首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some rare inherited forms of Parkinson's disease (PD) are due to mutations in the gene encoding a 140-amino acid presynaptic protein called alpha-synuclein. In PD, and some other related disorders such as dementia with Lewy bodies, alpha-synuclein accumulates in the brain in the form of fibrillar aggregates, which are found inside the neuronal cytoplasmic inclusions known as Lewy bodies. By means of an electron spin resonance (ESR) spin trapping method, we show here that solutions of full-length alpha-synuclein, and a synthetic peptide fragment of alpha-synuclein corresponding to residues 61-95 (the so-called non-Abeta component or NAC), both liberate hydroxyl radicals upon incubation in vitro followed by the addition of Fe(II). We did not observe this property for the related beta- and gamma-synucleins, which are not found in Lewy bodies, and are not linked genetically to any neurodegenerative disorder. There is abundant evidence for the involvement of free radicals and oxidative stress in the pathogenesis of nigral damage in PD. Our new data suggest that the fundamental molecular mechanism underlying this pathological process could be the production of hydrogen peroxide by alpha-synuclein.  相似文献   

2.
There is clear evidence implicating oxidative stress in the pathology of many neurodegenerative diseases. Reactive oxygen species (ROS) are the primary mediators of oxidative stress, and hydrogen peroxide, a key ROS, is generated during aggregation of the amyloid proteins associated with some of these diseases. Hydrogen peroxide is catalytically converted to the aggressive hydroxyl radical in the presence of Fe(II) and Cu(I), which renders amyloidogenic proteins such as beta-amyloid and alpha-synuclein (implicated in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively) vulnerable to self-inflicted hydroxyl radical attack. Here, we report some of the peptide-derived radicals, detected by electron spin resonance spectroscopy employing sodium 3,5-dibromo-4-nitrosobenzenesulfonate as a spin-trap, following hydroxyl radical attack on Abeta(1-40), alpha-synuclein and some other related peptides. Significantly, we found that sufficient hydrogen peroxide was self-generated during the early stages of aggregation of Abeta(1-40) to produce detectable peptidyl radicals, on addition of Fe(II). Our results support the hypothesis that oxidative damage to Abeta (and surrounding molecules) in the brain in AD could be due, at least in part, to the self-generation of ROS. A similar mechanism could operate in PD and some other "protein conformational" disorders.  相似文献   

3.
Turnbull S  Tabner BJ  Brown DR  Allsop D 《Biochemistry》2003,42(25):7675-7681
By means of electron spin resonance spectroscopy, in conjunction with the spin trapping technique, we have shown previously that Abeta and alpha-synuclein (aggregating proteins that accumulate in the brain in Alzheimer's disease, Parkinson's disease, and related disorders) both induce the formation of hydroxyl radicals following incubation in solution, upon addition of Fe(II). These hydroxyl radicals are apparently formed from hydrogen peroxide, via Fenton's reaction. An N-terminally truncated fragment of the mouse prion protein (termed PrP121-231) is toxic to cerebellar cells in culture, and certain human mutations, responsible for inherited prion disease, enhance this toxicity. Here we report that PrP121-231 containing three such mutations (E200K, D178N, and F198S) also generated hydroxyl radicals, upon addition of Fe(II). The formation of these radicals was blocked by catalase, or by metal chelators, each of which also reduced the toxicity of the PrP121-231 fragments to cultured normal mouse cerebellar cells. Wild-type PrP121-231, full-length cellular PrP, and its homologue doppel did not generate any detectable hydroxyl radicals. We conclude that the additional cytotoxic effects of the mutant forms of PrP121-231 could be due to their ability to generate hydrogen peroxide, by a metal-dependent mechanism. Thus, one effect of these (and possibly other) prion mutations could be production of a particularly toxic form of the prion protein, with an enhanced capacity to induce oxidative damage, neurodegeneration, and cell loss.  相似文献   

4.
Recent studies have begun to investigate the role of agrin in brain and suggest that agrin's function likely extends beyond that of a synaptogenic protein. Particularly, it has been shown that agrin is associated with the pathological lesions of Alzheimer's disease (AD) and may contribute to the formation of beta-amyloid (Abeta) plaques in AD. We have extended the analysis of agrin's function in neurodegenerative diseases to investigate its role in Parkinson's disease (PD). Alpha-synuclein is a critical molecular determinant in familial and sporadic PD, with the formation of alpha-synuclein fibrils being enhanced by sulfated macromolecules. In the studies reported here, we show that agrin binds to alpha-synuclein in a heparan sulfate-dependent (HS-dependent) manner, induces conformational changes in this protein characterized by beta-sheet structure, and enhances insolubility of alpha-synuclein. We also show that agrin accelerates the formation of protofibrils by alpha-synuclein and decreases the half-time of fibril formation. The association of agrin with PD lesions was also explored in PD human brain, and these studies shown that agrin colocalizes with alpha-synuclein in neuronal Lewy bodies in the substantia nigra of PD brain. These studies indicate that agrin is capable of accelerating the formation of insoluble protein fibrils in a second common neurodegenerative disease. These findings may indicate shared molecular mechanisms leading to the pathophysiology in these two neurodegenerative disorders.  相似文献   

5.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies, the major component of which are filaments consisting of alpha-synuclein. Two recently identified point mutations in alpha-synuclein are the only known genetic causes of PD, but their pathogenic mechanism is not understood. Here we show that both wild type and mutant alpha-synuclein form insoluble fibrillar aggregates with antiparallel beta-sheet structure upon incubation at physiological temperature in vitro. Importantly, aggregate formation is accelerated by both PD-linked mutations. Under the experimental conditions, the lag time for the formation of precipitable aggregates is about 280 h for the wild type protein, 180 h for the A30P mutant, and only 100 h for the A53T mutant protein. These data suggest that the formation of alpha-synuclein aggregates could be a critical step in PD pathogenesis, which is accelerated by the PD-linked mutations.  相似文献   

6.
The alpha-synuclein is a major component of Lewy bodies that are found in the brains of patients with Parkinson's disease (PD). Also, two point mutations in this protein, A53T and A30P, are associated with rare familial forms of the disease. We investigated whether there are differences in the Cu,Zn-SOD and hydrogen peroxide system mediated-protein modification between the wild-type and mutant alpha-synucleins. When alpha-synuclein was incubated with both Cu,Zn-SOD and H2O2, then the amount of A53T mutant oligomerization increased relative to that of the wild-type protein. This process was inhibited by radical scavenger, spin-trapping agent, and copper chelator. These results suggest that the oligomerization of alpha-synuclein is mediated by the generation of the hydroxyl radical through the metal-catalyzed reaction. The dityrosine formation of the A53T mutant protein was enhanced relative to that of the wild-type protein. Antioxidant molecules, carnosine, and anserine effectively inhibited the wild-type and mutant proteins' oligomerization. Therefore, these compounds may be explored as potential therapeutic agents for PD patients. The present experiments, in part, may provide an explanation for the association between PD and the alpha-synuclein mutant.  相似文献   

7.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies, the major components of which are filaments consisting of alpha-synuclein. Two recently identified point mutations in alpha-synuclein are the only known genetic causes of PD. alpha-Synuclein fibrils similar to the Lewy body filaments can be formed in vitro, and we have shown recently that both PD-linked mutations accelerate their formation. This study addresses the mechanism of alpha-synuclein aggregation: we show that (i) it is a nucleation-dependent process that can be seeded by aggregated alpha-synuclein functioning as nuclei, (ii) this fibril growth follows first-order kinetics with respect to alpha-synuclein concentration, and (iii) mutant alpha-synuclein can seed the aggregation of wild type alpha-synuclein, which leads us to predict that the Lewy bodies of familial PD patients with alpha-synuclein mutations will contain both, the mutant and the wild type protein. Finally (iv), we show that wild type and mutant forms of alpha-synuclein do not differ in their critical concentrations. These results suggest that differences in aggregation kinetics of alpha-synucleins cannot be explained by differences in solubility but are due to different nucleation rates. Consequently, alpha-synuclein nucleation may be the rate-limiting step for the formation of Lewy body alpha-synuclein fibrils in Parkinson's disease.  相似文献   

8.
Parkinson disease (PD) is a relatively common neurodegenerative disorder that is characterized by the loss of dopaminergic neurons and by the formation of Lewy bodies (LBs), which are cytoplasmic inclusions containing aggregates of alpha-synuclein. Although certain post-translational modifications of alpha-synuclein and its related proteins are implicated in the genesis of LBs, the specific molecular mechanisms that both regulate these processes and initiate subsequent inclusion body formation are not yet well understood. We demonstrate in our current study, however, that the prolyl-isomerase Pin1 localizes to the LBs in PD brain tissue and thereby enhances the formation of alpha-synuclein immunoreactive inclusions. Immunohistochemical analysis of brain tissue from PD patients revealed that Pin1 localizes to 50-60% of the LBs that show an intense halo pattern resembling that of alpha-synuclein. By utilizing a cellular model of alpha-synuclein aggregation, we also demonstrate that, whereas Pin1 overexpression facilitates the formation of alpha-synuclein inclusions, dominant-negative Pin1 expression significantly suppresses this process. Consistent with these observations, Pin1 overexpression enhances the protein half-life and insolubility of alpha-synuclein. Finally, we show that Pin1 binds synphilin-1, an alpha-synuclein partner, via its Ser-211-Pro and Ser-215-Pro motifs, and enhances its interaction with alpha-synuclein, thus likely facilitating the formation of alpha-synuclein inclusions. These results indicate that Pin1-mediated prolyl-isomerization plays a pivotal role in a post-translational modification pathway for alpha-synuclein aggregation and in the resultant Lewy body formations in PD.  相似文献   

9.
alpha-Synuclein is a major component of aggregates forming amyloid-like fibrils in diseases with Lewy bodies and other neurodegenerative disorders, yet the mechanism by which alpha-synuclein is intracellularly aggregated during neurodegeneration is poorly understood. Recent studies suggest that oxidative stress reactions might contribute to abnormal aggregation of this molecule. In this context, the main objective of the present study was to determine the potential role of the heme protein cytochrome c in alpha-synuclein aggregation. When recombinant alpha-synuclein was coincubated with cytochrome c/hydrogen peroxide, alpha-synuclein was concomitantly induced to be aggregated. This process was blocked by antioxidant agents such as N-acetyl-L-cysteine. Hemin/hydrogen peroxide similarly induced aggregation of alpha-synuclein, and both cytochrome c/hydrogen peroxide- and hemin/hydrogen peroxide-induced aggregation of alpha-synuclein was partially inhibited by treatment with iron chelator deferoxisamine. This indicates that iron-catalyzed oxidative reaction mediated by cytochrome c/hydrogen peroxide might be critically involved in promoting alpha-synuclein aggregation. Furthermore, double labeling studies for cytochrome c/alpha-synuclein showed that they were colocalized in Lewy bodies of patients with Parkinson's disease. Taken together, these results suggest that cytochrome c, a well known electron transfer, and mediator of apoptotic cell death may be involved in the oxidative stress-induced aggregation of alpha-synuclein in Parkinson's disease and related disorders.  相似文献   

10.
Conway KA  Harper JD  Lansbury PT 《Biochemistry》2000,39(10):2552-2563
Two missense mutations in the gene encoding alpha-synuclein have been linked to rare, early-onset forms of Parkinson's disease (PD). These forms of PD, as well as the common idiopathic form, are characterized by the presence of cytoplasmic neuronal deposits, called Lewy bodies, in the affected region of the brain. Lewy bodies contain alpha-synuclein in a form that resembles fibrillar Abeta derived from Alzheimer's disease (AD) amyloid plaques. One of the mutant forms of alpha-synuclein (A53T) fibrillizes more rapidly in vitro than does the wild-type protein, suggesting that a correlation may exist between the rate of in vitro fibrillization and/or oligomerization and the progression of PD, analogous to the relationship between Abeta fibrillization in vitro and familial AD. In this paper, fibrils generated in vitro from alpha-synuclein, wild-type and both mutant forms, are shown to possess very similar features that are characteristic of amyloid fibrils, including a wound and predominantly unbranched morphology (demonstrated by atomic force and electron microscopies), distinctive dye-binding properties (Congo red and thioflavin T), and antiparallel beta-sheet structure (Fourier transform infrared spectroscopy and circular dichroism spectroscopy). alpha-Synuclein fibrils are relatively resistant to proteolysis, a property shared by fibrillar Abeta and the disease-associated fibrillar form of the prion protein. These data suggest that PD, like AD, is a brain amyloid disease that, unlike AD, is characterized by cytoplasmic amyloid (Lewy bodies). In addition to amyloid fibrils, a small oligomeric form of alpha-synuclein, which may be analogous to the Abeta protofibril, was observed prior to the appearance of fibrils. This species or a related one, rather than the fibril itself, may be responsible for neuronal death.  相似文献   

11.
《Free radical research》2013,47(1-2):37-45
Vanadyl reacts with hydrogen peroxide forming hydroxyl radicals in a Fenton-like reaction. The hydroxyl radicals were spin trapped and identified using 5.5-dimethyl-I-pyrroline-N-oxide (DMPO). The quantity of hydroxyl radicals spin trapped during the reaction between vanadyl and hydrogen peroxide are equal to half of the hydroxyl radicals spin trapped during the reaction between ferrous ions and hydrogen peroxide. Experiments in the presence of formate show that this hydroxyl radical scavenger effectively competes with DMPO preventing the formation of the DMPO-OH adduct. However. in experiments using ethanol as the hydroxyl radical scavenger it was not possible to completely prevent the formation of DMPO-OH. The formation of this additional DMPO-OH in the presence of ethanol does not depend on the concentration of dissolved oxygen, but does depend on the concentration of hydrogen peroxide added to the vanadyl solution. The results suggest that the additional DMPO-OH formed in the presence of ethanol originates from a vanadium (V) intermediate. This intermediate may oxidize DMPO leading to the formation of DMPO-0; which rapidly decomposes forming DMPO-OH.  相似文献   

12.
Vanadyl reacts with hydrogen peroxide forming hydroxyl radicals in a Fenton-like reaction. The hydroxyl radicals were spin trapped and identified using 5.5-dimethyl-I-pyrroline-N-oxide (DMPO). The quantity of hydroxyl radicals spin trapped during the reaction between vanadyl and hydrogen peroxide are equal to half of the hydroxyl radicals spin trapped during the reaction between ferrous ions and hydrogen peroxide. Experiments in the presence of formate show that this hydroxyl radical scavenger effectively competes with DMPO preventing the formation of the DMPO-OH adduct. However. in experiments using ethanol as the hydroxyl radical scavenger it was not possible to completely prevent the formation of DMPO-OH. The formation of this additional DMPO-OH in the presence of ethanol does not depend on the concentration of dissolved oxygen, but does depend on the concentration of hydrogen peroxide added to the vanadyl solution. The results suggest that the additional DMPO-OH formed in the presence of ethanol originates from a vanadium (V) intermediate. This intermediate may oxidize DMPO leading to the formation of DMPO-0; which rapidly decomposes forming DMPO-OH.  相似文献   

13.
The precursor of the non-amyloid beta/A4 protein (non-Abeta) component of Alzheimer's disease amyloid (NACP)/alpha-synuclein is the human homologue of alpha-synuclein, a member of a protein family which includes alpha-, beta- and gamma-synuclein. This protein is thought to be involved in neuronal plasticity because of its unique expression, mainly in the telencephalon during maturation. Consequently, disarrangement of NACP/alpha-synuclein might disrupt synaptic activity, resulting in memory disturbance. Previous studies have shown that damage to synaptic terminals is closely associated with global cognitive impairment and is an early event in the pathogenesis of Alzheimer's disease. Although the relationship between synaptic damage and amyloidogenesis is not clear, some proteins at the synaptic site have been implicated in both neuronal alteration and amyloid formation. Indeed, abnormal accumulation of both NACP/alpha-synuclein and Abeta precursor protein occurs at synapses of Alzheimer's patients. Other evidence suggests that NACP/alpha-synuclein is a component of the Lewy bodies found in patients with Parkinson's disease or dementia with Lewy bodies, and that a point mutation in this protein may be the cause of familial Parkinson's disease. Consequently, abnormal transport, metabolism or function of NACP/alpha-synuclein appears to impair synaptic function, which induces, at least in part, neuronal degeneration in several neurodegenerative diseases.  相似文献   

14.
Kim KS  Choi SY  Kwon HY  Won MH  Kang TC  Kang JH 《Biochimie》2002,84(7):625-631
Alpha-synuclein is a key component of Lewy bodies in the brain of patients with Parkinson's disease (PD) and recent studies suggest that oxidative stress reactions might contribute to abnormal aggregation of this molecule. Since hydrogen peroxide-mediated ceruloplasmin (CP) modification can induce the formation of free radicals and release of copper ions, we investigated the role of CP in the aggregation of alpha-synuclein. When alpha-synuclein was incubated with both CP and H(2)O(2), alpha-synuclein concomitantly was induced to be aggregated. Thioflavin-S staining of alpha-synuclein aggregates showed that they displayed characteristic fibrillar structures. Hydroxyl radical scavengers and spin-trapping agent such as 5,5'-dimethyl 1-pyrolline N-oxide and tert-butyl-alpha-phenylnitrone significantly inhibited the aggregation of alpha-synuclein. Copper chelator, penicillamine also inhibited the CP/H(2)O(2) system-induced alpha-synuclein aggregation. This indicates that the aggregation of alpha-synuclein can be mediated by the CP/H(2)O(2) system via the generation of hydroxyl radical. The CP/H(2)O(2) system-induced alpha-synuclein aggregation resulted in the generation of protein carbonyl derivatives. Antioxidant molecules, carnosine, homocarnosine and anserine significantly inhibited the CP/H(2)O(2) system-induced aggregation of alpha-synuclein. These results suggest that the CP/H(2)O(2) system may be related to abnormal aggregation of alpha-synuclein which may be involved in the pathogenesis of PD and related disorders.  相似文献   

15.
Alpha-synuclein is a major component of the abnormal protein aggregation in Lewy bodies of Parkinson's disease (PD) and senile plaques of Alzheimer's disease (AD). Previous studies have shown that the aggregation of alpha-synuclein was induced by copper (II) and H(2)O(2) system. Since copper ions could be released from oxidatively damaged Cu,Zn-superoxide dismutase (SOD), we investigated the role of Cu,Zn-SOD in the aggregation of alpha-synuclein. When alpha-synuclein was incubated with both Cu,Zn-SOD and H(2)O(2), alpha-synuclein was induced to be aggregated. This process was inhibited by radical scavengers and spin trapping agents such as 5,5'-dimethyl 1-pyrolline N-oxide and tert-butyl-alpha-phenylnitrone. Copper chelators, diethyldithiocarbamate and penicillamine, also inhibited the Cu,Zn-SOD/H(2)O(2) system-induced alpha-synuclein aggregation. These results suggest that the aggregation of alpha-synuclein is mediated by the Cu,Zn-SOD/H(2)O(2) system via the generation of hydroxyl radical by the free radical-generating function of the enzyme. The Cu,Zn-SOD/H(2)O(2)-induced alpha-synuclein aggregates displayed strong thioflavin-S reactivity, reminiscent of amyloid. These results suggest that the Cu,Zn-SOD/H(2)O(2) system might be related to abnormal aggregation of alpha-synuclein, which may be involved in the pathogenesis of PD and related disorders.  相似文献   

16.
Metals, oxidative stress and neurodegenerative disorders   总被引:1,自引:0,他引:1  
The neurodegenerative diseases, Alzheimer’s disease (AD) and Parkinson’s disease (PD), are age-related disorders characterized by the deposition of abnormal forms of specific proteins in the brain. AD is characterized by the presence of extracellular amyloid plaques and intraneuronal neurofibrillary tangles in the brain. Biochemical analysis of amyloid plaques revealed that the main constituent is fibrillar aggregates of a 39–42 residue peptide referred to as the amyloid-β protein (Aβ). PD is associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. One of the pathological hallmarks of PD is the presence of intracellular inclusions called Lewy bodies that consist of aggregates of the presynaptic soluble protein called α-synuclein. There are various factors influencing the pathological depositions, and in general, the cause of neuronal death in neurological disorders appears to be multifactorial. However, it is clear, that the underlying factor in the neurological disorders is increased oxidative stress substantiated by the findings that the protein side-chains are modified either directly by reactive oxygen species (ROS) or reactive nitrogen species (RNS), or indirectly, by the products of lipid peroxidation. The increased level of oxidative stress in AD brain is reflected by the increased brain content of iron (Fe) and copper (Cu) both capable of stimulating free radical formation (e.g. hydroxyl radicals via Fenton reaction), increased protein and DNA oxidation in the AD brain, enhanced lipid peroxidation, decreased level of cytochrome c oxidase and advanced glycation end products (AGEs), carbonyls, malondialdehyde (MDA), peroxynitrite, and heme oxygenase-1 (HO-1). AGEs, mainly through their interaction with receptors for advanced glycation end products (RAGEs), further activate signaling pathways, inducing formation of proinflammatory cytokines such as interleukin-6 (IL-6). The conjugated aromatic ring of tyrosine residues is a target for free-radical attack, and accumulation of dityrosine and 3-nitrotyrosine has also been reported in AD brain. The oxidative stress linked with PD is supported by both postmortem studies and by studies showing the increased level of oxidative stress in the substantia nigra pars compacta, demonstrating thus the capacity of oxidative stress to induce nigral cell degeneration. Markers of lipid peroxidation include 4-hydroxy-trans-2-nonenal (HNE), 4-oxo-trans-2-nonenal (4-ONE), acrolein, and 4-oxo-trans-2-hexenal, all of which are well recognized neurotoxic agents. In addition, other important factors, involving inflammation, toxic action of nitric oxide (NO·), defects in protein clearance, and mitochondrial dysfunction all contribute to the etiology of PD. It has been suggested that several individual antioxidants or their combinations can be neuroprotective and decrease the risk of AD or slow its progression. The aim of this review is to discuss the role of redox metals Fe and Cu and non-redox metal zinc (Zn) in oxidative stress-related etiology of AD and PD. Attention is focused on the metal-induced formation of free radicals and the protective role of antioxidants [glutathione (GSH), vitamin C (ascorbic acid)], vitamin E (α-Tocopherol), lipoic acid, flavonoids [catechins, epigallocatechin gallate (EGCG)], and curcumin. An alternate hypothesis topic in AD is also discussed.  相似文献   

17.
Intracellular proteinaceous aggregates are hallmarks of many common neurodegenerative disorders, and recent studies have shown that alpha-synuclein is a major component of several pathological intracellular inclusions, including Lewy bodies in Parkinson's disease (PD) and glial cell inclusions in multiple system atrophy. However, the molecular mechanisms underlying alpha-synuclein aggregation into filamentous inclusions remain unknown. Since oxidative and nitrative stresses are potential pathogenic mediators of PD and other neurodegenerative diseases, we asked if oxidative and/or nitrative events alter alpha-synuclein and induce it to aggregate. Here we show that exposure of human recombinant alpha-synuclein to nitrating agents (peroxynitrite/CO(2) or myeloperoxidase/H(2)O(2)/nitrite) induces formation of nitrated alpha-synuclein oligomers that are highly stabilized due to covalent cross-linking via the oxidation of tyrosine to form o,o'-dityrosine. We also demonstrate that oxidation and nitration of pre-assembled alpha-synuclein filaments stabilize these filaments to withstand denaturing conditions and enhance formation of SDS-insoluble, heat-stable high molecular mass aggregates. Thus, these data suggest that oxidative and nitrative stresses are involved in mechanisms underlying the pathogenesis of Lewy bodies and glial cell inclusions in PD and multiple system atrophy, respectively, as well as alpha-synuclein pathologies in other synucleinopathies.  相似文献   

18.
Engelender S 《Autophagy》2008,4(3):372-374
alpha-Synuclein is mutated in Parkinson's disease (PD) and is found in cytosolic inclusions, called Lewy bodies, in sporadic forms of the disease. A fraction of alpha-synuclein purified from Lewy bodies is monoubiquitinated, but the role of this monoubiquitination has been obscure. We now review recent data indicating a role of alpha-synuclein monoubiquitination in Lewy body formation and implicating the autophagic pathway in regulating these processes. The E3 ubiquitin-ligase SIAH is present in Lewy bodies and monoubiquitinates alpha-synuclein at the same lysines that are monoubiquitinated in Lewy bodies. Monoubiquitination by SIAH promotes the aggregation of alpha-synuclein into amorphous aggregates and increases the formation of inclusions within dopaminergic cells. Such effect is observed even at low monoubiquitination levels, suggesting that monoubiquitinated alpha-synuclein may work as a seed for aggregation. Accumulation of monoubiquitinated alpha-synuclein and formation of cytosolic inclusions is promoted by autophagy inhibition and to a lesser extent by proteasomal and lysosomal inhibition. Monoubiquitinated alpha-synuclein inclusions are toxic to cells and recruit PD-related proteins, such as synphilin-1 and UCH-L1. Altogether, the new data indicate that monoubiquitination might play an important role in Lewy body formation. Decreasing alpha- synuclein monoubiquitination, by preventing SIAH function or by stimulating autophagy, constitutes a new therapeutic strategy for Parkinson's disease.  相似文献   

19.
Lee VM  Trojanowski JQ 《Neuron》2006,52(1):33-38
Classic Parkinson's disease (PD) is characterized by fibrillar alpha-synuclein inclusions known as Lewy bodies in the substantia nigra, which are associated with nigrostriatal degeneration. However, alpha-synuclein pathologies accumulate throughout the CNS in areas that also undergo progressive neurodegeneration, leading to dementia and other behavioral impairments in addition to parkinsonism. Although mutations in the alpha-synuclein gene only cause Lewy body PD in rare families, and although there are multiple other, albeit rare, genetic causes of familial parkinsonism, sporadic Lewy body PD is the most common movement disorder, and insights into mechanisms underlying alpha-synuclein-mediated neurodegeneration provide novel targets for the discovery of disease-modifying therapies for PD and related neurodegenerative alpha-synucleinopathies.  相似文献   

20.
Addition of histidyl-peptides containing the glycyl-glycyl-L-histidyl sequence stimulated the catalysis of Ni(II) hydrogen peroxide reduction. Maximum bleaching of murexide or nitrosodimethylaniline was obtained with glycyl-glycyl-L-histidine. A decrease in the bleaching rates was observed upon addition of SOD or hydroxyl radical scavengers, showing that the hydrogen peroxide/Ni(II)/glycyl-glycyl-L-histidine system generated superoxide anions as well as hydroxyl radicals. In contrast, addition of glycyl-glycyl-L-histidine inhibited the Cu(II) hydrogen peroxide reduction.

When peptides or proteins were exposed to oxygen radicals produced by Ni(II)/glycyl-glycyl-L-histidine catalysis of hydrogen peroxide reduction, the observed effects were similar to those produced by oxygen radicals generated by water radiolysis or by Fe(II) or Cu(II) mediated Fenton-reactions: hydroxylation of phenylalanine, interchange of disulfides, destruction of tryptophans and dityrosine formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号