首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the function of c-Jun during skin development and skin tumor formation, we conditionally inactivated c-jun in the epidermis. Mice lacking c-jun in keratinocytes (c-jun(Deltaep)) develop normal skin but express reduced levels of EGFR in the eyelids, leading to open eyes at birth, as observed in EGFR null mice. Primary keratinocytes from c-jun(Deltaep) mice proliferate poorly, show increased differentiation, and form prominent cortical actin bundles, most likely because of decreased expression of EGFR and its ligand HB-EGF. In the absence of c-Jun, tumor-prone K5-SOS-F transgenic mice develop smaller papillomas, with reduced expression of EGFR in basal keratinocytes. Thus, using three experimental systems, we show that EGFR and HB-EGF are regulated by c-Jun, which controls eyelid development, keratinocyte proliferation, and skin tumor formation.  相似文献   

2.
HB-EGF promotes epithelial cell migration in eyelid development   总被引:3,自引:0,他引:3  
Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that binds to and activates the EGF receptor (EGFR) and ERBB4. Here, we show that HB-EGF-EGFR signaling is involved in eyelid development. HB-EGF expression is restricted to the tip of the leading edge of the migrating epithelium during eyelid closure in late gestation mouse embryos. Both HB-EGF null (HB(del/del)) and secretion-deficient (HB(uc/uc)) mutant embryos exhibited delayed eyelid closure, owing to slower leading edge extension and reduced actin bundle formation in migrating epithelial cells. No changes in cell proliferation were observed in these embryos. In addition, activation of EGFR and ERK was decreased in HB(del/del) eyelids. Crosses between HB(del/del) mice and waved 2 mice, a hypomorphic EGFR mutant strain, indicate that HB-EGF and EGFR interact genetically in eyelid closure. Together with our data showing that embryos treated with an EGFR-specific kinase inhibitor phenocopy HB(del/del) embryos, these data indicate that EGFR mediates HB-EGF-dependent eyelid closure. Finally, analysis of eyelid closure in TGFalpha-null mice and in HB-EGF and TGFalpha double null mice revealed that HB-EGF and TGFalpha contribute equally to and function synergistically in this process. These results indicate that soluble HB-EGF secreted from the tip of the leading edge activates the EGFR and ERK pathway, and that synergy with TGFalpha is required for leading edge extension in epithelial sheet migration during eyelid closure.  相似文献   

3.
The expression of contractile proteins in vascular smooth muscle cells is controlled by still poorly defined mechanisms. A thrombin-inducible expression of smooth muscle-specific alpha-actin and myosin heavy chain requires transactivation of the epidermal growth factor (EGF) receptor and a biphasic activation of ERK1/2. Here we demonstrate that the sustained second phase of ERK1/2 phosphorylation requires de novo RNA and protein synthesis. Depolymerization of the actin cytoskeleton by cytochalasin D or disruption of transit between the endoplasmic reticulum and the Golgi apparatus by brefeldin A prevented the second phase of ERK1/2 phosphorylation. We thus conclude that synthesis and trafficking of a plasma membrane-resident protein may be critical intermediates. Analysis of the expression of protease-activated receptor 1, heparin-binding EGF (HB-EGF), and the EGF receptor revealed that pro-HB-EGF is significantly up-regulated upon thrombin stimulation. The kinetic of HB-EGF expression closely matched that of the second phase of ERK1/2 phosphorylation. Because inhibition of matrix metalloproteases or of the EGF receptor strongly attenuated the late phase of ERK1/2 phosphorylation, the second phase of ERK1/2 activation is primarily relayed by shedding of EGF receptor ligands. The small interfering RNA-mediated knockdown of HB-EGF expression confirmed an important role of HB-EGF expression in triggering the second phase of ERK1/2 activation. Confocal imaging of a yellow fluorescent protein-tagged HB-EGF construct demonstrates the rapid plasma membrane integration of the newly synthesized protein. These data imply that the hormonal control of contractile protein expression relies on an intermediate HB-EGF expression to sustain the signaling strength within the Ras/Raf/MEK/ERK cascade.  相似文献   

4.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a mitogen and chemotactic factor, binds to two receptor tyrosine kinases, erbB1 and erbB4. Now we demonstrate that HB-EGF also binds to a novel 140 kDa receptor on MDA-MB 453 cells. Purification of this receptor showed it to be identical to N-arginine dibasic convertase (NRDc), a metalloendopeptidase of the M16 family. Binding to cell surface NRDc and NRDc in solution was highly specific for HB-EGF among EGF family members. When overexpressed in cells, NRDc enhanced their migration in response to HB-EGF but not to EGF. Conversely, inhibition of endogenous NRDc expression in cells by antisense morpholino oligonucleotides inhibited HB-EGF-induced cell migration. Anti-erbB1 neutralizing antibodies completely abrogated the ability of NRDc to enhance HB-EGF-dependent migration, demonstrating that this NRDc activity was dependent on erbB1 signaling. Although NRDc is a metalloproteinase, enzymatic activity was not required for HB-EGF binding or enhancement of cell migration; neither did NRDc cleave HB-EGF. Together, these results suggest that NRDc is a novel specific receptor for HB-EGF that modulates HB-EGF-induced cell migration via erbB1.  相似文献   

5.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an activating ligand for the EGF receptor (HER1/ErbB1) and the high-affinity receptor for diphtheria toxin (DT) in its transmembrane form (proHB-EGF). HB-EGF was immunolocalized within human benign and malignant prostatic tissues, using monospecific antibodies directed against the mature protein and against the cytoplasmic domain of proHB-EGF. Prostate carcinoma cells, normal glandular epithelial cells, undifferentiated fibroblasts, and inflammatory cells were not decorated by the anti-HB-EGF antibodies; however, interstitial and vascular smooth muscle cells were highly reactive, indicating that the smooth muscle compartments are the major sites of synthesis and localization of HB-EGF within the prostate. In marked contrast to prostatic epithelium, proHB-EGF was immunolocalized to seminal vesicle epithelium, indicating differential regulation of HB-EGF synthesis within various epithelia of the reproductive tract. HB-EGF was not overexpressed in this series of cancer tissues, in comparison to the benign tissues. In experiments with LNCaP human prostate carcinoma cells, HB-EGF was similar in potency to epidermal growth factor (EGF) in stimulating cell growth. Exogenous HB-EGF and EGF each activated HER1 and HER3 receptor tyrosine kinases and induced tyrosine phosphorylation of cellular proteins to a similar extent. LNCaP cells expressed detectable but low levels of HB-EGF mRNA; however, proHB-EGF was detected at the cell surface indirectly by demonstration of specific sensitivity to DT. HB-EGF is the first HER1 ligand to be identified predominantly as a smooth muscle cell product in the human prostate. Further, the observation that HB-EGF is similar to EGF in mitogenic potency for human prostate carcinoma cells suggests that it may be one of the hypothesized stromal mediators of prostate cancer growth. J. Cell. Biochem. 68:328-338, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
In all secreted proteins related to the epidermal growth factor (EGF), EGF domains that occur in a mature factor are each encoded by two exons, and those that do not, by one exon. During splicing, additional exon 3a can be inserted between exons 3 and 4, which code for the EGF domain of the mature heparin-binding EGF-like growth factor (HB-EGF). The resulting mRNA codes for the short form of HB-EGF (SF HB-EGF), which retains the signal peptide, the propeptide, and the heparin-binding domain. However, its EGF domain lacks the C-terminal subdomain essential for the interaction with the EGF receptor (EGFR). Structural analysis suggested that SF HB-EGF is a secreted polypeptide that has high affinity for heparin, but weakly, if at all, interacts with EGFR. Data obtained in three different systems indicated that SF HB-EGF possesses a mitogenic activity but utilizes a signal transduction pathway other than that of HB-EGF.  相似文献   

7.
In all secreted proteins related to the epidermal growth factor (EGF), EGF domains that occur in a mature factor are each encoded by two exons, and those that do not, by one exon. During splicing, additional exon 3a can be inserted between exons 3 and 4, which code for the EGF domain of the mature heparin-binding EGF-like growth factor (HB-EGF). The resulting mRNA codes for the short form of HB-EGF (SF HB-EGF), which retains the signal peptide, the propeptide, and the heparin-binding domain. However, its EGF domain lacks the C-terminal subdomain essential for the interaction with the EGF receptor (EGFR). Structural analysis suggested that SF HB-EGF is a secreted polypeptide that has high affinity for heparin but weakly, if at all, interacts with EGFR. Data obtained in three different systems indicated that SF HB-EGF possesses a mitogenic activity but utilizes a signal transduction pathway other than that of HB-EGF.  相似文献   

8.
Reactive oxygen species (ROS) are implicated in cardiovascular diseases. ROS, such as H2O2, act as second messengers to activate diverse signaling pathways. Although H2O2 activates several tyrosine kinases, including the epidermal growth factor (EGF) receptor, JAK2, and PYK2, in vascular smooth muscle cells (VSMCs), the intracellular mechanism by which ROS activate these tyrosine kinases remains unclear. Here, we identified two distinct signaling pathways required for receptor and nonreceptor tyrosine kinase activation by H2O2 involving a metalloprotease-dependent generation of heparin-binding EGF-like growth factor (HB-EGF) and protein kinase C (PKC)-delta activation, respectively. H2O2-induced EGF receptor tyrosine phosphorylation was inhibited by a metalloprotease inhibitor, whereas the inhibitor had no effect on H2O2-induced JAK2 tyrosine phosphorylation. HB-EGF neutralizing antibody inhibited H2O2-induced EGF receptor phosphorylation. In COS-7 cells expressing an HB-EGF construct tagged with alkaline phosphatase, H2O2 stimulates HB-EGF production through metalloprotease activation. By contrast, dominant negative PKC-delta transfection inhibited H2O2-induced JAK2 phosphorylation but not EGF receptor phosphorylation. Dominant negative PYK2 inhibited H2O2-induced JAK2 activation but not EGF receptor activation, whereas dominant negative PKC-delta inhibited PYK2 activation by H2O2. These data demonstrate the presence of distinct tyrosine kinase activation pathways (PKC-delta/PYK2/JAK2 and metalloprotease/HB-EGF/EGF receptor) utilized by H2O2 in VSMCs, thus providing unique therapeutic targets for cardiovascular diseases.  相似文献   

9.
10.
Ectodomain shedding is an important mechanism to regulate the biological activities of membrane proteins. We focus here on the signaling mechanism of the ectodomain shedding of heparin-binding epidermal growth factor (EGF)-like growth factor (pro HB-EGF). Lysophosphatidic acid (LPA), a ligand for seven-transmembrane G protein-coupled receptors, stimulates the shedding of pro HB-EGF, which constitutes a G protein-coupled receptor-mediated transactivation of the EGF receptor. Experiments using a series of inhibitors and overexpression of mutant forms of signaling molecules revealed that the Ras-Raf-MEK signal is essential for the LPA-induced shedding. In addition, the small GTPase Rac is involved in the LPA-induced shedding, possibly to promote MEK activation. 12-O-Tetradecanoylphorbol-13-acetate is another potent inducer of pro HB-EGF shedding. We also demonstrate that the LPA-induced pathway is distinct from the 12-O-tetradecanoylphorbol-13-acetate-induced pathway and that these pathways constitute a dual signaling cascade that regulates the shedding of pro HB-EGF.  相似文献   

11.
After epithelial disruption by tissue injury, keratinocytes migrate from the wound edge into a provisional matrix. This process is stimulated by growth factors that signal through epidermal growth factor (EGF) receptor, including EGF, heparin-binding EGF-like growth factor (HB-EGF) and transforming growth factor-alpha (TGF-alpha), and by for example keratinocyte growth factor (KGF) and TGF-beta1 that function through different receptors. We have previously shown that keratinocyte migration induced by EGF or staurosporine is dependent on the activity of glycogen synthase kinase-3 (GSK-3). In the present study, we show that keratinocyte migration induced by TGF-beta1, KGF, EGF, TGF-alpha and staurosporine depends on EGFR signaling, involves autocrine HB-EGF expression and is potently blocked by GSK-3 inhibitors SB-415286 and LiCl. Inhibition of GSK-3 also retards wound reepithelialization in vivo in mice. Moreover, inhibition of GSK-3 activity prevented cell rounding that is an early event in EGFR-mediated keratinocyte migration. Isoform-specific GSK-3alpha and GSK-3beta knockdown and overexpression experiments with siRNAs and adenoviral constructs, respectively, revealed that GSK-3alpha is required for keratinocyte migration, whereas excessive activity of GSK-3beta is inhibitory. Thus, induction of keratinocyte migration is conveyed through EGFR, promoted by endogenous HB-EGF and requires GSK-3alpha activity.  相似文献   

12.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a newly described member of the epidermal growth factor (EGF) family that is mitogenic for BALB/c 3T3 cells, inhibits the binding of 125I-EGF to its receptor, and triggers autophosphorylation of the EGF receptor. HB-EGF was purified from the conditioned medium of U-937 cells using cation exchange, copper affinity, heparin affinity, and two rounds of C4 reversed phase liquid chromatography. The elution profile of the first round of C4 column chromatography contained four growth factor activity peaks with similar specific biological activities. N-terminal and tryptic fragment microsequencing demonstrated that these peaks contained different structural forms of the HB-EGF protein. Some of the differences in the various forms of HB-EGF were found to be due to N-terminal heterogeneity. Microsequencing of tryptic fragments indicated that the mature HB-EGF polypeptide can contain at least 86 of the 208 amino acids predicted by nucleotide sequence to be the HB-EGF precursor molecule. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the various forms of HB-EGF have apparent molecular masses of 19-23 kDa. Further analysis of the most predominant form of HB-EGF found in U-937 cell conditioned medium indicated that it has a pI of 7.2-7.8 and is O-glycosylated.  相似文献   

13.
A G protein-coupled receptor agonist, angiotensin II (AngII), induces epidermal growth factor (EGF) receptor (EGFR) transactivation possibly through metalloprotease-dependent, heparin-binding EGF (HB-EGF) shedding. Here, we have investigated signal transduction of this process by using COS7 cells expressing an AngII receptor, AT1. In these cells AngII-induced EGFR transactivation was completely inhibited by pretreatment with a selective HB-EGF inhibitor, or with a metalloprotease inhibitor. We also developed a COS7 cell line permanently expressing a HB-EGF construct tagged with alkaline phosphatase, which enabled us to measure HB-EGF shedding quantitatively. In the COS7 cell line AngII stimulated release of HB-EGF. This effect was mimicked by treatment either with a phospholipase C activator, a Ca2+ ionophore, a metalloprotease activator, or H2O2. Conversely, pretreatment with an intracellular Ca2+ antagonist or an antioxidant blocked AngII-induced HB-EGF shedding. Moreover, infection of an adenovirus encoding an inhibitor of G(q) markedly reduced EGFR transactivation and HB-EGF shedding through AT1. In this regard, AngII-stimulated HB-EGF shedding was abolished in an AT1 mutant that lacks G(q) protein coupling. However, in cells expressing AT1 mutants that retain G(q) protein coupling, AngII is still able to induce HB-EGF shedding. Finally, the AngII-induced EGFR transactivation was attenuated in COS7 cells overexpressing a catalytically inactive mutant of ADAM17. From these data we conclude that AngII stimulates a metalloprotease ADAM17-dependent HB-EGF shedding through AT1/G(q)/phospholipase C-mediated elevation of intracellular Ca2+ and reactive oxygen species production, representing a key mechanism indispensable for EGFR transactivation.  相似文献   

14.
Heparin-binding EGF-like growth factor (HB-EGF), which belongs to the EGF-family of growth factors, was isolated from the conditioned medium of macrophage-like cells. To investigate the effect of N- and C-terminal residues of the EGF-like domain of HB-EGF in the binding affinity to the EGF receptor on A431 cell. We synthesized HB-EGF(44-86) corresponding to the EGF-like domain of HB-EGF and its N- or C-terminal truncated peptides. Thermolytic digestion demonstrated three disulfide bond pairings of the EGF-like domain in HB-EGF is consistent with that of human-EGF and human-TGF-alpha. HB-EGF(44-86) showed high binding affinity to EGF-receptor, like human-EGF. The truncation of the C-terminal Leu86 residue from HB-EGF(44-86), HB-EGF(45-86) or HB-EGF(46-86) caused a drastic reduction in the binding affinity to the EGF receptor. These results suggest that the EGF-like domain of HB-EGF plays an important role in the binding to the EGF receptor, and its C-terminal Leu86 residue is necessary for binding with the EGF-receptor. In addition, the deletion of the two N-terminal residues (Asp44-Pro45) from HB-EGF(44-86) caused a 10-fold decrease in relative binding affinity to the EGF receptor. This indicates that the two N-terminal residues of the EGF-like domain of HB-EGF are necessary for its optimal binding affinity to the EGF receptor.  相似文献   

15.
All ligands of the epidermal growth factor (EGF) receptor (EGFR) are synthesized as membrane-anchored precursors. Previous work has suggested that some ligands, such as EGF, must be proteolytically released to be active, whereas others, such as heparin-binding EGF-like growth factor (HB-EGF) can function while still anchored to the membrane (i.e., juxtacrine signaling). To explore the structural basis for these differences in ligand activity, we engineered a series of membrane-anchored ligands in which the core, receptor-binding domain of EGF was combined with different domains of both EGF and HB-EGF. We found that ligands having the N-terminal extension of EGF could not bind to the EGFR, even when released from the membrane. Ligands lacking an N-terminal extension, but possessing the membrane-anchoring domain of EGF, still required proteolytic release for activity, whereas ligands with the membrane-anchoring domain of HB-EGF could elicit full biological activity while still membrane anchored. Ligands containing the HB-EGF membrane anchor, but lacking an N-terminal extension, activated EGFR during their transit through the Golgi apparatus. However, cell-mixing experiments and fluorescence resonance energy transfer studies showed that juxtacrine signaling typically occurred in trans at the cell surface, at points of cell-cell contact. Our data suggest that the membrane-anchoring domain of ligands selectively controls their ability to participate in juxtacrine signaling and thus, only a subclass of EGFR ligands can act in a juxtacrine mode.  相似文献   

16.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) mRNA and protein expression is induced by EGF in MCF-10A nontransformed and Ha-ras transfected human mammary epithelial cells. The anti-EGF receptor (EGFR) blocking monoclonal antibody (MAb) 225 and the EGFR tyrosine kinase inhibitor PD153035 were able to inhibit the induction of HB-EGF mRNA levels in MCF-10A cells. However, the Ha-ras transformed MCF-10A cells were more refractory to inhibition by these agents and only a combination of the 225 MAb and PD153035 was able to significantly abrogate HB-EGF induction by EGF. The anti-erbB2 MAb L26 which interferes with heterodimer formation was able to block HB-EGF induction in response to EGF in MCF-10A cells and in the Ha-ras transformed cells only when used in combination with either the 225 MAb or PD153035. The MEK inhibitor PD90859 completely blocked EGF induction of HB-EGF mRNA levels in the nontransformed and Ha-ras transformed MCF-10A cells, which indicates that MAPK is involved in the signaling pathway of HB-EGF induction by EGF. An increase in the levels of HB-EGF may, therefore, be an important contributor to oncogenic transformation that is caused by Ha-ras overexpression in mammary epithelial cells. J. Cell. Physiol. 186:233-242, 2001. Published 2001 Wiley-Liss, Inc.  相似文献   

17.
Heparin-binding EGF-like growth factor (HB-EGF), a member of the EGF-family, is thought to be important for keratinocyte functions. HB-EGF is first synthesized as a membrane-anchored form, and its soluble form is released by ectodomain shedding. Here we investigate the role of HB-EGF in epidermal hyperplasia induced by all-trans retinoic acid (tRA) treatment. HB-EGF is normally expressed in epidermis of normal adult mice at very low levels, but topical tRA treatment results in epidermal hyperplasia, concomitant with the strong induction of HB-EGF expression in the suprabasal layer. tRA-induced epidermal hyperplasia was reduced both in the keratinocyte-specific HB-EGF null mice (K5-HB(del/del)) and knock-in mice expressing the uncleavable mutant form of HB-EGF (HB(uc/uc)), as compared with wild-type HB-EGF knock-in mice (HB(lox/lox)). Among ErbB tyrosine kinase receptors, EGF receptor (EGFR) and ErbB2 were selectively activated by tRA treatment in skin from wild-type mice, while the activation of these ErbB receptors was significantly reduced in the skin of HB-EGF null mice. These results indicate that expression of HB-EGF and generation of its soluble form, followed by activation of EGFR and ErbB2, are pivotal processes in tRA-induced epidermal hyperplasia.  相似文献   

18.
The heparin-binding EGF-like growth factor (HB-EGF) is an autocrine/paracrine keratinocyte growth factor, which binds to the epidermal growth factor (EGF) receptor family and plays a critical role during the re-epithelialization of cutaneous wound by stimulating the keratinocytes proliferation and migration. In this study, cellular stressing condition in autocrine cultures of human keratinocytes was induced by cholesterol depletion using methyl-beta-cyclodextrin (MβCD). MβCD treatment induces the expression and the release of HB-EGF. By analysis of the culture media, large amounts of cellular ATP were measured particularly after 1 h of MβCD treatment. To investigate whether ATP contributes to the expression of HB-EGF, the nonhydrolyzable ATP analogue, ATP-γ-S, was used to mimic the extracellular ATP released. We report that keratinocytes stimulated with ATP-γ-S induce HB-EGF expression and activate EGFR and ERK1/2. Using an antagonist of P2 purinergic receptors, we demonstrate that HB-EGF synthesis induced by lipid rafts disruption is dependent on ATP interaction with P2 purinergic receptors. Moreover, our data suggest that both MAPKs p38 and ERK1/2 are involved together or independently in the regulation of HB-EGF gene expression. These findings provide new insight into the signaling pathway by which HB-EGF is expressed after lipid rafts disruption. In summary, after lipid raft disruption, keratinocytes release large amount of extracellular ATP. ATP induces HB-EGF synthesis and release by interacting with the P2 purinergic receptor and through p38 and ERK1/2 signaling in response to a challenging environment. A release of ATP acts as an early stress response in keratinocytes.  相似文献   

19.
In the present study, the role of a member of the epidermal growth factor (EGF) family, heparin-binding EGF-like growth factor (HB-EGF), in organ development was investigated by using developing mouse submandibular gland (SMG), in which the EGF receptor signaling and heparan sulfate chains have been implicated. HB-EGF mRNA was detected in developing SMG by RT-PCR analysis and was expressed mainly in epithelium and weakly in mesenchyme of the embryonic SMG. Epithelial morphogenesis was inhibited by a synthetic peptide corresponding to the heparin-binding domain of HB-EGF and by anti-HB-EGF neutralizing antibody. An in vitro assay using an EGF receptor ligand-dependent cell line, EP170.7 cells, allowed us to detect the growth factor activity in SMG-conditioned media, which was significantly reduced by anti-HB-EGF antibody. Furthermore, treatment of SMG rudiments with the hydroxamate-based metalloproteinase inhibitor OSU8-1, which inhibits processing of EGFR ligands including HB-EGF, markedly diminished the growth factor activity in conditioned media and resulted in almost complete inhibition of SMG morphogenesis. The inhibitory effects on morphogenesis were reversed, though partially, by adding the soluble form of HB-EGF. Our results provide the first evidence that HB-EGF is a crucial regulator of epithelial morphogenesis during organ development, highlighting the importance of its processing by metalloproteinases.  相似文献   

20.
The G protein-coupled thrombin receptor can induce cellular responses in some systems by transactivating the epidermal growth factor (EGF) receptor. This is in part due to the stimulation of ectoproteases that generate EGF receptor ligands. We show here that this cannot account for the stimulation of proliferation or migration by thrombin of Swiss 3T3 cells. Thrombin has no direct effect on the activation state of the EGF receptor or of its downstream effectors. However, thrombin induces the subcellular clustering of the EGF receptor at filamentous actin-containing structures at the leading edge and actin arcs of migrating cells in association with other signaling molecules, including Shc and phospholipase Cgamma1. In these thrombin-primed cells, the subsequent migratory response to EGF is potentiated. Thrombin did not potentiate the EGF-stimulated EGF receptor phosphorylation. Thus, in Swiss 3T3 cells the G protein-coupled thrombin receptor can potentiate the EGF tyrosine kinase receptor response when activated by EGF, and this appears to be due to the subcellular concentration of the receptor with downstream effectors and not to the overall ability of EGF to induce receptor transphosphorylation. Thus, the EGF receptor subcellular localization which is altered by thrombin appears to be an important determinant of the efficacy of downstream EGF receptor signaling in cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号