首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
Cloning and modeling of the first nonmammalian CD4   总被引:9,自引:0,他引:9  
We have cloned and sequenced the first nonmammalian CD4 cDNA from the chicken using the COS cell expression method. Chicken CD4 contains four extracellular Ig domains that, in analogy to mammalian CD4, are in the order V, C2, V, and C2. The molecule is 24% identical with both human and mouse sequences. The extracellular domains were modeled using human and rat CD4 crystal structures as templates. In the first domain there are two extra Cys residues that are at suitable distance to form an intra-beta-sheet disulfide bridge in addition to the canonical one in the V domain. The region responsible for the interaction with MHC class II is relatively nonconserved in chicken. However, there are positively charged amino acids in the C" region of the N-terminal domain that may mediate the association to the negatively charged residues of the MHC class II beta-chain. Molecular modeling also implies that the membrane-proximal domain mediates dimerization of chicken CD4 in a similar way as it does for human CD4. Furthermore, the cytoplasmic tail is highly conserved, containing the protein tyrosine kinase p56lck recognition site that is preceded by an adjacent di-leucine motif for the internalization of the molecule. Interestingly, there are no Ser residues in the cytoplasmic part, which may explain the slow down-regulation of chicken CD4 after phorbol ester stimulation.  相似文献   

2.
We have characterized dendritic cell (DC)-associated lectin-1 (DCAL-1), a novel, type II, transmembrane, C-type lectin-like protein. DCAL-1 has restricted expression in hemopoietic cells, in particular, DCs and B cells, but T cells and monocytes do not express it. The DCAL-1 locus is within a cluster of C-type lectin-like loci on human chromosome 12p12-13 just 3' to the CD69 locus. The consensus sequence of the DCAL-1 gene was confirmed by RACE-PCR; however, based on sequence alignment with genomic DNA and with various human expressed sequence tags, we predict that DCAL-1 has two splice variants. C-type lectins share a common sequence motif of 14 invariable and 18 highly conserved aa residues known as the carbohydrate recognition domain. DCAL-1, however, is missing three of the cysteine residues required to form the standard carbohydrate recognition domain. DCAL-1 mRNA and protein expression are increased upon the differentiation of monocytes to CD1a(+) DCs. B cells also express high levels of DCAL-1 on their cell surface. Using a DCAL-1 fusion protein we identified a population of CD4(+) CD45RA(+) T cells that express DCAL-1 ligand. Coincubation with soluble DCAL-1 enhanced the proliferation of CD4(+) T cells in response to CD3 ligation and significantly increased IL-4 secretion. In contrast, coincubation with soluble DC-specific ICAM-3-grabbing nonintegrin (CD209) fusion protein as a control had no effect on CD4(+) T cell proliferation or IL-4 and IFN-gamma secretion. Therefore, the function of DCAL-1 on DCs and B cells may act as a T cell costimulatory molecule, which skews CD4(+) T cells toward a Th2 response by enhancing their secretion of IL-4.  相似文献   

3.
CD44 is an important adhesion molecule that functions as the major hyaluronan receptor which mediates cell adhesion and migration in a variety of physiological and pathological processes. Although full activity of CD44 requires binding to ERM (ezrin/radixin/moesin) proteins, the CD44 cytoplasmic region, consisting of 72 amino acid residues, lacks the Motif-1 consensus sequence for ERM binding found in intercellular adhesion molecule (ICAM)-2 and other adhesion molecules of the immunoglobulin superfamily. Ultracentrifugation sedimentation studies and circular dichroism measurements revealed an extended monomeric form of the cytoplasmic peptide in solution. The crystal structure of the radixin FERM domain complexed with a CD44 cytoplasmic peptide reveals that the KKKLVIN sequence of the peptide forms a beta strand followed by a short loop structure that binds subdomain C of the FERM domain. Like Motif-1 binding, the CD44 beta strand binds the shallow groove between strand beta5C and helix alpha1C and augments the beta sheet beta5C-beta7C from subdomain C. Two hydrophobic CD44 residues, Leu and Ile, are docked into a hydrophobic pocket with the formation of hydrogen bonds between Asn of the CD44 short loop and loop beta4C-beta5C from subdomain C. This binding mode resembles that of NEP (neutral endopeptidase 24.11) rather than ICAM-2. Our results reveal a characteristic versatility of peptide recognition by the FERM domains from ERM proteins, suggest a possible mechanism by which the CD44 tail is released from the cytoskeleton for nuclear translocation by regulated intramembrane proteolysis, and provide a structural basis for Smad1 interactions with activated CD44 bound to ERM protein.  相似文献   

4.
The zona pellucida (ZP) domain is present in extracellular proteins such as the zona pellucida proteins and tectorins and participates in the formation of polymeric protein networks. However, the ZP domain also occurs in the cytokine signaling co-receptor transforming growth factor β (TGF-β) receptor type 3 (TGFR-3, also known as betaglycan) where it contributes to cytokine ligand recognition. Currently it is unclear how the ZP domain architecture enables this dual functionality. Here, we identify a novel major TGF-β-binding site in the FG loop of the C-terminal subdomain of the murine TGFR-3 ZP domain (ZP-C) using protein crystallography, limited proteolysis experiments, surface plasmon resonance measurements and synthetic peptides. In the murine 2.7 Å crystal structure that we are presenting here, the FG-loop is disordered, however, well-ordered in a recently reported homologous rat ZP-C structure. Surprisingly, the adjacent external hydrophobic patch (EHP) segment is registered differently in the rat and murine structures suggesting that this segment only loosely associates with the remaining ZP-C fold. Such a flexible and temporarily-modulated association of the EHP segment with the ZP domain has been proposed to control the polymerization of ZP domain-containing proteins. Our findings suggest that this flexibility also extends to the ZP domain of TGFR-3 and might facilitate co-receptor ligand interaction and presentation via the adjacent FG-loop. This hints that a similar C-terminal region of the ZP domain architecture possibly regulates both the polymerization of extracellular matrix proteins and cytokine ligand recognition of TGFR-3.  相似文献   

5.
Interaction between receptors and ligands plays a critical role in the generation of immune responses. The 2B4 (CD244), a member of the CD2 subset of the Ig superfamily, is the high affinity ligand for CD48. It is expressed on NK cells, T cells, monocytes, and basophils. Recent data indicate that 2B4/CD48 interactions regulate NK and T lymphocyte functions. In human NK cells, 2B4/CD48 interaction induces activation signals, whereas in murine NK cells it sends inhibitory signals. To determine the structural basis for 2B4/CD48 interaction, selected amino acid residues in the V domain of the human 2B4 (h2B4) were mutated to alanine by site-directed mutagenesis. Following transient expression of these mutants in B16F10 melanoma cells, their interaction with soluble CD48-Fc fusion protein was assessed by flow cytometry. We identified amino acid residues in the extracellular domain of h2B4 that are involved in interacting with CD48. Binding of CD48-Fc fusion protein to RNK-16 cells stably transfected with wild-type and a double-mutant Lys(68)Ala-Glu(70)Ala h2B4 further demonstrated that Lys(68) and Glu(70) in the V domain of h2B4 are essential for 2B4/CD48 interaction. Functional analysis indicated that Lys(68) and Glu(70) in the extracellular domain of h2B4 play a key role in the activation of human NK cells through 2B4/CD48 interaction.  相似文献   

6.
The crystal structure of a highly acidic neurotoxin from the scorpion Buthus tamulus has been determined at 2.2A resolution. The amino acid sequence determination shows that the polypeptide chain has 64 amino acid residues. The pI measurement gave a value of 4.3 which is one of the lowest pI values reported so far for a scorpion toxin. As observed in other alpha-toxins, it contains four disulphide bridges, Cys12-Cys63, Cys16-Cys36, Cys22-Cys46, and Cys26-Cys48. The crystal structure reveals the presence of two crystallographically independent molecules in the asymmetric unit. The conformations of two molecules are identical with an r.m.s. value of 0.3A for their C(alpha) tracings. The overall fold of the toxin is very similar to other scorpion alpha-toxins. It is a betaalphabetabeta protein. The beta-sheet involves residues Glu2-Ile6 (strand beta1), Asp32-Trp39 (strand beta3) and Val45-Val55 (strand beta4). The single alpha-helix formed is by residues Asn19-Asp28 (alpha2). The structure shows a trans peptide bond between residues 9 and 10 in the five-membered reverse turn Asp8-Cys12. This suggests that this toxin belongs to classical alpha-toxin subfamily. The surface features of the present toxin are highly characteristic, the first (A-site) has residues, Phe18, Trp38 and Trp39 that protrude outwardly presumably to interact with its receptor. There is another novel face (N-site) of this neurotoxin that contains several negatively charged residues such as, Glu2, Asp3, Asp32, Glu49 and Asp50 which are clustered in a small region of the toxin structure. On yet another face (P-site) in a triangular arrangement, with respect to the above two faces there are several positively charged residues, Arg58, Lys62 and Arg64 that also protrude outwardly for a potentially potent interaction with other molecules. This toxin with three strong features appears to be one of the most toxic molecules reported so far. In this sense, it may be a new subclass of neurotoxins with the largest number of hot spots.  相似文献   

7.
8.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. There are seven serotypes of BoNT, termed A-G. The molecular basis for SNAP25 recognition and cleavage by BoNT serotype E is currently unclear. Here we define the multiple pocket recognition of SNAP25 by LC/E. The initial recognition of SNAP25 is mediated by the binding of the B region of SNAP25 to the substrate-binding (B) region of LC/E comprising Leu166, Arg167, Asp127, Ala128, Ser129, and Ala130. The mutations at these residues affected substrate binding and catalysis. Three additional residues participate in scissile bond cleavage of SNAP25 by LC/E. The P3 site residues, Ile178, of SNAP25 interacted with the S3 pocket in LC/E through hydrophobic interactions. The S3 pocket included Ile47, Ile164, and Ile182 and appeared to align the P1' and P2 residues of SNAP25 with the S1' and S2 pockets of LC/E. The S1' pocket of LC/E included three residues, Phe191, Thr159, and Thr208, which contribute hydrophobic and steric interactions with the SNAP25 P1' residue Ile181. The S2 pocket residue of LC/E, Lys224, binds the P2 residue of SNAP25, Asp179, through ionic interactions. Deletion mapping indicates that main chain interaction(s) of residues 182-186 of SNAP25 contribute to substrate recognition by LC/E. Understanding the mechanism for substrate specificity provides insight for the development of inhibitors against the botulinum neurotoxins.  相似文献   

9.
10.
Helicobacter pylori produces a heat shock protein A (HspA) that is unique to this bacteria. While the first 91 residues (domain A) of the protein are similar to GroES, the last 26 (domain B) are unique to HspA. Domain B contains eight histidines and four cysteines and was suggested to bind nickel. We have produced HspA and two mutants: Cys94Ala and Cys94Ala/Cys111Ala and identified the disulfide bridge pattern of the protein. We found that the cysteines are engaged in three disulfide bonds: Cys51/Cys53, Cys94/Cys111 and Cys95/Cys112 that result in a unique closed loop structure for the domain B.  相似文献   

11.
In this study the three-dimensional (3-D) model of the ligand-binding domain (V106-P322) of human interleukin-6 receptor (hIL-6 R) was constructed by computer-guided homology modeling technique using the crystal structure of the ligand-binding domain (K52-L251) of human growth hormone receptor (hGHR) as templet. Furthermore, the active binding region of the 3-D model of hIL-6R with the ligand (hIL-6) was predicted. In light of the structural characteristics of the active region, a hydrophobic pocket shielded by two hydrophilic residues (E115 and E505) of the region was identified by a combination of molecular modelling and the site-directed or double-site mutation of the twelve crucial residues in the ligand-binding domain of hIL-6R (V106-P322). We observed and analyzed the effects of these mutants on the spatial conformation of the pocket-like region of hIL-6 R. The results indicated that any site-directed mutation of the five Cys residues (four conservative Cys residues: Cys121, Cys132, Cys165, Cys176; near membrane Cys residue: Cys193) or each double-site mutation of the five residues in WSEWS motif of hIL-6R (V106-P322) makes the corresponding spatial conformation of the pocket region block the linkage between hIL-6 R and hIL-6. However, the influence of the site-directed mutation of Cys211 and Cys277 individually on the conformation of the pocket region benefits the interaction between hIL-6R and hIL-6. Our study suggests that the predicted hydrophobic pocket in the 3-D model of hIL-6R (V106-P322) is the critical molecular basis for the binding of hIL-6R with its ligand, and the active pocket may be used as a target for designing small hIL-6R-inhibiting molecules in our further study.  相似文献   

12.
Description of an ectothermic TCR coreceptor, CD8 alpha, in rainbow trout   总被引:1,自引:0,他引:1  
We have cloned the first CD8 alpha gene from an ectothermic source using a degenerate primer for Ig superfamily V domains. Similar to homologues in higher vertebrates, the rainbow trout CD8 alpha gene encodes a 204-aa mature protein composed of two extracellular domains including an Ig superfamily V domain and hinge region. Differing from mammalian CD8 alpha V domains, lower vertebrate (trout and chicken) sequences do not contain the extra cysteine residue (C strand) involved in the abnormal intrachain disulfide bridging within the CD8 alpha V domain of mice and rats. The trout membrane proximal hinge region contains the two essential cysteine residues involved in CD8 dimerization (alpha alpha or alpha beta) and threonine, serine, and proline residues which may be involved in multiple O-linked glycosylation events. Although the transmembrane region is well conserved in all CD8 alpha sequences analyzed to date, the putative trout cytoplasmic region differs and, in fact, lacks the consensus p56lck motif common to other CD8 alpha sequences. We then determined that the trout CD8 alpha genomic structure is similar to that of humans (six exons) but differs from that of mice (five exons). Additionally, Northern blotting and RT-PCR demonstrate that trout CD8 alpha is expressed at high levels within the thymus and at weaker levels in the spleen, kidney, intestine, and peripheral blood leukocytes. Finally, we show that trout CD8 alpha can be expressed on the surface of cells via transfection. Together, our results demonstrate that the basic structure and expression of CD8 alpha has been maintained for more than 400 million years of evolution.  相似文献   

13.
Inducible costimulator (ICOS) ligand (ICOSL), a B7-related transmembrane glycoprotein with extracellular IgV and IgC domains, binds to ICOS on activated T cells and delivers a positive costimulatory signal for optimal T cell function. Toward determining the structural features of ICOSL crucial for its costimulatory function, the present study shows that ICOSL displays a marked oligomerization potential, resembling more like B7-1 than B7-2. Use of ICOSL constructs lacking either the IgC or IgV domain demonstrates that receptor binding is mediated solely by the IgV domain but requires the IgC domain for maintaining the structural integrity of the protein. To map further the receptor recognition surface on ICOSL, a homology-based protein structure model of the ICOS:ICOSL complex was constructed. Based on predictions from the model, a series of mutations were generated targeting the potential receptor binding surface on ICOSL, and the mutants were tested for their biological function in terms of ICOS binding and T cell costimulation ability. The results provide experimental validation of the model and show that the receptor binding site on ICOSL is constituted chiefly by aromatic/hydrophobic residues. Critical ICOSL residues essential for ICOS binding map to the GFCC'C' beta-sheet face of the IgV domain and approximately overlap with the B7-1/B7-2 motif(s) that recognize CD28/CTLA-4. Altogether, similar structural features of ICOSL and B7 isoforms suggest a close evolutionary relationship between these costimulatory ligands, yet differences at the same time explain their unique specificity for the cognate binding partners, ICOS and CD28/CTLA-4, respectively.  相似文献   

14.
The receptor for advanced glycated end products (RAGE) is a multiligand receptor that is implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative disorders, and inflammatory responses. The ability of RAGE to recognize advanced glycated end products (AGEs) formed by nonenzymatic glycoxidation of cellular proteins places RAGE in the category of pattern recognition receptors. The structural mechanism of AGE recognition was an enigma due to the diversity of chemical structures found in AGE-modified proteins. Here, using NMR spectroscopy we showed that the immunoglobulin V-type domain of RAGE is responsible for recognizing various classes of AGEs. Three distinct surfaces of the V domain were identified to mediate AGE-V domain interactions. They are located in the positively charged areas of the V domain. The first interaction surface consists of strand C and loop CC ', the second interaction surface consists of strand C ', strand F, and loop FG, and the third interaction surface consists of strand A ' and loop EF. The secondary structure elements of the interaction surfaces exhibit significant flexibility on the ms-micros time scale. Despite highly specific AGE-V domain interactions, the binding affinity of AGEs for an isolated V domain is low, approximately 10 microm. Using in-cell fluorescence resonance energy transfer we show that RAGE is a constitutive oligomer on the plasma membrane. We propose that constitutive oligomerization of RAGE is responsible for recognizing patterns of AGE-modified proteins with affinities less than 100 nm.  相似文献   

15.
Innate immunity is the first line defense against invading pathogens. During Gram-negative bacterial infection, the Toll-like receptor 4 and MD-2 complex recognize lipopolysaccharide present in the bacterial cell wall. This recognition can be enhanced 100-1000-fold by CD14. However, the beneficial role provided by CD14 becomes detrimental in the context of sepsis and septic shock. An understanding of how CD14 functions will therefore benefit treatments targeted at both immune suppression and immune enhancement. In the present study, we use site-directed mutagenesis to address the role of disulfide bonds and N-linked glycosylation on CD14. A differential impact is observed for the five disulfide bonds on CD14 folding, with the first two (Cys(6)-Cys(17) and Cys(15)-Cys(32)) being indispensable, the third and fourth (Cys(168)-Cys(198) and Cys(222)-Cys(253)) being important, and the last (Cys(287)-Cys(333)) being dispensable. A functional role is observed for the first disulfide bond because the C6A substitution severely reduces the ability of CD14 to confer lipopolysaccharide responsiveness to U373 cells. Two of the four predicted glycosylation sites, asparagines 132 and 263, are actually involved in N-linked glycosylation, resulting in heterogeneity in CD14 molecular weight. Furthermore, glycosylation at Asn(132) plays a role in CD14 trafficking and upstream and/or downstream ligand interactions. When mapped onto the crystal structure of mouse CD14, the first two disulfide bonds and Asn(132) are in close proximity to the initial beta strands of the leucine rich repeat domain. Thus, disulfide bonds and N-linked glycosylation in the initial beta sheets of the inner concave surface of CD14 are crucial for structure and function.  相似文献   

16.
Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 A. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C(alpha) atoms of 0.9 A and 1.2 A, and sequence identities of 43% and 38%, respectively). The lactadherin C2 domain has a discoidin-like fold containing two beta-sheets of five and three antiparallel beta-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One beta-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain beta-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.  相似文献   

17.
2B4 (CD244) is an important activating receptor for the regulation of natural killer (NK) cell responses. Here we show that 2B4 is heavily and differentially glycosylated in primary human NK cells and NK cell lines. The differential glycosylation could be attributed to sialic acid residues on N- and O-linked carbohydrates. Using a recombinant fusion protein of the extracellular domain of 2B4, we demonstrate that N-linked glycosylation of 2B4 is essential for the binding to its ligand CD48. In contrast, sialylation of 2B4 has a negative impact on ligand binding, as the interaction between 2B4 and CD48 is increased after the removal of sialic acids. This was confirmed in a functional assay system, where the desialylation of NK cells or the inhibition of O-linked glycosylation resulted in increased 2B4-mediated lysis of CD48-expressing tumor target cells. These data demonstrate that glycosylation has an important impact on 2B4-mediated NK cell function and suggest that regulated changes in glycosylation during NK cell development and activation might be involved in the regulation of NK cell responses.  相似文献   

18.
Toll-like receptor 2 (TLR2) and CD14 function as pattern recognition receptors for bacterial peptidoglycan (PGN). TLRs and CD14 possess repeats of the leucine-rich motif. To address the role of the extracellular domain of TLR2 in PGN signaling, we constructed CD14/TLR2 chimeras, in which residues 1-356 or 1-323 of CD14 were substituted for the extracellular domain of TLR2, and five deletion mutants of TLR2, in which the progressively longer regions of extracellular TLR2 regions were deleted. PGN induced NF-kappaB activation in HEK293 cells expressing TLR2 but not in cells expressing CD14/TLR2 chimeras. The cells transfected with a deletion mutant TLR2(DeltaCys30-Ile64) as well as TLR2(DeltaCys30-Asp160) and TLR2(DeltaCys30-Asp305) failed to respond to PGN, indicating the importance of the TLR2 region Cys(30)-Ile(64). Although TLR2(DeltaCys30-Ser39) conferred cell responsiveness to PGN, the cells expressing TLR2(DeltaSer40-Ile64) failed to induce NF-kappaB activation. In addition, NF-kappaB activity elicited by PGN was significantly attenuated in the presence of synthetic peptide corresponding to the TLR2 region Ser(40)-Ile(64). From these results, we conclude that; 1) CD14 cannot functionally replace the extracellular domain of TLR2 in PGN signaling; 2) the TLR2 region Cys(30)-Ser(39) is not required for PGN recognition; 3) the TLR2 region containing Ser(40)-Ile(64) is critical for PGN recognition.  相似文献   

19.
DNA primases catalyze the synthesis of oligoribonucleotides to initiate lagging strand DNA synthesis during DNA replication. Like other prokaryotic homologs, the primase domain of the gene 4 helicase-primase of bacteriophage T7 contains a zinc motif and a catalytic core. Upon recognition of the sequence, 5'-GTC-3' by the zinc motif, the catalytic site condenses the cognate nucleotides to produce a primer. The TOPRIM domain in the catalytic site contains several charged residues presumably involved in catalysis. Each of eight acidic residues in this region was replaced with alanine, and the properties of the altered primases were examined. Six of the eight residues (Glu-157, Glu-159, Asp-161, Asp-207, Asp-209, and Asp-237) are essential in that altered gene 4 proteins containing these mutations cannot complement T7 phage lacking gene 4 for T7 growth. These six altered gene 4 proteins can neither synthesize primers de novo nor extend an oligoribonucleotide. Despite the inability to catalyze phosphodiester bond formation, the altered proteins recognize the sequence 5'-GTC-3' in the template and deliver preformed primer to T7 DNA polymerase. The alterations in the TOPRIM domain result in the loss of binding affinity for ATP as measured by surface plasmon resonance assay together with ATP-agarose affinity chromatography.  相似文献   

20.
The protein subunit of Escherichia coli ribonuclease P (which has a cysteine residue at position 113) and its single cysteine-substituted mutant derivatives (S16C/C113S, K54C/C113S and K66C/C113S) have been modified using a sulfhydryl-specific iron complex of EDTA-2- aminoethyl 2-pyridyl disulfide (EPD-Fe). This reaction converts C5 protein, or its single cysteine-substituted mutant derivatives, into chemical nucleases which are capable of cleaving the cognate RNA ligand, M1 RNA, the catalytic RNA subunit of E. coli RNase P, in the presence of ascorbate and hydrogen peroxide. Cleavages in M1 RNA are expected to occur at positions proximal to the site of contact between the modified residue (in C5 protein) and the ribose units in M1 RNA. When EPD-Fe was used to modify residue Cys16 in C5 protein, hydroxyl radical-mediated cleavages occurred predominantly in the P3 helix of M1 RNA present in the reconstituted holoenzyme. C5 Cys54-EDTA-Fe produced cleavages on the 5' strand of the P4 pseudoknot of M1 RNA, while the cleavages promoted by C5 Cys66-EDTA-Fe were in the loop connecting helices P18 and P2 (J18/2) and the loop (J2/4) preceding the 3' strand of the P4 pseudoknot. However, hydroxyl radical-mediated cleavages in M1 RNA were not evident with Cys113-EDTA-Fe, perhaps indicative of Cys113 being distal from the RNA-protein interface in the RNase P holoenzyme. Our directed hydroxyl radical-mediated footprinting experiments indicate that conserved residues in the RNA and protein subunit of the RNase-P holoenzyme are adjacent to each other and provide structural information essential for understanding the assembly of RNase P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号