首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of a newly synthesized compound, 7-(3-[4-(2,3-dimethylphenyl)piperazinyl]propoxy)-2(1H)-quinolinone (OPC-4392), on tyrosine hydroxylation in situ and in vitro were studied using rat striatal slices and tyrosine hydroxylase (TH) purified from bovine adrenal medulla, respectively. OPC-4392 dose-dependently inhibited L-dihydroxyphenylalanine (DOPA) formation in rat striatal slices with IC50 values of about 10(-6) M. The inhibitory effect of OPC-4392 on in situ DOPA formation was dose-dependently reversed by addition of sulpiride, a dopamine D2 receptor antagonist, whereas no change was observed by addition of nomifensine (5 X 10(-6) M), a blocker of dopamine uptake. From in vitro experiment using purified TH, OPC-4392 affected neither the enzymatic activity nor the Km value for 6-methyl-5,6,7,8-tetrahydropterin (6MPH4). These results suggest that OPC-4392 impairs in situ DOPA formation by stimulating presynaptic dopamine D2 receptor as a dopamine agonist, and not by directly inhibiting the TH activity.  相似文献   

2.
A highly sensitive assay for tyrosine hydroxylase (TH) activity by high-performance liquid chromatography (HPLC) with amperometric detection was devised based on the rapid isolation of enzymatically formed DOPA by a double-column procedure, the columns fitted together sequentially (the top column of Amberlite CG-50 and the bottom column of aluminium oxide). DOPA was adsorbed on the second aluminium oxide column, then eluted with 0.5 M hydrochloric acid, and assayed by HPLC with amperometric detection. d-Tyrosine was used for the control. α-Methyldopa was added to the incubation mixture as an internal standard after incubation. This assay was more sensitive than radioassays and 5 pmol of DOPA formed enzymatically could be measured in the presence of saturating concentrations of tyrosine and 6-methyltetrahydropterin. The TH activity in 2 mg of human putamen could be easily measured, and this method was found to be particularly suitable for the assay of TH activity in a small number of nuclei from animal and human brain.  相似文献   

3.
Human TRP-1 has been immunopurified from normal human melanocytes cultured from black neonatal subjects and used to investigate the catalytic function of TRP-1 for the two substrates, L-tyrosine and L-DOPA. Immunopurified TRP-1 did not demonstrate DOPA staining on SDS/PAGE nor DOPA oxidase (DO) activity with either routine or modified assays. The purified TRP-1 also demonstrated no tyrosine hydroxylase (TH) activity using the routine Pomerantz assay. However, there was apparent TH activity exhibited by immunopurified TRP-1 under conditions with low tyrosine concentration (≤0.8 μCi/ml of 3H-tyrosine), prolonged incubation time (i.e., overnight) and in the absence of the cofactor L-DOPA. Using these latter specific conditions, TH activity was also detected in cell lysates from a tyrosinase-negative albino melanocyte line which exhibited no TH activity with the routine Pomerantz assay. In addition, TH activity under low substrate assay conditions was not exhibited in a melanocyte line derived from a TRP-1 deficient, Brown albino individual. However, the absence of TH in this Brown albino cell line could be compensated for by the addition of L-DOPA to the assay. These results suggested that TRP-1 has some tyrosine hydroxylase but no DOPA oxidase activity. We propose that one function of TRP-1 is to modulate tyrosinase activity by making DOPA available as a cofactor to perpetuate the initial steps in melanogenesis.  相似文献   

4.
The metabolic transformation of tyrosine (TYR) by the decarboxylase and hydroxylase enzymes was investigated in the central nervous system of the locust, Locusta migratoria. It has been demonstrated that the key amino acids, 3,4-dihydroxyphenylalanine (DOPA), 5-hydroxytryptophan (5HTP) and tyrosine are decarboxylated in all part of central nervous system. DOPA and 5HTP decarboxylase activities show parallel changes in the different ganglia, but the rank order of the activity of TYR decarboxylase is different. Enzyme purification has revealed that the molecular weights of TYR decarboxylase and DOPA/5HTP decarboxylase are 370,000 and 112,000, respectively. The decarboxylation of DOPA by DOPA/5HTP decarboxylase is stimulated, whereas the decarboxylation of DOPA by TYR decarboxylase is inhibited in the presence of the cofactor pyridoxal-5'-phosphate. TYR hydroxylase could not be detected and 3H-TYR is found to be metabolised to tyramine (TA), but not to DOPA. The haemolymph contains a significant concentration of DOPA (120 pmol/100 microl haemolymph), and the ganglia incorporates DOPA from the haemolymph by a high affinity uptake process (K(M)=12 microM and V(max)=24 pmol per ganglion/10 min). Our results suggest that no tyrosine hydroxylase is present in the locust CNS and the DOPA uptake into the ganglia by a high affinity uptake process as well as the DOPA decarboxylase enzyme may be responsible for the regulation of the ganglionic dopamine (DA) level. Two types of decarboxylases exist, one of them decarboxylating DOPA and 5HTP (DOPA/5HTP decarboxylase), other decarboxylating TYR (TYR decarboxylase). The DOPA/5HTP decarboxylase enzyme present in the insect brain may correspond to the 5HTP/DOPA decarboxylase in vertebrate brain, whereas TYR decarboxylase is characteristic only for the insect brain.  相似文献   

5.
Summary. The effects of dioxygen on tyrosine hydroxylase (TH) activity was studied, measuring the formation of DOPA from tyrosine, 3H2O from 3,5-3H-tyrosine, or by direct oxygraphic determination of oxygen consumption. A high enzyme activity was observed during the initial 1–2 min of the reactions, followed by a decline in activity, possibly related to a turnover dependent substoichiometrical oxidation of enzyme bound Fe(II) to the inactive Fe(III) state. During the initial reaction phase, apparent K m-values of 29–45 μM for dioxygen were determined for all human TH isoforms, i.e. 2–40 times higher than previously reported for TH isolated from animal tissues. After 8 min incubation, the K m (O2)-values had declined to an average of 20 ± 4 μM. Thus, TH activity may be severely limited by oxygen availability even at moderate hypoxic conditions, and the enzyme is rapidly and turnover dependent inactivated at the experimental conditions commonly employed to measure in vitro activities. Authors’ address: Jan Haavik, Department of Biomedicine, University of Bergen, 5009 Bergen, Norway  相似文献   

6.
7.
Viral vector-mediated gene transfer is emerging as a novel therapeutic approach with clinical utility in treatment of Parkinson's disease. Recombinant adeno-associated viral (rAAV) vector in particular has been utilized for continuous l -3,4 dihydroxyphenylalanine (DOPA) delivery by expressing the tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1) genes which are necessary and sufficient for efficient synthesis of DOPA from dietary tyrosine. The present study was designed to determine the optimal stoichiometric relationship between TH and GCH1 genes for ectopic DOPA production and the cellular machinery involved in its synthesis, storage, and metabolism. For this purpose, we injected a fixed amount of rAAV5-TH vector and increasing amounts of rAAV5-GCH1 into the striatum of rats with complete unilateral dopamine lesion. After 7 weeks the animals were killed for either biochemical or histological analysis. We show that increasing the availability of 5,6,7,8-tetrahydro- l -biopterin (BH4) in the same cellular compartment as the TH enzyme resulted in better efficiency in DOPA synthesis, most likely by hindering inactivation of the enzyme and increasing its stability. Importantly, the BH4 synthesis from ectopic GCH1 expression was saturable, yielding optimal TH enzyme functionality between GCH1 : TH ratios of 1 : 3 and 1 : 7.  相似文献   

8.
Abstract— The activity of dihydropteridine reductase (DPR) in pheochromocytoma cells has been studied. The activity of this enzyme in crude extracts of pheochromocytoma cells is approximately 50 nmol/min/mg protein. This activity is very much greater than the activity of tyrosine 3-monooxygenase (TH) in these extracts and the rate of conversion of tyrosine to DOPA in intact pheochromocytoma cells. Incubation of the cells with 56 m m -K+ or with cholera toxin has previously been shown to increase the rate of catecholamine synthesis and to cause a stable activation of TH in the cells. These treatments do not produce a stable activation of DPR, as assayed in vitro. Methotrexate inhibits DPR activity in vitro with an I50 of approximately 20 μ m , but has no effect on the rate of DOPA formation in intact pheochromocytoma cells. Therefore, DPR does not appear to be the rate-limiting enzyme in the pathway of catecholamine synthesis in pheochromocytoma cells. Moreover, the activities of DPR and of TH are not regulated coordinately in these cells.  相似文献   

9.
Tyrosine hydroxylase (TH) activity and levels of tyrosine were measured in whole brains from mice subjected to brief electric foot shock or to single or multiple injections of hydrocortisone acetate (HCA; 20 mg/kg). Adult brain tyrosine levels showed a rapid increase after either foot shock or a single injection of HCA; TH activity was also rapidly increased by foot shock but not by HCA. Multiple injections of HCA over three days increased brain TH activity in neonatal mice, but had no effect in adults. These results suggest that glucocorticoid hormone may have a regulatory influence on brain TH during the neonatal period, and that the hormone may also affect brain tyrosine. The acute effect of foot shock stress on brain TH activity is not a glucocorticoid-mediated event, but can be interpreted as enzyme activation due to neural stimulation.  相似文献   

10.
Characterization of tyrosine hydroxylase from Manduca sexta   总被引:1,自引:0,他引:1  
In insects, 3,4-dihydroxyphenylalanine (DOPA) is required for tanning of newly formed cuticle and the production of melanin during some types of immune responses. DOPA is produced by the hydroxylation of tyrosine, and this reaction can be catalyzed by two types of enzymes: tyrosine hydroxylase (TH) and phenoloxidase (PO). TH is required for cuticle tanning in Drosophila melanogaster and for cuticle pigmentation in other insect species, but additional functions of TH have been uncertain. In contrast, an immune function for PO has been well documented. The goal of this study was to characterize TH from Manduca sexta with a focus on its possible contribution to cuticle tanning and immune-associated melanization. We cloned a full-length TH cDNA, purified recombinant TH, and confirmed that MsTH and MsPO have tyrosine hydroxylating activity. To determine possible functions, we analyzed TH expression profiles. TH mRNA and protein were present in eggs at the stage when the pharate larval cuticle begins to tan and also in the integument of molting larvae. The amount of TH in the integument was correlated with the degree of cuticle tanning. Unlike PO, which was found to be constitutively expressed by hemocytes and was present in plasma, TH was upregulated in hemocytes and the fat body in response to an immune challenge and remained intracellular. These data suggest that TH is required for cuticle tanning and immunity in M. sexta. Based on the collective information from many studies, we propose a model in which TH is a major producer of the DOPA required for both cuticle tanning and immune-associated melanization.  相似文献   

11.
The mechanisms of tyrosine hydroxylase (TH) activation by depolarization or exposure of dopaminergic terminals to cyclic AMP have been compared using rat striatal slices. Tissues were incubated with veratridine or 60 mM K+ (depolarizing conditions), on the one hand, and forskolin or dibutyryl cyclic AMP, on the other. K+-(or veratridine-)induced depolarization triggered an activation of TH (+75%) that persisted in soluble extracts of incubated tissues. This effect disappeared when drugs (EGTA, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, Gallopamil) preventing Ca2+- and calmodulin-dependent processes were included in the incubating medium. In contrast, prior in vivo reserpine treatment or in vitro addition of benztropine did not affect the depolarization-induced activation of TH. In vitro studies of soluble TH extracted from depolarized tissues indicated that activation was associated with a marked increase in the enzyme Vmax but with no change in its apparent affinity for the pteridin cofactor 6-methyl-5,6,7,8-tetrahydropterin (6-MPH4) or tyrosine. Furthermore, the activated enzyme from depolarized tissues exhibited the same optimal pH (5.8) as native TH extracted from control striatal slices. In contrast, TH activation resulting from tissue incubation in the presence of forskolin or dibutyryl cyclic AMP was associated with a selective increase in the apparent affinity for 6-MPH4 and a shift in the optimal pH from 5.8 to 7.0-7.2. Clear distinction between the two activating processes was further confirmed by the facts that heparin- and cyclic AMP-dependent phosphorylation stimulated TH activity from K+-exposed (and control) tissues but not that from striatal slices incubated with forskolin (or dibutyryl cyclic AMP). In contrast, the latter enzyme but not that from depolarized tissues could be activated by Ca2+-dependent phosphorylation. These data strongly support the concept that Ca2+- but not cyclic AMP-dependent phosphorylation is responsible for TH activation in depolarized dopaminergic terminals.  相似文献   

12.
Tyrosine hydroxylase and Parkinson's disease   总被引:7,自引:0,他引:7  
A consistent neurochemical abnormality in Parkinson's disease (PD) is degeneration of dopaminergic neurons in substantia nigra, leading to a reduction of striatal dopamine (DA) levels. As tyrosine hydroxylase (TH) catalyses the formation ofl-DOPA, the rate-limiting step in the biosynthesis of DA, the disease can be considered as a TH-deficiency syndrome of the striatum. Similarly, some patients with hereditaryl-DOPA-responsive dystonia, a neurological disorder with clinical similarities to PD, have mutations in the TH gene and decreased TH activity and/or stability. Thus, a logical and efficient treatment strategy for PD is based on correcting or bypassing the enzyme deficiency by treatment withl-DOPA, DA agonists, inhibitors of DA metabolism, or brain grafts with cells expressing TH. A direct pathogenetic role of TH has also been suggested, as the enzyme is a source of reactive oxygen species (ROS) in vitro and a target for radical-mediated oxidative injury. Recently, it has been demonstrated thatl-DOPA is effectively oxidized by mammalian TH in vitro, possibly contributing to the cytotoxic effects of DOPA. This enzyme may therefore be involved in the pathogenesis of PD at several different levels, in addition to being a promising candidate for developing new treatments of this disease.  相似文献   

13.
The possible control of tyrosine hydroxylase (TH) activity by dopaminergic receptor-dependent mechanisms was investigated using rat striatal slices or synaptosomes incubated in the presence of various 3,4-dihydroxyphenylethylamine (dopamine or DA) agonists and antagonists. Under "normal" conditions (4.8 mM K+ in the incubating medium), the DA agonists apomorphine, 6,7-dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99), 7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT), Trans-(-)-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-2H-pyrazolo-3,4- quinoline, and 3-(3-hydroxyphenyl)-N-n-propylpiperidine decreased TH activity in soluble extracts of incubated tissues. In the case of the catechol-containing drugs apomorphine and TL-99, this effect was partly due to a direct inhibition of the enzyme, but in all other cases it appeared to depend on the stimulation of presynaptic DA autoreceptors. No effect of DA antagonists was detected on TH activity under "normal" conditions. In contrast, when tissues were incubated in a K+ -enriched (60 mM) medium, (-)-sulpiride and other DA antagonists enhanced TH activation due to depolarization whereas DA agonists were ineffective. Because (-)-sulpiride also increased the enzyme activity in striatal slices exposed to drugs inducing release of DA, such as veratridine and d-amphetamine, it is concluded that the stimulating effect of the DA antagonist resulted in fact from the blockade of the negative control of TH normally triggered by endogenous DA acting on presynaptic autoreceptors. In contrast to TH activation due to K+ -induced depolarization, the activation evoked by tissue incubation with dibutyryl cyclic AMP was unaffected by the typical agonist 7-OH-DPAT or the antagonist (-)-sulpiride. This would suggest that TH control via presynaptic DA autoreceptors normally concerns possible modulations of the cyclic AMP-dependent phosphorylation of the enzyme.  相似文献   

14.
l-DOPA Is a Substrate for Tyrosine Hydroxylase   总被引:2,自引:0,他引:2  
Abstract: In the presence of thiols, tyrosine hydroxylase (TH) oxidizes l -dihydroxyphenylalanine ( l -DOPA) with a specific activity of up to 140 nmol min−1 mg−1 at 37°C and pH 7.0, which is ∼12–50% of its TH activity under similar experimental conditions. Using assay conditions that are optimal for measuring TH activity, the specific DOPA oxidase activity of human TH is similar to that of mushroom tyrosinase, but the two enzymes are clearly different in terms of substrate specificities, cofactor dependencies, and selectivity with respect to the effects of metal chelators and other inhibitors. In the presence of an excess of dithiothreitol, 2-mercaptoethanol, cysteine, or reduced glutathione, the reaction products of the two enzymes are identical and have been identified tentatively as thioether derivatives of DOPA. Theoretically, the oxidation of l -DOPA by TH may contribute to the formation of neuromelanin (pheomelanin) in catecholaminergic neurons and in the metabolism of DOPA to reactive intermediates that can react with free thiol groups in cellular proteins. The DOPA oxidase activity of TH can lead to errors in the estimation of in vivo or in vitro TH activity, and currently used assay protocols may have to be modified to avoid interference from this activity.  相似文献   

15.
A Togari  K Kojima  T Nagatsu 《Life sciences》1985,37(17):1605-1611
Newly synthesized tyrosine hydroxylase (TH) induced by reserpine was compared with the enzyme in control rats in terms of the molecular and physiological properties. When repeated doses of reserpine were given at daily intervals for three days, the enzyme activity measured in homogenates of the adrenal glands was increased 3-fold. Furthermore, when TH in the adrenal glands from both control and reserpine-treated rats was purified, both total activity of the enzyme and the enzyme protein content purified from reserpine-treated rats were also about 3-fold higher than those of the control rats. The two purified enzymes revealed similar properties; a single subunit with a Mr of 60,000 was observed by SDS polyacrylamide gel electrophoresis, and the Km value for a pterin cofactor, 6-methyl-tetrahydropterin was about 300 microM. In contrast, in situ TH activity measured under physiological conditions at pH 7.2 in adrenal tissue slices was elevated 6-fold by reserpine pretreatment for 3 days, and was stimulated by carbachol (0.1 mM) and elevated K+ (52 mM) in a roughly proportional rather than additive way relative to slices from untreated rats. These results indicate that newly synthesized TH induced by reserpine in rat adrenal gland had similar properties as the enzyme in control rats and that reserpine increased not only the amount of TH molecules but also the in situ activity of TH. Since reserpine also increases the biosynthesis of tetrahydrobiopterin as demonstrated by Viveros and co-workers, this 6-fold increase in in situ TH activity may depend both upon the 3-fold increase in the amount of enzyme molecules and upon the increase of the physiologically available tetrahydrobiopterin in the adrenal gland.  相似文献   

16.
The activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by phosphorylation. In this study, we examined the effects of activation of NMDA receptors on the state of phosphorylation and activity of tyrosine hydroxylase in rat striatal slices. NMDA produced a time-and concentration-dependent increase in the levels of phospho-Ser(19)-tyrosine hydroxylase in nigrostriatal nerve terminals. This increase was not associated with any changes in the basal activity of tyrosine hydroxylase, measured as DOPA accumulation. Forskolin, an activator of adenylyl cyclase, stimulated tyrosine hydroxylase phosphorylation at Ser(40) and caused a significant increase in DOPA accumulation. NMDA reduced forskolin-mediated increases in both Ser(40) phosphorylation and DOPA accumulation. In addition, NMDA reduced the increase in phospho-Ser(40)-tyrosine hydroxylase produced by okadaic acid, an inhibitor of protein phosphatase 1 and 2A, but not by a cyclic AMP analogue, 8-bromo-cyclic AMP. These results indicate that, in the striatum, glutamate decreases tyrosine hydroxylase phosphorylation at Ser(40) via activation of NMDA receptors by reducing cyclic AMP production. They also provide a mechanism for the demonstrated ability of NMDA to decrease tyrosine hydroxylase activity and dopamine synthesis.  相似文献   

17.
A chemical assay of 3,4-dihydroxyphenylalanine (DOPA) in nervous tissue is described. The method is based on a rapidly performed isolation of DOPA on small Sephadex G-10 columns, followed by reverse-phase HPLC with a trichloroacetic acid-containing eluent, in conjunction with a rotating disk electrochemical detector. The detection limit of the assay (about 100 pg/tissue sample) permits a detailed investigation of the regional distribution of endogenous DOPA levels in the rat brain. DOPA as well as dopamine (DA) could be quantified in the same chromatographic run. The assay was applied to a study of the effects of alpha-methyl-p-tyrosine, apomorphine, chlorpromazine, clonidine, gamma-butyrolactone, haloperidol, morphine, oxotremorine, pargyline, reserpine, and tyrosine methylester on the concentration of DOPA in the striatum, hypothalamus, frontal cortex, and cerebellum of the rat brain. Drugs known to interact with DA biosynthesis all caused characteristic changes of the DOPA content in the striatum and not in nondopaminergic brain areas. A close correlation existed between drug-induced changes in tyrosine hydroxylase activity and changes in the DOPA content in the striatum. Tyrosine methylester increased DOPA concentrations in all brain areas studied.  相似文献   

18.
Previous studies from our laboratory showed that subchronic exposure to low levels of Pb resulted in significant decrease in dopamine (DA) content, attenuation of stimulus-induced release of DA in the dopaminergic projection area of nucleus accumbens (NA), and alterations in tyrosine hydroxylase (TH) activity in rat whole brain homogenates. The present study reported here was conducted to assess the functional integrity of DA synthesis in different brain regions of rats subchronically (90-days) exposed to 50 ppm Pb by measuring the activity of the rate limiting enzyme, tyrosine hydroxylase, in seven brain regions. In Pb-exposed rats, TH activity was reduced in two of the seven brain regions investigated, i.e., nucleus accumbens (42% reduction) and frontal cortex (61% reduction) when compared to controls. In contrast, Pb exposure did not affect the TH activity in cerebellum, brainstem, hippocampus, hypothalamus and striatum. The changes in TH activity in nucleus accumbens (NA) and frontal cortex (FC) in Pb-exposed rats were further confirmed by Western blot analysis using TH polyclonal antibody. Collectively, these results indicate that low level subchronic Pb exposure may affect TH protein in these brain regions.  相似文献   

19.
Lithium inhibits inositol monophosphatase at therapeutically effective concentrations, and it has been hypothesized that depletion of brain inositol levels is an important chemical alteration for lithium's therapeutic efficacy in bipolar disorder. We have employed adult rat cortical slices as a model to investigate the gene regulatory consequences of inositol depletion effected by lithium using cytidine diphosphoryl-diacylglycerol as a functionally relevant biochemical marker to define treatment conditions. Genes coding for the neuropeptide hormone pituitary adenylate cyclase activating polypeptide (PACAP) and the enzyme that processes PACAP's precursor to the mature form, peptidylglycine alpha-amidating monooxygenase, were upregulated by inositol depletion. Previous work has shown that PACAP can increase tyrosine hydroxylase (TH) activity and dopamine release, and we found that the gene for GTP cyclohydrolase, which effectively regulates TH through synthesis of tetrahydrobiopterin, was also upregulated by inositol depletion. We propose that modulation of brain PACAP signaling might represent a new opportunity in the treatment of bipolar disorder.  相似文献   

20.
Linear sucrose density gradient centrifugation of a crude synaptosomal-mitochondrial preparation of rat striatum was performed at 82, 500g for 7.5, 15 and 30 min and 1, 4 and 20 h. After centrifugation various marker enzyme activities were measured throughout the gradients, viz. tyrosine hydroxylase (TH) and DOPA decarboxylase (DD) as markers of dopaminergic synaptosomes, lactate dehydrogenase (LDH) as a general synaptosomal marker and monoamine oxidase (MAO) as a mitochondrial marker. At all centrifugation times the distribution patterns of TH and DD activity coincided almost perfectly. Notable differences were found between the sedimentation properties of these TH/DD-containing particles and LDH-containing particles: TH and DD were symmetrically distributed in the gradient much sooner than LDH, at all centrifugation times the top of the TH and DD curves was lying deeper in the gradient than the highest LDH activity, and Th and DD became enriched in the gradients to a much greater extent than LDH. It is concluded that rat striatal dopaminergic synaptosomes form a relatively homogenous population of particles sedimenting faster into the gradients than the bulk of striatal synaptosomes does. This distinct sedimentation behaviour of the dopaminergic synaptosomes can be usefully applied for analytical purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号