首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Previous investigations on the distribution of [18O]Pi isotopomers formed by hydrolysis of [gamma-18O]ATP by the chloroplast F1-ATPase (CF1) showed that a single reaction pathway is used by all participating sites and that the pathway is modulated by ATP concentration as expected for cooperative interactions between catalytic sites. Such oxygen exchange measurements have been applied to CF1 modified at a single catalytic or noncatalytic site by 2-azido adenine nucleotides. When less than one catalytic or one noncatalytic site per enzyme is modified, hydrolysis occurs in part by the pathway of the unmodified enzyme plus at least one additional pathway at 200 microM and two additional pathways at 4 microM [gamma-18O]ATP. Thus, three sites are potentially catalytically active. The two new pathways shown by the derivatized enzyme logically can arise from nonidentical interactions of the remaining two underivatized beta subunits with the derivatized beta subunit. Reversals of bound ATP cleavage before Pi is released are increased, and the amount of product formed by the new pathways is changed when the ATP concentration is lowered. These modulations must result from the behavior of two remaining active catalytic sites rather than of one catalytic and one regulatory site. When the CF1 is derivatized more extensively, the original catalytic pathway is lost, and two catalytic pathways that do not show modulation by ATP concentration are found. The remaining beta subunits now have weak but independent catalytic capacity. In addition, the enzyme is no longer activated by Ca2+, loses MgGTPase activity, and is much less sensitive to azide.  相似文献   

2.
Sarcoplasmic reticulum vesicles rendered leaky by exposure to alkaline pH, like intact vesicles, catalyze a rapid Mg2+-dependent exchange of oxygens of medium Pi with water. The exchange with 10 mM Pi is strongly inhibited by 0.15 mM Ca2+. Upon addition and hydrolysis of ITP or ATP, a rapid phosphate-oxygen exchange is observed even with 0.15 mM Ca2+ present and a definite but smaller exchange at 8 mM Ca2+. Oxygen exchange per Pi formed is greater with ITP than with ATP. When no Pi is initially present, the extent of oxygen exchange is increased with time of incubation as Pi is formed. With 18O-labeled Pi present, ATP hydrolysis accelerates 18O loss. The results show that much of the oxygen exchange occurs as a result of reversible binding of medium Pi. Thus the binding and cleavage of ITP or ATP overcomes the Ca2+ inhibition of the medium Pi in equilibrium HOH exchange. Such findings support the concept that the cleavage cycle includes a transient conformational form which can reversibly react with Pi to give a phosphoryl enzyme and resultant oxygen exchange or in a rate-limiting step decay to a form with high Ca2+ and NTP affinity.  相似文献   

3.
J Mendel-Hartvig  R A Capaldi 《Biochemistry》1991,30(45):10987-10991
The rate of trypsin cleavage of the epsilon subunit of Escherichia coli F1F0 (ECF1F0) is shown to be ligand-dependent as measured by Western analysis using monoclonal antibodies. The cleavage of the epsilon subunit was rapid in the presence of ADP alone, ATP + EDTA, or AMP-PNP + Mg2+, but slow when Pi was added along with ADP + Mg2+ or when ATP + Mg2+ was added to generate ADP + Pi (+Mg2+) in the catalytic site. Trypsin treatment of ECF1Fo was also shown to increase enzymic activity on a time scale corresponding to that of the cleavage of the epsilon subunit, indicating that the epsilon subunit inhibits ATPase activity in ECF1Fo. The ligand-dependent conformational changes in the epsilon subunit were also examined in cross-linking experiments using the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC). In the presence of ATP + Mg2+ or ADP + Pi + Mg2+, the epsilon subunit cross-linked product was much reduced. Prior reaction of ECF1Fo with dicyclohexylcarbodiimide (DCCD), under conditions in which only the Fo part was modified, blocked the conformational changes induced by ligand binding. When the enzyme complex was reacted with DCCD in ATP + EDTA, the cleavage of the epsilon subunit was rapid and yield of cross-linking of beta to epsilon subunit low, whether trypsin cleavage was conducted in ATP + EDTA or ATP + Mg2+. When enzyme was reacted with DCCD in ATP + Mg2+, cleavage of the epsilon subunit was slow and yield of cross-linking of beta to epsilon high, under all nucleotide conditions for proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A new approach for assessing of catalytic cooperativity may occur between subunits has been applied to succinyl-CoA synthetase. This is based on the extent of oxygen exchange between medium [18O]Pi and succinate per molecule of ATP cleaved during steady state succinyl-CoA synthesis. Suitable traps are used to remove succinyl-CoA and ADP as soon as they are released to the medium. With the Escherichia coli enzyme, which has an alpha 2 beta 2 structure, a pronounced increase in oxygen exchange per ATP cleaved occurs as ATP concentration is lowered. In contrast, when the CoA concentration is varied, the oxygen exchange per molecule of product formed remains constant. Also, with the pig heart enzyme, which is shown to retain its alpha beta structure during catalysis and thus has only one catalytic site, no modulation of oxygen exchange by ATP concentration is observed. These experimental findings show that the binding of an ATP either promotes the dissociation of bound succinyl-CoA or decreases its participation in exchange. Measurement of the distribution of [18O]Pi species found as exchange occurs shows that only one catalytic sequence is involved in exchange at various ATP concentrations. These observations along with other controls and results eliminate most other explanations of the ATP modulation of the exchange and suggest that binding of ATP at one catalytic site promotes catalytic site promotes catalytic events at an alternate catalytic site.  相似文献   

5.
During net nucleoside triphosphate synthesis by chloroplast ATP synthase the extent of water oxygen incorporation into each nucleoside triphosphate released increases with decrease in ADP, GDP or IDP concentration. Likewise, during net ATP hydrolysis by the Mg2+-activated chloroplast ATPase, the extent of water oxygen incorporation into each Pi released increases as the ATP, GTP, or ITP concentration is decreased. However, the concentration ranges in which substrate modulation occurs differs with each nucleotide. Modulation of oxygen exchange during synthesis and hydrolysis of adenine nucleotides, as measured by variation in the extent of water oxygen incorporation into products, occurs below 250 microM. In contrast, guanosine and inosine nucleotides alter the extent of exchange at higher and much wider concentration ranges. Activation of the chloroplast ATPase by either heat or trypsin results in similar catalytic behavior as monitored by ATP modulation of oxygen exchanges during hydrolysis in the presence of Mg2+. More exchange capacity is evident with octylglucoside-activated enzyme at all ATP concentrations. High levels of tentoxin were also found to alter the catalytic exchange parameters resulting in continued water oxygen exchange into Pi released during hydrolysis at high ATP concentrations. Little or no oxygen exchange accompanies ATP hydrolysis in the presence of Ca2+. The [18O]Pi species formed from highly gamma-18O-labeled ATP at lower ATP concentrations gives a distribution as expected if only one catalytic pathway is operative at a given ATP concentration. This and other results support the concept of catalytic cooperativity between alternating sites as explanation for the modulation of oxygen exchange by nucleotide concentration.  相似文献   

6.
The kinetic mechanism of pyruvate phosphate dikinase (PPDK) from Bacteroides symbiosus was investigated with several different kinetic diagnostics. Initial velocity patterns were intersecting for AMP/PPi and ATP/Pi substrate pairs and parallel for all other substrate pairs. PPDK was shown to catalyze [14C]pyruvate in equilibrium phosphoenolpyruvate (PEP) exchange in the absence of cosubstrates, [14C]AMP in equilibrium ATP exchange in the presence of Pi/PPi but not in their absence, and [32P]Pi in equilibrium PPi exchange in the presence of ATP/AMP but not in their absence. The enzyme was also shown, by using [alpha beta-18O, beta, beta-18O2]ATP and [beta gamma-18O, gamma, gamma, gamma-18O3]ATP and 31P NMR techniques, to catalyze exchange in ATP between the alpha beta-bridge oxygen and the alpha-P nonbridge oxygen and also between the beta gamma-bridge oxygen and the beta-P nonbridge oxygen. The exchanges were catalyzed by PPDK in the presence of Pi but not in its absence. These results were interpreted to support a bi(ATP,Pi) bi(AMP,PPi) uni(pyruvate) uni(PEP) mechanism. AMP and Pi binding order was examined by carrying out dead-end inhibition studies. The dead-end inhibitor adenosine 5'-monophosphorothioate (AMPS) was found to be competitive vs AMP, noncompetitive vs PPi, and uncompetitive vs PEP. The dead-end inhibitor imidodiphosphate (PNP) was found to be competitive vs PPi, uncompetitive vs AMP, and uncompetitive vs PEP. These results showed that AMP binds before PPi. The ATP and Pi binding order was studied by carrying out inhibition, positional isotope exchange, and alternate substrate studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The rate of trypsin cleavage of the epsilon subunit of Escherichia coli F1 (ECF1) has been found to be ligand-dependent, as measured indirectly by the activation of the enzyme that occurs on protease digestion, or when followed directly by monitoring the cleavage of this subunit using monoclonal antibodies. The cleavage of the epsilon subunit was fast in the presence of ADP alone, ADP + MG2+, ATP + EDTA, or AMP-PNP, but slow when Pi was added along with ADP + Mg2+ or when ATP + Mg2+ was added to generate ADP + Pi (+Mg2+) in the catalytic site(s). The half-maximal concentration of Pi required in the presence of ADP + Mg2+ to protect the epsilon subunit from cleavage by trypsin was 50 microM, which is in the range measured for the high-affinity binding of Pi to F1. The ligand-dependent conformational changes in the epsilon subunit were also examined in cross-linking experiments using the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). In the presence of ATP + Mg2+ or ADP + Mg2+ + Pi, the epsilon subunit cross-linked to beta in high yield. With ATP + EDTA or ADP + Mg2+ (no Pi), the yield of the beta-epsilon cross-linked product was much reduced. We conclude that the epsilon subunit undergoes a conformational change dependent on the presence of Pi. It has been found previously that binding of the epsilon subunit to ECF1 inhibits ATPase activity by decreasing the off rate of Pi [Dunn, S. D., Zadorozny, V. D., Tozer, R. G., & Orr, L. E. (1987) Biochemistry 26, 4488-4493]. This reciprocal relationship between Pi binding and epsilon-subunit conformation has important implications for energy transduction by the E. coli ATP synthase.  相似文献   

8.
Digestion of the F1-ATPase of Escherichia coli with trypsin stimulated ATP hydrolytic activity and removed the delta and epsilon subunits of the enzyme. A species represented by the formula alpha 1(3) beta 1(3) gamma 1, where alpha 1, beta 1 and gamma 1 are forms of the native alpha, beta and gamma subunits which have been attacked by trypsin, was formed by trypsin digestion in the presence of ATP. In the presence of ATP and MgCl2, conversion of gamma to gamma 1 was retarded and the enzyme retained the epsilon subunit. These results imply that binding of ATP to the beta subunits alters the conformation of ECF1 to increase the accessibility of the gamma subunit to trypsin. The likely trypsin cleavage sites in the alpha, beta and gamma subunits are discussed. ECF1 from the alpha subunit-defective mutant uncA401, or after treatment with N,N'-dicyclohexylcarbodiimide or 4-chloro-7-nitrobenzofurazan, was present in a conformation in which the gamma subunit was readily accessible to trypsin and could not be protected by the presence of ATP and MgCl2. In a similar manner to native E. coli F1-ATPase, the hydrolytic activity of the trypsin-digested enzyme was stimulated by the detergent lauryldimethylamine N-oxide. Since the digested enzyme lacked the epsilon subunit, a putative inhibitor of hydrolytic activity, a mechanism for the stimulation which involves loss or movement of this subunit is untenable.  相似文献   

9.
The chloroplast-type F(1) ATPase is the key enzyme of energy conversion in chloroplasts, and is regulated by the endogenous inhibitor epsilon, tightly bound ADP, the membrane potential and the redox state of the gamma subunit. In order to understand the molecular mechanism of epsilon inhibition, we constructed an expression system for the alpha(3)beta(3)gamma subcomplex in thermophilic cyanobacteria allowing thorough investigation of epsilon inhibition. epsilon Inhibition was found to be ATP-independent, and different to that observed for bacterial F(1)-ATPase. The role of the additional region on the gamma subunit of chloroplast-type F(1)-ATPase in epsilon inhibition was also determined. By single molecule rotation analysis, we succeeded in assigning the pausing angular position of gamma in epsilon inhibition, which was found to be identical to that observed for ATP hydrolysis, product release and ADP inhibition, but distinctly different from the waiting position for ATP binding. These results suggest that the epsilon subunit of chloroplast-type ATP synthase plays an important regulator for the rotary motor enzyme, thus preventing wasteful ATP hydrolysis.  相似文献   

10.
We have measured the rate constant for ATP release from myosin heads of Ca2+-activated, demembranated muscle fibers using the technique of phosphate-water oxygen exchange. Single rabbit psoas fibers were held in an activating solution in [18O]water ([MgATP] = 8 mM, ionic strength = 0.2 M, pH = 7.0, 24 degrees C). After about 20% hydrolysis of ATP, product Pi and remaining ATP were isolated, and the distribution of 18O in both molecules was analyzed using a mass spectrometer. The exchange in Pi was similar to that previously reported (Hibberd, M. G., Webb, M. R., Goldman, Y. E., and Trentham, D. R. (1985) J. Biol. Chem. 260, 3496-3501). The amount of 18O in ATP gave a rate constant of about 4 s-1 for ATP release, if it is assumed that each rate constant in the pathway of ATP hydrolysis has the same value for all myosin ATPase sites. However, the distribution of 18O in both released Pi and ATP is not well explained by a single pathway for ATP hydrolysis. We present a model that indicates how such distributions could arise from a range of values for the rate constants for Pi and ATP release from actomyosin, and this range is determined by differences in the amounts of strain in attached crossbridges. The kinetic information obtained from these isotope exchange experiments is compared to show that they give a compatible set of rate constants for actomyosin in fibers.  相似文献   

11.
A theoretical analysis has been derived which allows the analytical calculation of the complete distribution of 18O-labeled Pi species expected to occur during medium Pi equilibrium HOH exchange of [18O]Pi and to be produced by intermediate Pi equilibrium HOH exchange during net hydrolysis of [18O]PPi or other labeled phosphate compounds. The observed distributions with catalysis by yeast inorganic pyrophosphatase are found to agree closely with the theoretical values indicating that the exchange reaction can be adequately described by a unique value of the partitioning of bound Pi between release from the enzyme versus formation of bound PPi with loss of an oxygen to the water. The limitations on the exclusion of other mechanisms are discussed. The extent of this partitioning does change, however, under some experimental conditions. At low pH, with activation by Mg2+ or Mn2+, the relative rate of release of Pi is found to increase. The extent of exchange is also dependent on the nature of the activating metal, being greatest with Co2+. During PPi hydrolysis with PPi in excess over Mg2+, a shift to lower extents of exchange is observed.  相似文献   

12.
At an intermediate stage in the hydrolysis of magnesium adenosine 5'-phosphate (MgATP) by myosin or actomyosin, there is an exchange of oxygen between water and the P gamma group of enzyme-bound nucleotide. Starting with [P gamma-18O]ATP as substrate, the exchange is revealed in the [18O]Pi species that are ultimately released as product into the reaction medium. An analysis of the distribution of these labeled Pi species, which contain 3, 2, 1, or none of the 18O atoms originally on the P gamma of ATP, is used to probe intermediate stages of the hydrolytic mechanism. In recent years, studies of this kind by several groups have shown that more than one pathway of hydrolysis operates. The work reported here demonstrates that two of these pathways are spurious; one is a "nonexchanging MgATPase" that is present in fresh myosin preparations; the other is an induced slow exchange that develops in myosin during storage (-20 degrees C) and subsequent aging (4 degrees C). However, after correction for these artifacts, two normal pathways for actomyosin hydrolysis remain. These normal pathways differ in the mode of interaction between actin and myosin in the course of hydrolysis; one is the Lymn-Taylor pathway where oxygen exchange occurs at a stage when actin and myosin are dissociated; the other is a pathway in which actin and myosin are associated during oxygen exchange. Each of these two pathways contributes an equal amount of Pi to the product pool. Thus, on average, each myosin head uses each of these pathways half the time. The findings suggest, e.g., that during contraction, myosin can dissociate from the actin filament only during every other cycle of MgATP hydrolysis or that only half the heads, at any one time, can exchange oxygen while free of the actin filament.  相似文献   

13.
The oxygen exchange parameters for the hydrolysis of ATP by the F1-ATPase have been determined over a 140,000-fold range of ATP concentrations and a 5,000-fold range of reaction velocity. The average number of water oxygens incorporated into each Pi product ranges from a limit of about 1.02 at saturating ATP concentrations to a limit of about 3.97 at very low ATP concentrations. The latter value represents 400 reversals of hydrolysis of bound ATP prior to Pi dissociation. In accord with the binding change mechanism, this means that ATP binding at one catalytic site increases the off constant of Pi and ADP from another catalytic site by at least 20,000-fold, equivalent to the use of 6 kcal mol-1 of ATP binding energy to promote product release. The estimated rate of reversal of hydrolysis of F1-ATPase-bound ATP to bound ADP + Pi varies only about 5-fold with ATP concentration. The rate is similar that observed previously for reversal of bound ATP hydrolysis or synthesis with the membrane-bound enzyme and is greater than the rate of net ATP formation during oxidative phosphorylation. This adds to evidence that energy input or membrane components are not required for bound ATP synthesis.  相似文献   

14.
The epsilon subunit of Escherichia coli F1-ATPase is a tightly bound but dissociable partial inhibitor of ATPase activity. The effects of epsilon on the enzyme were investigated by comparing the ATPase activity and aurovertin binding properties of the epsilon-depleted F1-ATPase and the epsilon-replete complex. Kinetic data of multisite ATP hydrolysis were analyzed to give the best fit for one, two, or three kinetic components. Each form of F1-ATPase contained a high-affinity component, with a Km near 20 microM and a velocity of approximately 1 unit/mg. Each also exhibited a component with a Km in the range of 0.2 mM. The velocity of this component was 25 units/mg for epsilon-depleted ATPase but only 4 units/mg for epsilon-replete enzyme. The epsilon-depleted enzyme also contained a very low affinity component not present in the epsilon-replete enzyme. In unisite hydrolysis studies, epsilon had no effect on the equilibrium between substrate ATP and product ADP.P1 at the active site but reduced the rate of product release 15-fold. These results suggest that epsilon subunit slows a conformational change that is required to reduce the affinity at the active site, allowing dissociation of product. It is suggested that inhibition of multisite hydrolysis by epsilon is also due to a reduced rate of product release. epsilon-depleted F1-ATPase showed little of no modulation of aurovertin fluorescence by added ADP and ATP. Aurovertin fluorescence titrations in buffer containing ethylenediaminetetraacetic acid (EDTA) revealed that epsilon-depleted enzyme had high affinity for aurovertin (Kd less than 0.1 microM) regardless of the presence of nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The 18 S dynein from the outer arm of Chlamydomonas flagella is composed of an alpha subunit containing an alpha heavy chain (Mr = approximately 340,000) and an Mr = 16,000 light chain, and a beta subunit containing a beta heavy chain (Mr = approximately 340,000), two intermediate chains (Mr = 78,000 and 69,000), and seven light chains (Mr = 8,000-20,000). Both subunits contain ATPase activity. We have used 8-azidoadenosine 5'-triphosphate (8-N3 ATP), a photoaffinity analog of ATP, to investigate the ATP-binding sites of intact 18 S dynein. 8-N3ATP is a competitive inhibitor of 18 S dynein's ATPase activity and is itself hydrolyzed by 18 S dynein; moreover, 18 S dynein's hydrolysis of ATP and 8-N3ATP is inhibited by vanadate to the same extent. 8-N3ATP therefore appears to interact with at least one of 18 S dynein's ATP hydrolytic sites in the same way as does ATP. When [alpha- or gamma-32P]8-N3ATP is incubated with 18 S dynein in the presence of UV irradiation, label is incorporated primarily into the alpha, beta, and Mr = 78,000 chains; a much smaller amount is incorporated into the Mr = 69,000 chain. The light chains are not labeled. The incorporation is UV-dependent, ATP-sensitive, and blocked by preincubation of the enzyme with vanadate plus low concentrations of ATP or ADP. These results suggest that the alpha heavy chain contains the site of ATP binding and hydrolysis in the alpha subunit. In the beta subunit, the beta heavy chain and one or both intermediate chains may contain ATP-binding sites.  相似文献   

16.
The hydrolysis of ATP catalyzed by phosphorylating vesicles prepared from bovine heart mitochondria by ultrasonic disruption was studied in H218O. Provided that an ATP-generating system was included to prevent accumulation of ADP due to hydrolysis, the addition of 20 mM arsenate or 0.5 mM 2,4-dinitrophenol to the incubation mixture either singly or together, had little or no effect on the number of oxygen atoms from H2O incorporated (on the average) into each molecule of Pi formed by hydrolysis (the O:P ratio). As the ATP concentration was reduced from 2.0 to 0.05 mM, the O:P ratio increased from about 1.4 to over 2.0 and, although dinitrophenol significantly increased the ATPase activity, it did not significantly alter the O:P ratio for a given ATP level. This implies that the uncoupler does not act directly on the terminal transphosphorylation step. Companion experiments were performed in which 18O label was placed either initially in H2O or Pi. Under conditions where extensive exchange from H218O into Pi occurred, no 18O was lost from medium Pi under identical circumstances, thus showing that the exchange was intermediate and did not involve medium Pi. Kinetic plots of v vs. v/S were nonlinear with respect to ATPase activity. The kinetic data, as well as the Pi = H218O exchange data, are consistent with enzyme models having multiple forms of catalytic sites. Several models are evaluated and attempts are made to distinguish between some of the simpler cases of these models.  相似文献   

17.
This review concerns the catalytic sector of F1 factor of the H+-dependent ATPases in mitochondria (MF1), bacteria (BF1) and chloroplasts (CF1). The three types of F1 have many similarities with respect to the structural parameters, subunit composition and catalytic mechanism. An alpha 3 beta 3 gamma delta epsilon stoichiometry is now accepted for MF1 and BF1; the alpha 2 beta 2 gamma 2 delta 2 epsilon 2 stoichiometry for CF1 remains as matter of debate. The major subunits alpha, beta and gamma are equivalent in MF1, BF1 and CF1; this is not the case for the minor subunits delta and epsilon. The delta subunit of MF1 corresponds to the epsilon subunit of BF1 and CF1, whereas the mitochondrial subunit equivalent to the delta subunit of BF1 and CF1 is probably the oligomycin sensitivity conferring protein (OSCP). The alpha beta gamma assembly is endowed with ATPase activity, beta being considered as the catalytic subunit and gamma as a proton gate. On the other hand, the delta and epsilon subunits of BF1 and CF1 most probably act as links between the F1 and F0 sectors of the ATPase complex. The natural mitochondrial ATPase inhibitor, which is a separate protein loosely attached to MF1, could have its counterpart in the epsilon subunit of BF1 and CF1. The generally accepted view that the catalytic subunit in the different F1 species is beta comes from a number of approaches, including chemical modification, specific photolabeling and, in the case of BF1, use of mutants. The alpha subunit also plays a central role in catalysis, since structural alteration of alpha by chemical modification or mutation results in loss of activity of the whole molecule of F1. The notion that the proton motive force generated by respiration is required for conformational changes of the F1 sector of the H+-ATPase complex has gained acceptance. During the course of ATP synthesis, conversion of bound ADP and Pi into bound ATP probably requires little energy input; only the release of the F1-bound ATP would consume energy. ADP and Pi most likely bind at one catalytic site of F1, while ATP is released at another site. This mechanism, which underlines the alternating cooperativity of subunits in F1, is supported by kinetic data and also by the demonstration of partial site reactivity in inactivation experiments performed with selective chemical modifiers. One obvious advantage of the alternating site mechanism is that the released ATP cannot bind to its original site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The extent of oxygen exchange between phosphate and water has been measured for the calcium-regulated magnesium-dependent ATPase activity of chemically skinned fibers from rabbit skeletal muscle. The oxygen exchange was determined for isometrically held fibers by measuring with a mass spectrometer the distribution of 18O atoms in the product inorganic phosphate when ATP hydrolysis was carried out in H2(18)O. The extent of exchange was much greater in relaxed muscle (free Ca2+ less than 10(-8) M) than in calcium-activated muscle (free Ca2+ approximately equal to 3 X 10(-5) M). Activated fibers had an ATPase activity at least 30-fold greater than the relaxed fibers. These results correlate well with the extents of oxygen exchange accompanying magnesium-dependent myosin and unregulated actomyosin ATPase activities, respectively. In relaxed fibers, comparison of the amount of exchange with the ATPase activity suggests that the rate constant for the reformation of myosin-bound ATP from the myosin products complex is about 10 s-1 at 20 degrees C and pH 7.1. In each experiment the distribution of 18O in the Pi formed was incompatible with a single pathway for ATP hydrolysis. In the case of the calcium-activated fibers, the multiple pathways for ATP hydrolysis appeared to be an intrinsic property of the actomyosin ATPase in the fiber. These results indicate that in muscle fibers, as in isolated actomyosin, cleavage of protein-bound ATP is readily reversible and that association of the myosin products complex with actin promotes Pi release.  相似文献   

19.
General structural features of the chloroplast ATP synthase are summarized highlighting differences between the chloroplast enzyme and other ATP synthases. Much of the review is focused on the important interactions between the epsilon and gamma subunits of the chloroplast coupling factor 1 (CF(1)) which are involved in regulating the ATP hydrolytic activity of the enzyme and also in transferring energy from the membrane segment, chloroplast coupling factor 0 (CF(0)), to the catalytic sites on CF(1). A simple model is presented which summarizes properties of three known states of activation of the membrane-bound form of CF(1). The three states can be explained in terms of three different bound conformational states of the epsilon subunit. One of the three states, the fully active state, is only found in the membrane-bound form of CF(1). The lack of this state in the isolated form of CF(1), together with the confirmed presence of permanent asymmetry among the alpha, beta and gamma subunits of isolated CF(1), indicate that ATP hydrolysis by isolated CF(1) may involve only two of the three potential catalytic sites on the enzyme. Thus isolated CF(1) may be different from other F(1) enzymes in that it only operates on 'two cylinders' whereby the gamma subunit does not rotate through a full 360 degrees during the catalytic cycle. On the membrane in the presence of a light-induced proton gradient the enzyme assumes a conformation which may involve all three catalytic sites and a full 360 degrees rotation of gamma during catalysis.  相似文献   

20.
H(+)-F(O)F(1)-ATP synthase couples proton flow through its membrane portion, F(O), to the synthesis of ATP in its headpiece, F(1). Upon reversal of the reaction the enzyme functions as a proton pumping ATPase. Even in the simplest bacterial enzyme the ATPase activity is regulated by several mechanisms, involving inhibition by MgADP, conformational transitions of the epsilon subunit, and activation by protonmotive force. Here we report that the Met23Lys mutation in the gamma subunit of the Rhodobacter capsulatus ATP synthase significantly impaired the activation of ATP hydrolysis by protonmotive force. The impairment in the mutant was due to faster enzyme deactivation that was particularly evident at low ATP/ADP ratio. We suggest that the electrostatic interaction of the introduced gammaLys23 with the DELSEED region of subunit beta stabilized the ADP-inhibited state of the enzyme by hindering the rotation of subunit gamma rotation which is necessary for the activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号