首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two BSA-specific Ts cell clones have been isolated from CBA/J mice tolerized by low doses of BSA. Together with one Ts cell clone isolated from an immune animal, they have recently been characterized with regard to phenotypes and in vitro functions. In the present report the in vivo effector functions of two of them (Ts cell clones BVI/5 and HF1.MS) are described. BSA-primed lymph node cells from CBA/J mice, which had received BVI/5 or HF1.MS Ts cells at the time of immunization, do not respond to a subsequent in vitro antigenic challenge. A human gamma-globulin (HGG)-specific lymph node cell proliferation is not influenced. BVI/5 Ts cells injected into mice at the time of priming with fluorescein (Flu)-conjugated BSA or Flu-HGG inhibit the humoral anti-Flu-response in Flu-BSA-primed animals. The anti-Flu-response in Flu-HGG-primed animals is only marginally affected by BVI/5 Ts cells. The data show that it is possible to induce immunologic unresponsiveness at the humoral level by reexposing in vitro propagated Ts cell clones to their syngenic in vivo environment.  相似文献   

2.
Both cDNA and genomic clones of the T cell receptor (TCR) alpha- and beta-chain genes of the alloreactive cytotoxic T lymphocyte (CTL) clone F3 were examined. Two distinct rearrangement events, one functional and one non-functional, were found for both the alpha and beta loci. Thus only a single functional TCR alpha beta heterodimer could be defined, consistent with allelic exclusion in the TCR genes. The V alpha gene employed by F3 is part of a six-member V alpha subfamily. Genomic clones containing each member of this subfamily were isolated and the V alpha nucleotide sequences determined. Five of these six genes are functional; these genes differ from each other by 7-14% at the amino acid level. A single dominant hypervariable region was defined within this subfamily, in contrast to the pattern of variability seen between V alpha genes in general.  相似文献   

3.
We have examined the expression of TCR genes in 4-hydroxy-3-nitrophenyl-acetyl (NP)-specific Ts cell hybridomas. Each of three independently isolated hybridomas expressed in-frame TCR alpha-chain rearrangements derived from the original suppressor Ts cell. Different V alpha and J alpha gene segments were rearranged and expressed in each Ts cell line. The only TCR beta-chain expressed in these cells was derived from the BW5147 fusion partner. Expression of the BW5147 beta-chain was found to correlate with cell surface Ag binding, inasmuch as subclones derived from one of the original Ts lines expressed greatly reduced levels of beta-chain mRNA and no longer bound to NP-coupled RBC. Subclones that continued to express beta-chain mRNA did bind to NP-coupled RBC. This suggests that the Ag receptor on Ts hybridomas is a TCR-alpha beta dimer composed of a unique alpha-chain and the BW5147 beta-chain. Ag binding could be modulated by preincubation of Ts hybridoma cells with anti-TCR-alpha beta antibody, thereby supporting this conclusion. Suppressor factor activity was measured in the conditioned media of Ts subclones that differed by 250-fold in levels of beta-chain mRNA expression. No difference in suppressor factor activity was found; conditioned media from these subclones suppressed both plaque-forming cell responses and delayed-type hypersensitivity responses at approximately equivalent dilutions. Suppressor factor activity in the conditioned media of both a beta-chain negative subclone and a beta-chain positive subclone could be absorbed with an antibody that recognizes the TCR alpha-chain, but not with an antibody that recognizes the TCR beta-chain. We conclude that suppressor factor activity in the conditioned media of these Ts hybridomas is not derived from surface TCR-alpha beta receptors, although it does share TCR alpha-chain determinants.  相似文献   

4.
T cell receptor (TCR) gamma gene rearrangements were examined in panels of human T cell clones expressing TCR alpha/beta or gamma/delta heterodimers. Over half of the alpha/beta+ clones had both chromosomes rearranged to C gamma 2 but this was the case for only 20% of the gamma/delta+ clones. While more than half of the gamma/delta+ clones showed a V9JP rearrangement, this configuration was absent from all 49 alpha/beta+ clones analysed. However, this was not a result of all rearrangements being to the more 3' J gamma genes as 11 alpha/beta+ clones had rearrangement(s) to JP1, the most 5' J gamma gene segment. Both alpha/beta+ and gamma/delta+ clones showed a similar pattern of V gamma gene usage in rearrangements to J gamma 1 or J gamma 2 with a lower proportion of the more 3' genes being rearranged to J gamma 2 than for the more 5' genes. Several alpha/beta+ and several gamma/delta+ clones had noncoordinate patterns of rearrangement involving both C gamma 1 and C gamma 2. Eleven out of fourteen CD8+ clones tested had both chromosomes rearranged to C gamma 2 whereas all clones derived from CD4-8- cells and having unconventional phenotypes (CD4-8- or CD4+8+) had at least one C gamma 1 rearrangement. Twelve out of twenty-seven CD4+ clones also had this pattern, suggesting that CD4-8+ clones had a tendency to utilize more 3' J gamma gene segments than CD4+ clones. There was some evidence for interdonor variation in the proportions of TCR gamma rearrangements to C gamma 1 or C gamma 2 in alpha/beta+ clones as well as gamma/delta+ clones. The results illustrate the unique nature of the V9JP rearrangement in gamma/delta+ clones and the possible use of a sequential mechanism of TCR gamma gene rearrangements during T cell differentiation is discussed.  相似文献   

5.
To determine whether T cell receptor genes follow the same principle of allelic exclusion as B lymphocytes, we have analyzed the rearrangements and expression of TCR alpha and beta genes in the progeny of the CD3+, CD4-/CD8- M14T line. Here, we show that this line can undergo secondary rearrangements that replace the pre-existing V alpha-J alpha rearrangements by joining an upstream V alpha gene to a downstream J alpha segment. Both the productively and nonproductively rearranged alleles in the M14T line can undergo secondary rearrangements while its TCR beta genes are stable. These secondary recombinations are usually productive, and new forms of TCR alpha polypeptides are expressed in these cells in association with the original C beta chain. Developmental control of this V alpha-J alpha replacement phenomenon could play a pivotal role in the thymic selection of the T cell repertoire.  相似文献   

6.
Proteolipid protein (PLP) is the major protein of central nervous system myelin. SJL (H-2s) mice immunized with a synthetic peptide corresponding to PLP residues 139-151 develop acute EAE. In this study, 6 IAs-restricted, CD4+, TCR alpha beta-bearing T cell clones were derived from SJL/J mice after immunization with this synthetic peptide. The clones responded in in vitro proliferative assays to the whole PLP molecule and to PLP peptide 139-151, but not to irrelevant Ag. They also responded to truncated and overlapping forms of the peptide but five distinct reactivity patterns were observed using these peptides. A panel of anti-TCR V beta mAb and TCR V beta-specific cDNA probes were used to determine the TCR V beta usage of the clones. Five clones were found to use four different V beta (V beta 2, V beta 6, V beta 10, or V beta 17a), whereas the V beta on the sixth clone could not be identified. Five of the clones induced EAE of varying severity upon adoptive transfer into naive syngeneic mice or mice pretreated with irradiation and pertussis and one clone was nonencephalitogenic. The Ag-specific proliferative response of all but the nonencephalitogenic clone could be blocked by an anti-CD4 mAb. Thus, the clones showed differences in their fine specifity, TCR V beta usage, sensitivity to antibody blocking, and encephalitogenic potency. These data demonstrate that the T cell response to the encephalitogenic PLP peptide 139-151 is heterogeneous.  相似文献   

7.
Three rat mAb, RR3-15, RR3-16, and RR3-18, were established by fusing spleen cells from a rat immunized with the male Ag-specific cytolytic T cell clone, OH6, to mouse myeloma cells. The mAb was identified by their capacity to focus the cytolytic activity of the OH6 CTL clone on nonspecific target cells via FcR-FcR interaction. That all three mAb recognized the OH6 TCR was confirmed by immunoprecipitation studies in which each antibody precipitated a 90 kDa disulfide-linked heterodimer characteristic of the TCR. Surface immunofluorescence staining of a panel of T cell lines and splenic T cell populations showed that RR3-16 reacted not only to the OH6 T cell clone but also to a minor fraction of normal T cells. This reactivity was found to be due to the expression of a gene in the V alpha 3 family. However, RR3-16 did not react with all T cell lines and clones known to express genes from the V alpha 3 family. cDNA sequences of three independent RR3-16+ T cell hybridomas analyzed by polymerase chain reaction were identical to the previously published V alpha 3 sequence of the CTL clone C9. Thus, the mAb RR3-16 is specific for a single member of the TCR V alpha 3 gene family. Analysis of the expression of RR3-16+ TCR in CD4+ and CD8+ subsets of peripheral T cells demonstrated preferential expression on CD8+ T cells, suggesting regulated expression of this particular TCR V alpha gene.  相似文献   

8.
The mAb MR9-4 and MR9-8 react with T cells expressing the V beta 5.1 and -5.2 chains of the TCR. T cells expressing V beta 5.1 TCR were stained by both antibodies with similar surface fluorescence intensity. For the T cell clones and hybridomas expressing V beta 5.2 TCR, staining intensity with MR9-8 varied from negative to comparable to that stained with the anti-pan V beta 5 mAb MR9-4, whereas every V beta 5-positive T cell can be activated with either MR9-4 or -9-8 mAb, suggesting a differential binding affinity of MR9-8 mAb to V beta 5 TCR molecules. Analysis of J beta segment and V alpha chain usage in the V beta 5-positive T cell hybridomas revealed that a differential binding of MR9-8 mAb to the V beta 5.2 chain is not dependent on either the J beta segment usage or the associating V alpha chain alone. These results suggest that the differential binding of MR9-8 mAb to V beta 5.2 TCR is due to the conformational change of the V beta chain created by a combination of the V alpha (possibly J alpha) and D beta-J beta segment associating with the V beta 5.2 chain.  相似文献   

9.
10.
11.
A total of 33 human leukemia/lymphoma cell lines were classified into 4 groups with respect to the pattern of cell membrane (sm) expression of the CD3 and T cell receptor (TCR) molecules; (i) smCD3+TCR alpha beta (16 cell lines), (ii) smCD3+TCR beta delta (1 cell line), (iii) smCD3+TCR gamma delta (3 cell lines) amd (iv) smCD3-TCR- (13 cell lines), respectively. Using monoclonal antibodies (MoAbs) specific to CD3 (NU-T3), TCR alpha chain (alpha F1), TCR beta chain (beta F1), and TCR gamma chain (C gamma M1), respectively, cytoplasmic (cy) expression of these molecules was determined by immunofluorescence test. Expression of cyCD3 was present in all cell lines regardless of groups. In group (i), all 16 cell lines expressed both TCR alpha and beta chains. While only TCR beta chain was expressed in group (ii), TCR gamma chain was expressed in all 3 cell lines of group (iii). One (PEER) of the three in group (iii) expressed TCR beta chain as well. In group (iv), we found 8 cell lines with cyTCR alpha expression, 11 cell lines with cyTCR beta expression, and 10 cell lines with cyTCR gamma expression, respectively. For TCR genes, except 1 cell line all cell lines were found to present rearranged C beta gene and its mRNA, including all 3 TCR gamma/delta cell lines of group (iii). One of the TCR alpha beta cell lines exhibited rearranged C delta and J delta genes as well as its mRNA. Two cell lines of the 13 CD3-TCR- of group (iv) exhibited rearranged C delta and J delta and its mRNA. An NK-like activity and IL-2 production were induced in the TCR beta delta and gamma delta cell lines [group (ii) and (iii)] by treatment with PHA and PMA.  相似文献   

12.
All of the T cell receptor alpha- and beta-chain rearrangements present in a dual reactive T cell clone were characterized. This clone exhibits allelic exclusion of its beta-chain genes in that only one of the two alleles is productively rearranged. Unexpectedly, it displays two productive V alpha-gene rearrangements, which are both transcribed into 1.5 kb mRNA. The contribution of each of the two productive alpha genes to the dual recognition was analyzed by gene transfer. To this end, each of the two alpha genes was separately transfected with the single productively rearranged beta gene. Transfer of only one of the two alpha beta combinations restored both allogeneic MHC recognition and self MHC-restricted antigen recognition. Thus, T cell dual recognition results from the cross-reactive recognition of an allo-MHC product by a single antigen-specific and MHC-restricted alpha beta T cell receptor. Furthermore, the presence of two productively rearranged alpha-chain genes in a T cell clone raises questions concerning the level at which allelic exclusion operates in T cells.  相似文献   

13.
We examined TCR gene usage in a panel of beef insulin/I-Ad-restricted T cell hybrids obtained from BALB/c mice. These hybrids demonstrated several distinct patterns of reactivity defined by their ability to respond to species variants of insulin. Correlation of TCR-alpha and -beta-gene usage with these patterns of reactivity demonstrated that TCR gene usage was restricted within Ag reactivity groups. In particular, V-J junctional regions (CDR3 equivalent) were restricted with conserved junctional amino acid motifs present in both TCR-alpha- and -beta-chains. Comparison of TCR gene usage in hybrids expressing identical V alpha and V beta gene segments but demonstrating different patterns of reactivity revealed that changes in either J alpha and/or J beta gene segment usage could alter antigenic reactivity. Indeed, single or limited amino acid differences within the CDR3 region were sufficient to markedly alter fine specificity. These data demonstrate the critical role for CDR3 in determining antigenic reactivity in beef insulin-reactive hybrids and are compatible with the current model of TCR/peptide/MHC interaction.  相似文献   

14.
15.
A TCR heterodimer composed of a TCR gamma-chain and a TCR delta-chain was found to be expressed in association with CD3 by a small population of human peripheral blood T cells, thymocytes, and certain leukemic T cell lines. The leukemic T cell lines PEER and Lyon-1 express such a TCR-gamma delta/CD3 complex at the cell surface. In addition, PEER and Lyon-1 cells transcribe a productively rearranged TCR-beta gene. Introduction of TCR alpha-chain cDNA of human or murine origin resulted in cell surface expression of a TCR-alpha beta/CD3 complex on PEER and Lyon-1 cells. The expression of the TCR-gamma delta/CD3 complex on PEER cells was not affected by introduction of TCR-alpha cDNA. In contrast, introduction of a TCR-alpha cDNA and expression of the TCR-alpha beta/CD3 complex in Lyon-1 cells resulted in the disappearance of the TCR-gamma delta/CD3 complex. These data were confirmed by indirect immunofluorescence, at the protein level and by gene expression analysis. Triggering of the TCR-alpha beta/CD3 complexes by anti-CD3 mAb or anti-TCR mAb resulted in increased internal Ca2+ levels, indicating that these receptors were functional in signal transduction. These results indicate that, besides TCR gene rearrangements, membrane expression of TCR-alpha beta heterodimers may be important in regulating TCR-gamma delta cell surface expression.  相似文献   

16.
Analysis of TCR of a series of CD4-8- (double negative; DN) alpha beta T cell lines induced with IL-3 revealed that their V gene usage was biased for V alpha 4 and V beta 2. This has been confirmed in the primary short-term cultures. Thus, IL-3 induced the generation of DN alpha beta T cells with predominant V beta 2 gene expression from the CD4+/CD8+ T cell-depleted spleen or bone marrow (BM) cells of both normal and nude BALB/c mice within 10 days. It was further indicated that the V beta 2+ beta-chain genes contained few junctional N regions in both IL-3-induced primary DN alpha beta T cells and continuous lines. Search for the in vivo counterpart of in vitro IL-3-induced DN alpha beta T cells revealed that BM, but not spleens, of normal BALB/c and B6 mice did contain a significant proportion of DN alpha beta T cells, and that the majority of them expressed V beta 2+ beta-chain genes with few junctional N regions. The presence of V beta 2+ DN alpha beta T cells was similarly observed in the BM of BALB/c nude mice, but their proportion varied markedly among various strains of mice, which was not linked to H-2 haplotypes. The results indicated that V beta 2+ DN alpha beta T cells in the BM represented one of the thymus-independent T cell populations, whose development was under the major histocompatibility Ag complex-unlinked genetic control. TCR of these T cells were shown to be functional as judged by the proliferative response to anti-V beta 2 antibody. Taken together, present results suggested that IL-3 could induce differentiation and/or proliferation of DN alpha beta T cells with uniquely limited repertoire, which existed preferentially in BM in vivo, and implied the possible involvement of extrathymic endogenous ligands as a positive selection force.  相似文献   

17.
TCR J alpha genes span a distance of approximately 65 kb on mouse chromosome 14. Due to the existence of 50 to 100 discrete J genes, a potential for great diversity exists within the V-J-C alpha gene products and within the ultimate repertoire of alpha beta TCR. We have prepared hybridomas from an in vitro system that supports T cell differentiation among bone marrow cells. We have examined the J alpha genes among these cells and categorized rearrangements according to their location within the J alpha locus. It was found that alpha rearrangements were always present among the hybridomas bearing beta gene rearrangements. When two bone marrow-derived alpha-bearing chromosomes could be demonstrated in these hybridomas, both were always rearranged and rearrangements on homologous chromosomes were shown to reside in similar regions of the J alpha locus. Most surprisingly, when hybridomas were categorized by the culture from which they derived, cells from the same culture (designated as a set) demonstrated a skewing of alpha rearrangements to restricted segments of J alpha genes. In one hybridoma, rearrangements on homologous chromosomes involved J alpha genes that were either identical or situated within a 1-kb segment of DNA. The skewing within sets could not be due to clonal identity between hybridomas as the beta and gamma rearrangements in all hybridomas were different. Results suggested that skewing of J alpha gene rearrangements occurred during the course of T cell development in vitro. Should the same situation occur in vivo, the number of distinct TCR J alpha sequences available for expression in early development may be far less than that predicted by gene number alone.  相似文献   

18.
Cytotoxic T lymphocytes (CTL) play an important role in recovery from a number of viral infections. They are also implicated in virus-induced immunopathology as best demonstrated in lymphocytic choriomeningitis virus (LCMV) infection of adult immunocompetent mice. In the present study, the structure of the T-cell receptor (TCR) in LCMV-specific CTL in C57BL/6 (B6) mice was investigated. Spleen T cells obtained from LCMV-infected mice were cultured in vitro with virus-infected stimulator cells and then stained with anti-TCR V beta antibodies. A skewing of V beta usage was noticeable in T cells enriched for their reactivity to LCMV, suggesting that particular V segments are important for the recognition of LCMV T-cell epitopes in B6 mice. To gain more detailed information on the structure of the TCR specific for LCMV epitopes, we studied CTL clones. It has been shown that approximately 90% of LCMV-reactive CTL clones generated in H-2b mice are specific for a short peptide fragment of the LCMV glycoprotein, residues 278 to 286, recognized in the context of the class I major histocompatibility complex molecule, Db. Four CTL clones possessing the specificity were randomly selected from a collection of clones, and their TCR genes were isolated by cDNA cloning or by the anchored polymerase chain reaction. All four clones were found to use V alpha gene segments belonging to the V alpha 4 subfamily. By RNA blot analysis, two more clones with the same specificity were also shown to express the V alpha 4 mRNA. In contrast, three different V beta gene segments were used among the four clones examined. J beta 2.1 was used by three of the clones. Although amino acid sequences in the V(D)J junctional regions were dissimilar, aspartic acid was found in the V alpha J alpha and/or V beta D beta J beta junctions of all four of these clones, suggesting that this residue is involved in binding the LCMV fragment. Restricted usage of V alpha and possibly J beta segments in the CTL response to a major T-cell epitope of LCMV raises the possibility that immunopathology in LCMV infection can be treated with antibodies directed against such TCR segments. Thus, similar analysis of the TCR in other virus infections is warranted and may lead to therapeutic strategies for immunopathology due to virus infections.  相似文献   

19.
Transplantation of histoincompatible tissues leads to allograft rejection, which involves recognition of allogeneic MHC molecules by Ag-specific receptors expressed on T cells. The interaction of these molecules is highly specific yet poorly understood. We have investigated the relationship between TCR gene utilization and allo-MHC restriction patterns by using a one-way polymerase chain reaction to amplify the alpha- and beta-chain mRNA from a panel of 10 HLA-DR1-alloreactive T lymphocyte clones. Two previously unreported V alpha and five J alpha gene sequences were obtained. Although a few V alpha, V beta, and J alpha genes were utilized more than once, no correlation between TCR gene usage and DR1 alloreactivity was identified. At the sequence level, the presumed TCR alpha- and beta-chain CDR1 and CDR2 regions displayed limited diversity, whereas the CDR3 or junctional sequences were highly variable. Although most TCR probably interact with subtly different surface features of the DR1 alloantigen, we predict that TCR with similar CDR1 and CDR2 sequences would contact essentially identical regions of the DR1 molecule. The lack of sequence conservation in the junctional regions suggests that different endogenous peptides also may be recognized. Thus, alloreactive T cells may recognize not only allogeneic MHC molecules but perhaps also bound endogenous peptides.  相似文献   

20.
Cloned Ts cells specific for the Ag, human monoclonal (myeloma) IgG, were derived from spleen cells of mice that had been immunosuppressed by treatment with a tolerogenic conjugate of HIgG and monomethoxypolyethylene glycol. The cloned Ts cells (clone 23.32) suppressed in vitro antibody responses in an Ag-specific and MHC-restricted manner. By FMF with appropriate antibody reagents, these cells were shown to be Thy-1+, CD4-, CD5-, and CD8+ and to express CD3 and the alpha beta-TCR. These results are consistent with the view that Ts cells use Ag recognition structures similar to those reported for Th cells and CTL. A soluble factor (TsF) extracted from the cloned Ts cells also suppressed in vitro antibody responses in an Ag-specific and H-2Kd-restricted manner, i.e., restricted to MHC class I molecules. The suppressive activity of this TsF could be abrogated by addition of mAb H28-710 that reacts with a determinant on the alpha-chain of TCR. Moreover, the TsF bound to and could be recovered from an immunosorbent consisting of the anti-alpha-TCR mAb H28-710 coupled to Sepharose 4B. In contrast, the TsF was not bound by immunosorbents consisting of mAb to the beta-chain of TCR (H57-597) or to V beta 8 (F23.1). It was, therefore, concluded that the TsF of clone 23.32 is serologically related to the alpha-chain of the TCR; however, it is not identical to TCR, because it lacks the determinants expressed on the TCR beta-chain that are recognized by the two anti-beta mAbs used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号