首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of effluent recirculation on perchlorate reduction in a nominally plug-flow fixed biofilm reactor was studied in two cases: influent concentrations of 10 and 400 microg/L at low hydraulic loading rates (1.9 and 37.5 m(3)/m(2)/day without and with recirculation, respectively) and after a step increase in perchlorate concentration to 1,000 microg/L at the higher hydraulic loading rate (5 and 100 m(3)/m(2)/day without and with recirculation, respectively). Complete perchlorate reduction was sustained for influent concentrations of 400 and 10 microg/L in both flow regimes at the lower hydraulic loading rates. Reactor tracer profiles showed that biofilm diffusion had a more significant effect on mass transfer in the plug flow reactor compared with recirculation. The recirculation bioreactor acclimated more rapidly to increased hydraulic and perchlorate mass loading rates with significantly lower effluent perchlorate compared to the plug flow reactor: 16 microg/L versus 46 microg/L, respectively, although complete perchlorate removal was not achieved in either flow regime after 21 days acclimation to the higher loading. Total biofilm mass was more uniformly distributed in the recirculation reactor which may have contributed to better performance under increased perchlorate loading.  相似文献   

2.
The paper presents the main results obtained from the study of the biodegradation process of phenol by a pure culture of Pseudomonas putida ATCC 17484. The experimental work was carried out in two different systems: a stirred tank where cells grew as a suspended culture and a fluidized bed where cells were immobilized within calcium alginate gel beads. The influence of the hydraulic residence time (HRT) and organic loading rate on the removal efficiency of phenol was determined for both bioreactors. Also, the stability of the fluidized-bed bioreactor (FBB) in terms of its ability to withstand sudden phenol overdoses is also reported. Experimental values indicated that both bioreactors showed high phenol degradation efficiencies, higher than 90%, even for a phenol loading rate in the influent as high as 4 g phenol/l day. The FBB showed better performance than the suspended-culture bioreactor due to its better control and because it could operate with lower HRT.  相似文献   

3.
A strain of Rhodococcus erythropolis has been isolated and identified by 16S rRNA sequencing. Cells acclimated to phenol can be adsorbed on the external surface of beads of the ceramic support Biolite where they grow forming a network of large filaments. Exponentially-growing cells were adsorbed faster than their stationary-phase counterparts. Immobilization resulted in a remarkable enhancement of the respiratory activity of cells and a shorter lag phase preceding the active phenol degradation. Under optimum operation conditions, the immobilized cells in a laboratory-scale column reactor packed with support beads were able to degrade completely phenol in defined mineral medium at a maximum rate of 18 kg phenol m(-3) per day. The performance of the bioreactor in long-term continuous operation was characterized by pumping defined mineral medium which contained different concentrations of phenol at different flow-rates. Once phenol biodegradation in defined mineral medium was well established, an industrial wastewater from a resin manufacturing company, which contained both phenol and formaldehyde, was tested. In this case, after wastewater conditioning (i.e. pH, nitrogen source and micronutrient amendments) the immobilized cells were able to remove completely formaldehyde and to partly biodegrade phenols at a rate of 1 kg phenol m(-3) per day.  相似文献   

4.
Biodesulfurization (BDS) in a bioreactor packed with a catalytic bed of silica containing immobilized Rhodococcus rhodochrous was studied. Various bed lengths and support particle sizes were evaluated for BDS of dibenzothiophene (DBT) and gas oil. The sulfur-containing substrates were introduced separately into the bioreactor at different feed flows. Higher removal of sulfur from DBT and gas oil was achieved with a long bed, lower substrate flow, and larger sizes of immobilization particles. The packed bed bioreactor containing metabolic active cells was recycled and maintained BDS activity.  相似文献   

5.
《Process Biochemistry》2010,45(9):1582-1586
In order to easily separate pollutant-absorbing polymer beads from contaminated soil or water, novel polymer beads containing magnetic particles were developed. The polymer beads containing 4.67% (w/w) magnetic particles exhibited an almost identical partitioning coefficient for phenol compared to that of the pure polymer. A 1.5 L phenol solution of 2000 mg/L added to a bioreactor was reduced to 481 mg/L phenol within 3 h by adding 100 g of these magnetic beads, and the phenol was completely degraded by microorganisms in 16 h. The magnetized beads were then readily removed from the bioreactor by a magnet with 10,000 G, and subsequently detached for re-use. 500 g of soil contaminated with 4 mg-phenol/g-soil was also contacted with 100 g beads, and greater than 97% removal of phenol from the soil was achieved within 1 day. The phenol-absorbing beads were easily separated from the soil by the magnet and transferred into a fermentor. The phenol was released from the beads and was degraded by the microorganism in 10 h. Modifying polymers to possess magnetic properties has greatly improved the ease of handling of these sequestering materials when decontaminating soil and water sources, in conjunction with contaminant release in partitioning bioreactors.  相似文献   

6.
In this study, a novel fibrous bioreactor was developed for treating odorous compounds present in contaminated air. The first stage of this work was a preliminary study which aimed at investigating the feasibility of using the fibrous bioreactor for the removal of malodorous volatile fatty acids (VFA) that is a common odorous contaminant generated from anaerobic degradation of organic compounds. The kinetics of microbial growth and VFA degradation in the selected culture, and the performance of the submerged bioreactor at different VFA mass loadings were studied. Above 95% of VFA removal efficiencies were achieved at mass loadings up to 22.4 g/m(3)/h. In the second stage, the odour treatment process was scaled up with system design and operational considerations. A trickling biofilter with synthetic fibrous packing medium was employed. The effects of inlet VFA concentration and empty bed retention time (EBRT) on the process performance were investigated. The bioreactor was effective in removing VFA at mass loadings up to 32 g/m(3)/h, beyond which VFA started to accumulate in the recirculation liquid, indicating the biofilm was unable to degrade all of the VFA introduced. Although VFA accumulated in the liquid phase, the removal efficiency remained above 99%. This suggested that the biochemical reaction rather than gas-liquid mass transfer was the limiting step of the treatment process. In addition, the biotrickling filter was stable for long-term operation with relatively low and steady pressure drop, no clogging and degeneration of the packing material occurred during the four-month study.  相似文献   

7.
Polymer beads have been used to absorb high concentrations of phenol from soil decreasing the initial concentration of 2.3 g kg−1 soil to 100 mg kg−1 soil and achieving a phenol loading within the polymer beads of 27.5 mg phenol g−1 beads. The phenol-loaded polymer beads were removed from the soil and placed in a bioreactor, which was then inoculated with a phenol-degrading microbial consortium. All of the phenol contained within the polymer beads was shown to desorb from the polymer matrix and was degraded by the microbial consortium. The beads were used again (twice) in a similar manner with no loss in performance.  相似文献   

8.
Laccase was produced from Streptomyces psammoticus under solid-state fermentation. The enzyme was partially purified by ammonium sulphate precipitation and was immobilized in alginate beads by entrapment method. Calcium alginate beads retained 42.5% laccase activity, while copper alginate beads proved a better support for laccase immobilization by retaining 61% of the activity. Phenol and colour removal from a phenol model solution was carried out using immobilized laccase. Batch experiments were performed using packed bed bioreactor, containing immobilized beads. Reusability of the immobilized matrix was studied for up to 8 successive runs, each run with duration of 6 h. The system removed 72% of the colour and 69.9% of total phenolics from the phenol model solution after the initial run. The immobilized system maintained 50% of its efficiency after eight successive runs. The degradation of phenolic compounds by immobilized laccase was evaluated and confirmed by Thin layer chromatography and nuclear magnetic resonance spectroscopy.  相似文献   

9.
The feasibility of continuous ester synthesis in a membrane bioreactor (MBR) by a recombinant cutinase from Fusarium solani pisi was investigated, using the optimal conditions previously attained by medium engineering. The objective was to analyze the MBR behavior as a differential or an integral reactor. The main component of the reactor was an anisotropic ceramic membrane with 15,000 NMWCO. The operating variables included the influence of substrates ratio and flow rate on the conversion degree and on the productivity. The highest conversion degree was obtained using 1M of hexanol and 0.1M of butyl acetate as acyl donor. The use of these substrate concentrations led to a conversion degree of 79.3% and a specific productivity of 41 g hexyl acetate/(d x g cutinase), when the permeate flow rate was 0.025 mL/min. The increase of flow rate to 0.4 mL/min decreased the conversion to 35.6%, although the productivity was enhanced to 294 g product/day x g enzyme. The MBR characterization involved the calculations of mass balance, recirculation rate, conversion per pass, number of cycles, and hydraulic residence time. The operational stability was also evaluated in a longterm experiment over 900 hours and the enzyme half-life was estimated to be approximately 2 years.  相似文献   

10.
Biological phenol degradation in a draft tube gas-liquid-solid fluidized bed (DTFB) bioreactor containing a mixed culture immobilized on spherical activated carbon particles was investigated. The characteristics of biofilms including the biofilm dry density and thickness, the volumetric oxygen mass transfer coefficient, and the phenol removal rates under different operating conditions in the DTFB were evaluated. A phenol degradation rate as high as 18 kg/m(3)-day with an effluent phenol concentration less than 1 g/m(3) was achieved, signifying the high treatment efficiency of using a DTFB.  相似文献   

11.
A methanogenic consortium was used to degrade phenol and ortho- (o-) cresol from a specific effluent of a petrochemical refinery. This effluent did not meet the local environmental regulations for phenolic compounds (178 mg/L), oils and greases (61 mg/L), ammoniacal nitrogen (75 mg/L) or sulfides (3.2 mg/L). The consortium, which degrades phenol via its carboxylation to benzoic acid, was progressively adapted to the effluent. Despite the very high effluent toxicity (EC50 of 2% with Microtox), the adapted consortium degraded 97% of 156 mg/L phenol in the supplemented effluent after 13 days in batch cultures (serum bottle). The addition of proteose peptone to the effluent is essential for phenol degradation. o-cresol was also transformed but not meta- or para-cresols. A continuous flow fixed-film anaerobic bioreactor was developed with the consortium. Treating the effluent with the bioreactor reduced phenol and phenolic compounds concentrations by 97 and 83%, respectively, for a hydraulic residence time of 6 h. This treatment also reduced by about half the effluent toxicity. Oils and greases and ammoniacal nitrogen were not affected. Similar microbiological forms were observed in serum bottles and in the bioreactors with or without the petrochemical effluent. These results indicate that this methanogenic consortium can treat efficiently the phenolic compounds in this specific petrochemical effluent.  相似文献   

12.
In recipients of rotary blood pumps for cardiac assist, the pulsatility of arterial flow is considerably diminished. This influences the shear stress patterns and streamlines in the arterial bed, with potential influence on washout and plaque growth. These effects may be aggravated in the recirculation area of stenoses, and therefore, exclude patients with atherosclerosis from the therapy with these devices. A numerical study was performed for the human carotid artery bifurcation with the assumption of a massive stenosis (75% reduction of cross-section area) in the carotid bulb. Four different flow time patterns (no support to full pump support) were applied. Flow patterns and particle residence time within the recirculation region were calculated, once within the relevant volume behind the stenosis and and once within a small region directly at the posterior heel of the stenosis. The flow patterns showed a considerable radial vorticity behind the stenosis. Mean particle residence time in the whole recirculation region was 15% less for high pump support (nearly continuous flow) compared to the natural flow pattern (0.19s compared to 0.22s), and nearly identical for the small heel region (0.28 to 0.27s). The flow simulation demonstrates, that even in the case of a pre-existing stenosis, the local effects of continuous flow on particle residence times are rather minimal (as was shown previously for intact arterial geometries). Therefore, from the point of macroscopic flow field analysis, continuous flow should not enhance the thromboembolic risk in ventricular assist device recipients.  相似文献   

13.
The bioproduction of 3-methylcatechol from toluene via Pseudomonas putida MC2 was performed in a solid-liquid two-phase partitioning bioreactor with the intent of increasing yield and productivity over a single-phase system. The solid phase consisted of HYTREL, a thermoplastic polymer that was shown to possess superior affinity for the inhibitory 3-methylcatechol compared to other candidate polymers as well as a number of immiscible organic solvents. Operation of a solid-liquid biotransformation utilizing a 10% (w/w) solid (polymer beads) to liquid phase ratio resulted in the bioproduction of 3-methylcatechol at a rate of 350 mg/L-h, which compares favorably to the single phase productivity of 128 mg/L-h. . HYTREL polymer beads were also reconstituted into polymer sheets, which were placed around the interior circumference of the bioreactor and successfully removed 3-methylcatechol from solution resulting in a rate of 3-methylcatechol production of 343 mg/L-h. Finally, a continuous biotransformation was performed in which culture medium was circulated upwards through an external extraction column containing HYTREL beads. The design maintained sub lethal concentrations of 3-methylcatechol within the bioreactor by absorbing produced 3-methylcatechol into the polymer beads. As 3-methylcatechol concentrations in the aqueous phase approached 500 mg/L the extraction column was replaced (twice) with a fresh column and the process was continued representing a simple and effective approach for the continuous bioproduction of 3-methylcatechol. Recovery of 3-methylcatechol from HYTREL was also achieved by bead desorption into methanol.  相似文献   

14.
Membrane process for biological treatment of contaminated gas streams   总被引:5,自引:0,他引:5  
A hollow fiber membrane bioreactor was investigated for control of air emissions of biodegradable volatile organic compounds (VOCs). In the membrane bioreactor, gases containing VOCs pass through the lumen of microporous hydrophobic hollow fiber membranes. Soluble compounds diffuse through the membrane pores and partition into a VOC degrading biofilm. The hollow fiber membranes serve as a support for the microbial population and provide a large surface area for VOC and oxygen mass transfer. Experiments were performed to investigate the effects of toluene loading rate, gas residence time, and liquid phase turbulence on toluene removal in a laboratory-scale membrane bioreactor. Initial acclimation of the microbial culture to toluene occurred over a period of nine days, after which a 70% removal efficiency was achieved at an inlet toluene concentration of 200 ppm and a gas residence time of 1.8 s (elimination capacity of 20 g m-3 min-1). At higher toluene loading rates, a maximum elimination capacity of 42 g m-3 min-1 was observed. In the absence of a biofilm (abiotic operation), mass transfer rates were found to increase with increasing liquid recirculation rates. Abiotic mass transfer coefficients could be estimated using a correlation of dimensionless parameters developed for heat transfer. Liquid phase recirculation rate had no effect on toluene removal when the biofilm was present, however. Three models of the reactor were created: a numeric model, a first-order flat sheet model, and a zero-order flat sheet model. Only the numeric model fit the data well, although removal predicted as a function of gas residence time disagreed slightly with that observed. A modification in the model to account for membrane phase resistance resulted in an underprediction of removal. Sensitivity analysis of the numeric model indicated that removal was a strong function of the liquid phase biomass density and biofilm diffusion coefficient, with diffusion rates below 10(-9) m2 s-1 resulting in decreased removal rates.  相似文献   

15.
A reticulated vitreous carbon foam (RVCF) was used as a surface to cultivate a model anchorage-dependent animal cell line, 3T6 (mouse embryo fibroblast). This fixed-surface bioreactor provided a low-shear, chemically-inert, and reusable environment for cell growth. An external medium recirculation loop allowed aeration, nutrient monitoring, and medium replacement without disturbing the cells. Optimal flow rates for the attachment and growth phases were determined. Growth rates comparable to static (T-flask and petri dish) cultures and agitated microcarrier cultures were achieved with appropriately high medium recirculation rates. Metabolic parameters were shown to be useful indicators of cell mass, although specific glucose consumption rates were considerably higher for cultures in the RVCF reactor. Oxygen supply was shown to be the most likely limiting factor for scaleup.  相似文献   

16.
Summary Conventional culture systems for hepatocytes generally involve cells cultured as flat, monolayer cells, with limited cell-cell contact, in a static pool of medium, unlike the liver in vivo where the parenchymal cells are cuboidal, with extensive cell-cell contact, and are continuously perfused with blood. We report here a novel bioreactor system for the culturing of primary hepatocytes with cuboidal cell shape, extensive cell-cell contact, and perfusing medium. The hepatocytes were inoculated into the bioreactor and allowed to recirculate at a rate optimal for them to collide and form aggregates. These newly-formed aggregates were subsequently entrapped in a packed bed of glass beads. The bioreactor was perfused with oxygenated nutrient medium, with controlled oxygen tension, pH, and medium perfusion rate. The hepatocytes were viable for up to the longest time point studied of 15 days in culture based on urea synthesis, albumin synthesis and cell morphology. Light microscopy studies of hepatocytes cultured for 15 days in the bioreactor showed interconnecting three-dimensional structures resembling the hepatic cell plate in the liver organ. Electron microscopy studies on the same cells revealed ultrastructure similar to the hepatocytes in vivo, including the presence of plentiful mitochondria, rough and smooth endoplasmic reticulum, glycogen granules, peroxisomes, and desmosomes. We believe that our hepatocyte bioreactor is a major improvement over conventional culture systems, with important industrial applications including toxicology, drug metabolism, and protein/peptide synthesis. The hepatocyte bioreactor concept may also be used as the basis for the development of a bioartificial liver to provide extracorporeal hepatic support to patients with hepatic failure.  相似文献   

17.
Conditions were established for optimizing the surfactant (SDS)-degrading activity of Pseudomonas C12B immobilized in polyacrylamide gel beads. Optimum activity was obtained by using immobilized cells derived from stationary phase of batch cultures and incubating with SDS at 30°C at pH 6.5. Half-saturation of the degradation system was achieved at an SDS concentration of 0.23 m . Biocatalyst stability was highest for beads maintained in basal salts medium, retaining 91% of initial activity after 161 d. In Tris/HCl buffer or distilled water, the stability was much lower, although in all cases the stability of immobilized cells was higher than that of free cells under equivalent conditions. Biocatalyst beads “inactivated” by sequential incubation in three batches of distilled water containing only SDS could be reactivated by transferring beads to nutrient medium. Beads packed in a glass column and operated in a continuous up-flow mode using SDS/basal salts eluant produced 100% hydrolysis when run at retention times above 60 min. The system was highly stable in the continuous flow mode; when operated at a residence time of 55 min (initially giving 98% degradation), the extent of degradation decreased only slightly to 93% over a continuous operation period of 3 weeks.  相似文献   

18.
The continuous aerobic degradation of phenol, mixed with readily degradable synthetic wastewater was studied over a period of 400 days at 25+/-5 degrees C temperature in a fixed bed biofilm reactor using 'Liapor' clay beads as packing material. The phenol concentration added to the reactor ranged from 0.19 to 5.17g/l and was achieved by a gradual increase of phenol in wastewater, thus adapting the microbial flora to high contaminant concentrations. A maximal removal rate of 2.92g phenol/(ld) at a hydraulic retention time (HRT) of 0.95 days and a total organic loading rate (OLR) of 15.3g COD/(ld) with a phenol concentration of 4.9g/l was observed. However, this was not a stable rate at such high phenol loading. At the end of reactor operation on day 405, the phenol removal rate was 2.3g/(ld) at a influent phenol concentration of 4.9g/l. There were no phenol intermediates present in the reactor, as evident from corresponding COD, phenol removal and the absence of fatty acids. Omission of organic nitrogen compounds or of urea in influent feed was not favourable for optimal phenol removal. The phenol degradation profile that was studied in shake flasks indicated that the presence of a acetate which represent as an intermediate of phenol degradation retarded the phenol degradation. The highest phenol degradation rate observed in batch assays was 3.54g/(ld).  相似文献   

19.
The macro-kinetic behavior of phenol removal from a synthetic exhaust gas was investigated theoretically as well as experimentally by means of two identical continuously operating laboratory-scale biological filter bed columns. A mixture of peat and glass beads was used as filter material. After sterilization it was inoculated with a pure strain of Pseudomonas putida, as employed in previous experimental studies. To determine the influence of the superficial gas flow rate on biofilter performance and to evaluate the phenol concentration profiles along the column, two series of continuous tests were carried out varying either the inlet phenol concentration, up to 1650 mg . m(-3), or the superficial gas flow rate, from 30 to 460 m(3) . m(-2) . h(-1). The elimination capacity of the biofilter is proved by a maximum volumetric phenol removal rate of 0.73 kg . m(-3) . h(-1). The experimental results are consistent with a biofilm model incorporating first-order substrate elimination kinetics. The model may be considered a useful tool in scaling-up a biofiltration system. Furthermore, the deodorization capacity of the biofilter was investigated, at inlet phenol concentrations up to 280 mg . m(-3) and superficial gas flow rates ranging from 30 to 92 m(3) . m(-2) . h(-1). The deodorization of the gas was achieved at a maximum inlet phenol concentration of about 255 mg . m(-3), operating at a superficial gas flow rate of 30 m(3) . m(-2) . h(-1). (c) 1996 John Wiley & Sons, Inc.  相似文献   

20.
The effect of the number of stages and cell carrier loading on the steady-state and startup performance of a continuous pulsed plate bioreactor with glass beads as the cell carrier material for biodegradation of phenol in wastewater using immobilized Nocardia hydrocarbonoxydans has been studied. It was found that the performance of the pulsed plate bioreactor during startup and at steady state can be improved by an increase in cell carrier loading, number of stages, total plate stack height, and with a decrease in plate spacing. The startup time for the continuous bioreactor can be decreased by increasing the number of preacclimatization steps for the cells. The attainment of steady effluent phenol concentration can be considered as an indication of steady state of the continuous bioreactor, as when phenol concentration attained a steady value, biofilm thickness, and the attached biomass dry weight also attained a constant value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号