by S. cerevisiae transformants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号