首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P D Dass 《Life sciences》1983,33(18):1757-1762
This study demonstrates the formation of gamma-glutamyl peptides from glutamine and plasma amino acids, as catalyzed by gamma-glutamyl transpeptidase. It also establishes the effect of various amino acids in modulating the rate of glutamine utilization as well as the hydrolytic or transfer product formed. The mechanism of the utilization of glutamine as catalyzed by gamma-glutamyl transpeptidase, involves the formation of a gamma-glutamyl enzyme bound intermediate as the initial step, with release of the amide nitrogen as ammonium, NH+4, Figure 1. The gamma-glutamyl enzyme bound intermediate either reacts with the acceptor amino acids or water; reaction with amino acids yields gamma-glutamylpeptides via the transfer pathway and reaction with water yields glutamate via the hydrolytic pathway.  相似文献   

2.
Using the phthaloyl method, 18 gamma-L-glutamyl peptides labelled with 14-C in the N-terminal position have been synthesized. The products were isolated by simple procedures using a Dowex-1 column or high voltage electrophoresis. The synthetic peptides contain minor impurities of the corresponding D-glutamyl isomers. The proportion of D-isomer was determined by the use of glutamic decarboxylase, or by a new method using digestion with purified gamma-glutamyl cyclotransferase and determination of the resulting 2-pyrrolidone-5-carboxylic acid (5-oxoproline). Evidence was obtained that gamma-glutamyl cyclotransferase acts only on the L-form of gamma-glutamyl substrates; the enzyme could, therefore, be used for preparation of gamma-D-glutamyl peptides from their racemic mixtures. The specificity of gamma-glutamyl cyclotransferase has been examined using pure enzyme prepared from pig liver, and extracts from tissues of rat and man. The basic structural requirement in substrates may be represented as gamma-L-glutamyl-NH--CHR--COOH. The amino acid linked to the gamma-glutamyl group must be in the L configuration.  相似文献   

3.
The molecular weight of gamma-glutamyl transferase from normal rat liver and hepatoma tissue was determined by radiation-inactivation and found to be approx 100000 in each case. The molecular weight previously reported for the subunit containing the gamma-glutamyl binding site (22000) is considerably less than that of the holoenzyme, suggesting that in situ the large subunit is implicated in both transferase and hydrolase activities.  相似文献   

4.
Non-alcoholic fatty liver disease, characterized by hepatocyte apoptosis, is distinct in fatty liver and non-alcoholic steatohepatitis, the more severe form. Apoptotic cell death is caspase-dependent and associated with mitochondrial membrane depolarization and cytochrome c release. Adhering to the hypothesis that the exposure of hepatocytes to free fatty acids, resulting in increased ROS production and mitochondrial damage, is balanced by the presence of antioxidant substances, circulating levels of gamma-glutamyl transferase, cytochrome c, triglycerides and unconjugated bilirubin were explored in patients suffering from non-alcoholic fatty liver disease with different severity. One hundred and eighty-six consecutive patients who presented recent ultrasound feature of bright liver without any liver disease of known origin were enrolled, eighty-nine of whom underwent liver biopsy. Forty-five subjects were allocated on the basis of histology in fatty liver group while 44 patients formed the group with non-alcoholic steatohepatitis. A cohort of 27 young, lean, apparently healthy individuals was selected as control group. The levels of gamma-glutamyl transferase were normal or slightly increased, while unconjugated bilirubin concentrations were elevated in all the spectra of non-alcoholic fatty liver disease. Comparing the present results with relevant findings from other studies dealing with diseases characterized by apoptosis, we did not find high circulating levels of cytochrome c in non-alcoholic fatty liver disease. What is more, our patients, categorized as suffering from simple fatty liver or from the more severe non-alcoholic steatohepatitis, had similar levels of cytochrome c and gamma-glutamyl transferase, p=0.19 and 0.11. Serum triglycerides were higher in patients with non-alcoholic fatty liver disease than in the healthy group, p=0.001. These findings likely reflect a balance between oxidative stress and anti-oxidant response rather than a lack of reliability of cytochrome c as a reliable biomarker of mitochondrial damage.  相似文献   

5.
The developmental change of endogenous glutamate, as correlated to that of gamma-glutamyl transferase and other glutamate metabolizing enzymes such as phosphate activated glutaminase, glutamate dehydrogenase and aspartate, GABA and ornithine aminotransferases, has been investigated in cultured cerebral cortex interneurons and cerebellar granule cells. These cells are considered to be GABAergic and glutamatergic, respectively. Similar studies have also been performed in cerebral cortex and cerebellum in vivo. The developmental profiles of endogenous glutamate in cultured cerebral cortex interneurons and cerebellar granule cells corresponded rather closely with that of gamma-glutamyl transferase and not with other glutamate metabolizing enzymes. In cerebral cortex and cerebellum in vivo the developmental profiles of endogenous glutamate, gamma-glutamyl transferase and phosphate activated glutaminase corresponded with each other during the first 14 days in cerebellum, but this correspondence was less good in cerebral cortex. During the time period from 14 to 28 days post partum the endogenous glutamate concentration showed no close correspondence with any particular enzyme. It is suggested that gamma-glutamyltransferase regulates the endogenous glutamate concentration in culture neurons. The enzyme may also be important for regulation of endogenous glutamate in brain in vivo and particularly in cerebellum during the first 14 days post partum. Gamma-glutamyl transferase in cultured neurons and brain tissue in vivo appears to be devoid of maleate activated glutaminase.Abbreviations used Asp-T aspartate aminotransferase (EC 2.6.1.1) - GABA-T GABA aminotransferase (EC 2.6.1.19) - GAD glutamate decarboxylase (EC 4.1.1.15) - gamma-GT gamma-glutamyl transferase (gamma-glutamyl transpeptidase) (EC. 2.3.2.2) - Glu glutamate - GDH glutamate dehydrogenase (EC 1.4.1.3) - GS glutamine synthetase (EC 6.3.1.2) - MAG maleate activated glutaminase - Orn-T ornithine aminotransferase (EC 2.6.1.13) - PAG phosphate activated glutaminase (EC 3.5.1.1)  相似文献   

6.
GAMMA-Glutamyl transpeptidase, gamma-glutamyl cyclotransferase, L-pyrrolidone carboxylate hydrolase, gamma-glutamylcysteine synthetase and glutathione synthetase, the enzymes of the gamma-glutamyl cycle, were found in mouse brain, liver and kidney. The activity of L-pyrrolidone carboxylate hydrolase was many times lower than the activities of the other enzymes, and thus the conversion of L-pyrrolidone carboxylate to L-glutamate is likely to be the rate-limiting step of the cycle. The specificity of gamma-glutamyl cyclotransferase from mouse tissues was similar to that from rat tissues. The concentration of pyrrolidone carboxylate and gamma-glutamyl amino acids, intermediates of the gamma-glutamyl cycle, was determined by a gas chromatographic procedure coupled with electron capture detection. Administration of L-2-aminobutyrate, an amino acid that is utilized as substrate in the reaction catalyzed by gamma-glutamylcysteine synthetase, led to a large accumulation of gamma-glutamyl-2-aminobutyrate and pyrrolidone carboxylate in mouse tissues. L-Methionine-RS-sulfoximine, an inhibitor of gamma-glutamylcysteine synthetase, abolished the increase in concentration of pyrrolidone carboxylate. No accumulation of pyrrolidone carboxylate was observed after L-cysteine. The separate administration of several protein amino acids had little effect on the concentration of pyrrolidone carboxylate; however formation of small amounts of the corresponding gamma-glutamyl derivatives (e.g. gamma-glutamylmethionine and gamma-glutamylphenylalanine) was detected. These intermediates are probably formed by transpeptidation between glutathione and the corresponding amino acid, catalyzed by gamma-glutamyl transpeptidase. The concentration of pyrrolidone carboxylate increased significantly after administration of a mixture containing all protein amino acids, the highest increase occurring in the kidney. The results suggest that two separate pathways for the formation of gamma-glutamyl amino acids and pyrrolidone carboxylate exist in vivo. One of these results from the function of gamma-glutamylcysteine synthetase in glutathione synthesis. The other pathway involves the amino-acid-dependent degradation of glutathione, mediatedby gamma-glutamyl transpeptidase. Only very small amounts of free intermediates are apparently derived from the latter pathway, suggesting that the gamma-glutamyl amino acids formed in this pathway are either enzyme-bound or are directly hydrolyzed to glutamate and free amino acid.  相似文献   

7.
Human kidney gamma-glutamyl transpeptidase has been purified by a procedure involving Lubrol extraction, acetone precipitation, treatment with bromelain, and column chromatography on DEAE-cellulose and Sephadex G-150. The final preparation is a glycoprotein (molecular weight of approximately 84,000) composed of two nonidentical glycopeptides (molecular weights of 62,000 and 22,000). The isozymic forms, separable by isoelectric focusing, have different contents of sialic acid. The utilization of L-glutamine (which is both a gamma-glutamyl donor and acceptor) is stimulated about 3-fold by maleate in contrast to 10-fold stimulation of glutamine utilization by the rat kidney enzyme. The gamma-glutamyl analogs, 6-diazo-5-oxo-L-norleucine (DON) and L-azaserine inactivate the human kidney enzyme with respect to its transpeptidase and hydrolase activities. Inactivation is prevented by gamma-glutamyl substrates (but not by acceptor substrates) and is accelerated by maleate. [14C]DON reacts covalently and stoichiometrically at the gamma-glutamyl site, which was localized to the light subunit of the enzyme. The light subunit of human transpeptidase closely resembles that of rat kidney enzyme in having the gamma-glutamyl binding site, and similar molecular weight and amino acid composition. The heavy subunits of the two enzymes are markedly different in both molecular weight and amino acid content; this may account for differences observed in acceptor amino acid specificity and in the magnitude of the maleate effect.  相似文献   

8.
Cystine content of skin fibroblasts derived from patients with cystinosis was decreased by inhibitors of gamma-glutamyl transpeptidase, the initial enzyme in glutathione catabolism. The addition of maleate or the gamma-glutamyl hydrazone of alpha-ketobutyric acid to culture medium (1-20 mM) resulted in dose-dependent decreases of up to 55% on intracellular cystine content of cystinotic cells in 24 h. L-Serine in sodium borate buffer (40 mM each) produced similar results and further decreased cystine levels to 14% of cystinotic control values after 10 days incubation. Analysis of intracellular amino acids showed that, in general, other amino acids remained unchanged following serine-borate treatment. These results suggest that cystine storage in cystinotic tissues may be related to metabolism of glutathione.  相似文献   

9.
The reaction of gamma-glutamyl transpeptidase from rat kidney with a glutamine analog, 6-diazo-5-oxo-L-norleucine, resulted in irreversible inactivation of the enzyme. The concentration of this reagent giving a half-maximum rate of inactivation was 6 mMat pH 7.5. The inactivation was prevented by the presence of reduced glutathione in a competitive fashion, which indicates the active-site-directed nature of this reagent. The rate of inactivation was greatly accelerated in the presence of maleate, which is known to enhance the glutaminase activity of this enzyme. The presence of maleate increased the maximum velocity of the inactivation, but did not affect the affinity of the enzyme for 6-diazo-5-oxo-L-norleucine. Inactivation of the enzyme with 6-diazo-5-oxo-L-[6=14C]norleucine as well as with 6-diazo-5-oxo-L[1,2,3,4,5-14C]norleucine resulted in a stoichiometric incorporation of radioactivity into the enzyme protein via covalent linkage. The amount of radioactivity incorporated was 1 mol 14C label/248000 g enzyme protein. A native enzyme preparation showing a single protein band on polyacrylamide gel electrophoresis gave four distinct bands upon sodium dodecylsulfate/polyacrylamide gel electrophoresis. Upon sodium dodecylsulfate/polyacrylamide gel electrophoresis of the 14C-labeled enzyme, only the band moving the fastest towards the anode was found to contain radioactivity. This finding indicates that this protein band represents the catalytic component of the enzyme.  相似文献   

10.
Acivicin inhibits gamma-glutamyl transpeptidase activity in human keratinocytes in culture. Treatment of these cells with acivicin produces a decrease in the uptake of L-[U-14C]alanine, 2-amino-[1-14C]-isobutyrate, L-[U-14C]leucine and 1-aminocyclopentane-1-[14C]carboxylate. D-[U-14C]glucose uptake is not affected by the presence of acivicin. These results support, for the first time in vitro, the hypothesis that the gamma-glutamyl cycle may be involved in amino acid uptake by human cells.  相似文献   

11.
The uptake kinetics for four amino acids (cystine, glutamine, methionine, and alanine) which are among the best gamma-glutamyl acceptors have been determined for normal human fibroblasts and for a cell line containing undetectable quantities (< 0.5% normal mean) of gamma-glutamyl transpeptidase activity. Apparent Km and V(max) for uptake for each of the four amino acids were normal in the mutant fibroblasts. Insulin increased the uptake of alpha-aminoisobutyrate as in control cells. levels of 16 amino acids were also normal in this cell strain; the intracellular concentrations of phenylalanine, cystine, and cysteine were increased. In human fibroblasts, amino acid transport appears to proceed normally in the absence of active gamma-glutamyl transpeptidase.  相似文献   

12.
The metabolism in vivo of gamma-glutamyl amino acids and peptides was studied in the mouse after administration of loading doses of L-gamma-glutamyl-2-aminobutyrate and several other gamma-glutamyl compounds, including glutathione. A great and rapid accumulation of glutamate, glutamine, aspartate and pyrrolidone carboxylate was observed in the kidney. Similarly, after administration of a tracer dose of L-gamma-[14C]glutamyl-L-2-aminobutyrate a rapid incorporation of label into kidney glutamate, glutamine and aspartate was found. These results suggest that both the hydrolytic and gamma-glutamyl transfer reactions catalyzed by gamma-glutamyl transpeptidase are active in the renal handling of gamma-glutamyl compounds. Indirect evidence was obtained that L-gamma-glutamyl-2-aminobutyrate is partially taken up by the kidney cell in an intact form. In contrast to the kidney, administration of several gamma-glutamyl derivatives did not cause an increase in liver glutamate, glutamine and pyrrolidone carboxylate. After administration of L-gamma-glutamyl-2-aminobutyrate only a slight increase in liver aspartate and pyrrolidone carboxylate was observed. Experiments with L-gamma-[14C]glutamyl-L-2-aminobutyrate suggest that this derivative is largely first degraded to its component amino acids (probably in the kidney) before entering into the metabolism of the liver cell. gamma-Glutamyl transpeptidase may function in the metabolism and transport of glutathione and other gamma-glutamyl compounds in a manner analogous to the function of dipeptidases and disaccharidases in the metabolism and transport of dipeptides and disaccharides respectively.  相似文献   

13.
gamma-Glutamyl transpeptidase purified from hog kidney cortex was implanted in the human erythrocyte membrane by incubation of erythrocytes at 37 degrees c with gamma-glutamyl transpeptidase-incorporated dipalmitoyl phosphatidylcholine vesicles. Membranes prepared from these implanted cells exhibited 4- to 5-fold increase in gamma-glutamyl transpeptidase activity. The association/insertion of gamma-glutamyl transpeptidase into erythrocyte membrane was further demonstrated by antibody to gamma-glutamyl transpeptidase. Implantation of gamma-glutamyl transpeptidase into erythrocyte membrane led to stimulation of uptake of glutamate and alanine, which are normally transported at a slow rate in human erythrocytes. The uptake of these amino acids in the implanted system was inhibited by inhibitors (serine-borate and azaserine) of transpeptidase activity as well as by antibody to gamma-glutamyl transpeptidase. These results in the implanted human erythrocytes demonstrate that gamma-glutamyl transpeptidase enzyme can mediate the translocation of amino acids and provide further evidence in support of its postulated role in the transport of amino acids in natural membranes.  相似文献   

14.
It was shown that preparations of bovine kidney gamma-glutamyl transferase with different degree of purity are phosphorylated by cAMP-dependent protein kinase. Phosphorylation is accompanied by a simultaneous decrease of both transferase and hydrolase activities of the enzyme. Hence, gamma-glutamyltransferase may serve as a substrate and target of regulation by cAMP-dependent protein kinase.  相似文献   

15.
gamma-Glutamyl transpeptidase (purified from rat kidney) was incubated with glutathione and a mixture of amino acids that closely approximates the amino acid composition of blood plasma, and the relative extents of transpeptidation and hydrolysis were determined by quantitative measurement of the products formed (glutamate, cysteinylglycine, gamma-glutamyl amino acids). At pH 7.4, in the presence of 50 microM glutathione and the amino acid mixture, about 50% of the glutathione that was utilized participated in transpeptidation. Studies in which the formation of individual gamma-glutamyl amino acids was determined in the presence of glutathione and the amino acid mixture showed that L-cystine and L-glutamine are the most active amino acid acceptors, and that other neutral amino acids also participate in transpeptidation to a significant extent. These in vitro experiments are consistent with a number of other findings which indicate that transpeptidation is a significant physiological function of gamma-glutamyl transpeptidase.  相似文献   

16.
Using reduced vitamin K, oxygen, and carbon dioxide, gamma-glutamyl carboxylase post-translationally modifies certain glutamates by adding carbon dioxide to the gamma position of those amino acids. In vertebrates, the modification of glutamate residues of target proteins is facilitated by an interaction between a propeptide present on target proteins and the gamma-glutamyl carboxylase. Previously, the gastropod Conus was the only known invertebrate with a demonstrated vitamin K-dependent carboxylase. We report here the discovery of a gamma-glutamyl carboxylase in Drosophila. This Drosophila enzyme is remarkably similar in amino acid sequence to the known mammalian carboxylases; it has 33% sequence identity and 45% sequence similarity to human gamma-glutamyl carboxylase. The Drosophila carboxylase is vitamin K-dependent, and it has a K(m) toward a model pentapeptide substrate, FLEEL, of about 4 mm. However, unlike the human gamma-glutamyl carboxylase, it is not stimulated by human blood coagulation factor IX propeptides. We found the mRNA for Drosophila gamma-glutamyl carboxylase in virtually every embryonic and adult stage that we investigated, with the highest concentration evident in the adult head.  相似文献   

17.
The activities of 4 enzymes, i.e. alkaline phosphatase, gamma-glutamyl transferase, lactate dehydrogenase and creatine kinase were studied in bronchial aspirates and serums from two groups of subjects, the first one was composed of 14 subjects without active bronchopulmonary pathology and the other of 20 patients with lung cancer. The results showed a statistically significant decrease of the activities of alkaline phosphatase and beta-glutamyl transferase in bronchial aspirate from patients with bronchogenic malignant tumors in relation to normal subjects. This finding could be explained by the 'fetalism' principle, which states that the quantitative pattern of enzymes of immature human tissues resembles those of neoplastic tissues.  相似文献   

18.
The activity of gamma-glutamyl hydrolase, the enzyme which deglutamylates folyl and antifolyl polyglutamates, changed significantly in mouse cells during different phases of growth, being about two times lower in actively proliferating mice splenocytes and fibroblasts than in nondividing cells. In EAC cells growing in vivo the lowest activity was observed in cells in the logarythmic phase. Methotrexate treatment of mice in a dose of 500 mg/kg body weight increased the activity of the enzyme in EAC cells about 1.5 times. We suggest that gamma-glutamyl hydrolase is a proliferating dependent enzyme which together with folypolyglutamate synthetase ensures in cells an appropriate amount of folates in the form of polyglutamates necessary for optimizing folate-dependent biosynthetic activities.  相似文献   

19.
The hypothetical protein C7orf24 has been implicated as a cancer marker with a potential role in cell proliferation. We have identified C7orf24 as gamma-glutamyl cyclotransferase (GGCT) that catalyzes the formation of 5-oxoproline (pyroglutamic acid) from gamma-glutamyl dipeptides and potentially plays a significant role in glutathione homeostasis. In the present study we have identified the first cDNA clones encoding a gamma-glutamyl cyclotransferase. The GGCT gene is located on chromosome 7p14-15 and consists of four exons that span 8 kb. The primary sequence is 188 amino acids in length and is unlike any protein of known function. We crystallized functional recombinant gamma-glutamyl cyclotransferase and determined its structure at 1.7 A resolution. The enzyme is a dimer of 20,994-Da subunits. The topology of GGCT is unrelated to other enzymes associated with cyclotransferase-like activity. The fold was originally classified as "BtrG-like," a small family that only includes structures of hypothetical proteins from Mus musculus, Escherichia coli, Pyrococcus horikoshii, and Arabidopsis thaliana. Since this is the first member of this family with a defined function, we propose to refer to this structure as the gamma-glutamyl cyclotransferase fold. We have identified a potential active site pocket that contains a highly conserved glutamic acid (Glu(98)) and propose that it acts as a general acid/base in the reaction mechanism. Mutation of Glu(98) to Ala or Gln completely inactivates the enzyme without altering the overall fold.  相似文献   

20.
Previous studies have shown that rainbow trout fed on diets containing whole protein have superior growth rates compared to fish fed on diets of similar amino acid composition but containing a high proportion of free amino acids. The influence of several nutritional factors on the uptake of radioactivity from food pellets containing either [U-I4C] protein or [U-14C] amino acids into the systemic blood of trout has been investigated. The time taken for radioactivity in the free amino acid fraction of blood to reach a peak after a meal containing [U-14C] protein had been given was much shorter, and the level of radioactivity in the blood higher, in trout with almost empty stomachs than in fish with almost full stomachs; uptake of radioactivity into blood amino acids was also more rapid and reached much higher concentrations when pellets containing [U-14C] amino acids were fed than when [U-14C] protein was fed. Incorporation of radioactivity into blood protein continued for a much longer period and reached higher levels when a pellet containing [U-14C] protein was fed than when a pellet containing [U-14C] amino acids was fed. Previous dietary history (low or high protein intake) did not appear to affect the rate of absorption of amino acids from either protein or free amino acid pellets. The uptake rates from pellets containing free amino acids could be slowed by mixing the dietary amino acids with albumin. The distribution, postabsorption, of radioactivity in the different fractions of blood and liver suggested that incorporation of carbon residues into glycogen and lipid from an amino acid diet was greater than from a protein diet. The converse was true of incorporation of radioactivity into tissue protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号