首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
During development of the mouse central nervous system (CNS), most neural progenitor cells proliferate in the ventricular zone (VZ). In many regions of the CNS, neural progenitor cells give rise to postmitotic neurons that initiate neuronal differentiation and migrate out of the VZ to the mantle zone (MZ). Thereafter, they remain in a quiescent state. Here, we found many ectopic mitotic cells and cell clusters expressing neural progenitor or proneural marker genes in the MZ of the hindbrain of jumonji (jmj) mutant embryos. When we examined the expression of cyclin D1, which is repressed by jmj in the repression of cardiac myocyte proliferation, we found many ectopic clusters expressing both cyclin D1 and Musashi 1 in the MZ of mutant embryos. jmj is mainly expressed in the cyclin D1 negative region in the hindbrain, and cyclin D1 expression in the VZ was upregulated in jmj mutant mice. In jmj and cyclin D1 double mutant mice, the ectopic mitosis and formation of the abnormal clusters in the MZ were rescued. These results suggest that a jmj-cyclin D1 pathway is required for the precise coordination of cell cycle exit and migration during neurogenesis in the mouse hindbrain.  相似文献   

3.
Neural crest cells (NCC) are multipotent progenitors that migrate extensively throughout the developing embryo and generate a diverse range of cell types. Vagal NCC migrate from the hindbrain into the foregut and from there along the gastrointestinal tract to form the enteric nervous system (ENS), the intrinsic innervation of the gut, and into the developing lung buds to form the intrinsic innervation of the lungs. The aim of this study was to determine the developmental potential of vagal NCC that had already colonised the gut or the lungs. We used transgenic chicken embryos that ubiquitously express green fluorescent protein (GFP) to permanently mark and fate-map vagal NCC using intraspecies grafting. This was combined with back-transplantation of gut and lung segments, containing GFP-positive NCC, into the vagal region of a second recipient embryo to determine, using immunohistochemical staining, whether gut or lung NCC are competent of re-colonising both these organs, or whether their fate is restricted. Chick(GFP)-chick intraspecies grafting efficiently labelled NCC within the gut and lung of chick embryos. When segments of embryonic day (E)5.5 pre-umbilical midgut containing GFP-positive NCC were back-transplanted into the vagal region of E1.5 host embryos, the GFP-positive NCC remigrated to colonise both the gut and lungs and differentiated into neurons in stereotypical locations. However, GFP-positive lung NCC did not remigrate when back-transplanted. Our studies suggest that gut NCC are not restricted to colonising only this organ, since upon back-transplantation GFP-positive gut NCC colonised both the gut and the lung.  相似文献   

4.
The developmental potential of a uniform population of neural progenitors was tested by implanting them into chick embryos. These cells were generated from retinoic acid-treated mouse embryonic stem (ES) cells, and were used to replace a segment of the neural tube. At the time of implantation, the progenitors expressed markers defining them as Pax6-positive radial glial (RG) cells, which have recently been shown to generate most pyramidal neurons in the developing cerebral cortex. Six days after implantation, the progenitors generated large numbers of neurons in the spinal cord, and differentiated into interneurons and motoneurons at appropriate locations. They also colonized the host dorsal root ganglia (DRG) and differentiated into neurons, but, unlike stem cell-derived motoneurons, they failed to elongate axons out of the DRG. In addition, they neither expressed the DRG marker Brn3a nor the Trk neurotrophin receptors. Control experiments with untreated ES cells indicated that when colonizing the DRG, these cells did elongate axons and expressed Brn3a, as well as Trk receptors. Our results thus indicate that ES cell-derived progenitors with RG characteristics generate neurons in the spinal cord and the DRG. They are able to respond appropriately to local cues in the spinal cord, but not in the DRG, indicating that they are restricted in their developmental potential.  相似文献   

5.
The mouse First arch mutation, Far, causes a severe syndrome of craniofacial defects described previously. All of the known defects are derived from the anterior first arch, and to a very small extent, the dorsal second arch. Recently Far has been shown to be closely linked to Ulnaless on chromosome 2, and therefore in the vicinity of the Hox-4 gene cluster. This paper reports the results of several studies focused on the development origin of the most consistently expressed dominant effect caused by Far, an abnormal major bifurcation of the maxillary nerve. Nerve-stained whole-mount preparations of day 12 embryos showed that in Far mutants the maxillary nerve appears to have a central wedge missing from the normal single-stalked fan shape, and that the nerve defect in Far/Far and +/Far may be equally severe. The effect of retinoic acid on the development of the maxillary nerve was tested. Maternal treatment with 5 mg/kg retinoic acid on day 9 of gestation had no detectable effect on the maxillary nerve of +/Far embryos, and similar treatment with a teratogenic dosage (20 mg/kg) on day 8 or 9 produced no Far-like maxillary nerve defects in genetically normal embryos. The neural crest cells that give rise to nerves and mesenchyme of the first arch originate from specific rhombomeres, discrete segments of the developing head. The rhombomeres of 15 embryos at the 14-23 somite stages, of which 75% are expected to be +/Far or Far/Far, were examined. There was no detectable defect in segmentation or morphology of the rhombomeres compared with controls. The significance of ectopic cartilage in the palate of Far/Far mutants in relation to nerve bifurcation was explored. In histological studies, five out of six Far/Far day-15 fetuses had a rod of ectopic cartilage lateral to the posterior palate, running parallel to, and morphologically similar to, Meckel's cartilage, and lying between the two trunks of the abnormally bifurcated maxillary nerve. None of six +/Far day-15 fetuses examined had detectable ectopic cartilage in this region. We hypothesize that the maxillary nerve defects in Far mutants may be explained by the presence of an ectopic precartilaginous blastema that does not always further develop into detectable cartilage. The ectopic cartilage found in Far/Far resembles the epibranchial cartilage expressed in more posterior branchial arches and in the first arch of lower organisms, and therefore may represent an atavistic posteriorization of the anterior first arch in Far mutants.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Different types of sensory neurons in the dorsal root ganglia project axons to the spinal cord to convey peripheral information to the central nervous system. Whereas most proprioceptive axons enter the spinal cord medially, cutaneous axons typically do so laterally. Because heavily myelinated proprioceptive axons project to the ventral spinal cord, proprioceptive axons and their associated oligodendrocytes avoid the superficial dorsal horn. However, it remains unclear whether their exclusion from the superficial dorsal horn is an important aspect of neural circuitry. Here we show that a mouse null mutation of Sema6d results in ectopic placement of the shafts of proprioceptive axons and their associated oligodendrocytes in the superficial dorsal horn, disrupting its synaptic organization. Anatomical and electrophysiological analyses show that proper axon positioning does not seem to be required for sensory afferent connectivity with motor neurons. Furthermore, ablation of oligodendrocytes from Sema6d mutants reveals that ectopic oligodendrocytes, but not proprioceptive axons, inhibit synapse formation in Sema6d mutants. Our findings provide new insights into the relationship between oligodendrocytes and synapse formation in vivo, which might be an important element in controlling the development of neural wiring in the central nervous system.  相似文献   

7.
During peripheral nerve development, each segment of a myelinated axon is matched with a single Schwann cell. Tight regulation of Schwann cell movement, proliferation and differentiation is essential to ensure that these glial cells properly associate with axons. ErbB receptors are required for Schwann cell migration, but the operative ligand and its mechanism of action have remained unknown. We demonstrate that zebrafish Neuregulin 1 (Nrg1) type III, which signals through ErbB receptors, controls Schwann cell migration in addition to its previously known roles in proliferation and myelination. Chimera analyses indicate that ErbB receptors are required in all migrating Schwann cells, and that Nrg1 type III is required in neurons for migration. Surprisingly, expression of the ligand in a few axons is sufficient to induce migration along a chimeric nerve constituted largely of nrg1 type III mutant axons. These studies also reveal a mechanism that allows Schwann cells to fasciculate axons regardless of nrg1 type III expression. Time-lapse imaging of transgenic embryos demonstrated that misexpression of human NRG1 type III results in ectopic Schwann cell migration, allowing them to aberrantly enter the central nervous system. These results demonstrate that Nrg1 type III is an essential signal that controls Schwann cell migration to ensure that these glia are present in the correct numbers and positions in developing nerves.  相似文献   

8.
Radial Glia (RG) cells constitute the major population of neural progenitors of the mouse developing brain. These cells are located in the ventricular zone (VZ) of the cerebral cortex and during neurogenesis they support the generation of cortical neurons. Later on, during brain maturation, RG cells give raise to glial cells and supply the adult mouse brain of Neural Stem Cells (NSC). Here we used a novel transgenic mouse line expressing the CreER(T2) under the control of AspM promoter to monitor the progeny of an early cohort of RG cells during neurogenesis and in the post natal brain. Long term fate mapping experiments demonstrated that AspM-expressing RG cells are multi-potent, as they can generate neurons, astrocytes and oligodendrocytes of the adult mouse brain. Furthermore, AspM descendants give also rise to proliferating progenitors in germinal niches of both developing and post natal brains. In the latter--i.e. the Sub Ventricular Zone--AspM descendants acquired several feature of neural stem cells, including the capability to generate neurospheres in vitro. We also performed the selective killing of these early progenitors by using a Nestin-GFP(flox)-TK allele. The forebrain specific loss of early AspM expressing cells caused the elimination of most of the proliferating cells of brain, a severe derangement of the ventricular zone architecture, and the impairment of the cortical lamination. We further demonstrated that AspM is expressed by proliferating cells of the adult mouse SVZ that can generate neuroblasts fated to become olfactory bulb neurons.  相似文献   

9.
BACKGROUND: The triazole derivative, triadimefon (FON), induces branchial arch abnormalities in post-implantation rat embryos cultured in vitro, and cranio-facial malformations in mouse fetuses. Ectopic maxillary cartilage has been also described as a typical FON-related malformation. This work studies the morphogenesis of the ectopic cartilage in rat embryos and fetuses exposed in vivo to FON during the early postimplantation period. METHODS: Pregnant rats were treated with 0, 250, and 500 mg/kg FON on Day 9.5 of pregnancy (D9.5) and sacrificed at term (D20), during the early fetal period (D17) or at different embryogenetic periods (D10, D11, D12). The skeleton was examined after stain of bone and cartilage or of cartilage alone respectively at term or at D17. The neural crest cell (NCC) migration and compaction was investigated at D10 and D11 and the cranial nerve organization described at D12. RESULTS: Triadimefon is teratogenic in rats under the chosen experimental conditions. The malformations were at the level of the cranio-facial and axial skeleton at term and of the hindbrain nerves in embryos. A NCC abnormal migration and compaction was observed at the level of the first branchial arch: in FON-exposed embryos NCC were detected at the level of both maxillary and mandibular processes, whereas control embryos showed the immunostained tissue only at the level of the mandibular bud. CONCLUSIONS: The pathogenic pathway, proposed to explain the ectopic cartilage, is the displacement of part of the NCC-derived tissues at the maxillary region of the first branchial arch.  相似文献   

10.
Laminar formation in the developing cerebral cortex requires the precisely regulated generation of phenotype-specified neurons. To test the possible involvement of pituitary adenylate cyclase-activating polypeptide (PACAP) in this formation, we investigated the effects of PACAP administered into the telencephalic ventricular space of 13.5-day-old mouse embryos. PACAP partially inhibited the proliferation of cortical progenitors and altered the position and gene-expression profiles of newly generated neurons otherwise expected for layer IV to those of neurons for the deeper layers, V and VI, of the cerebral cortex. The former and latter effects were seen only when the parent progenitor cells were exposed to PACAP in the later and in earlier G1 phase, respectively; and these effects were suppressed by co-treatment with a protein kinase A (PKA) inhibitor. These observations suggest that PACAP participates in the processes forming the neuronal laminas in the developing cortex via the intracellular PKA pathway.  相似文献   

11.
Stimulation of the tail nerve (pedal nerve 9, p9) of the mollusk, Aplysia californica, causes release of serotonin (5-HT), which mediates sensitization of withdrawal responses. There are about 35 serotonin-immunoreactive (5-HT-ir) axons in p9, yet the cell bodies of these axons have not been located. Backfills of p9 were combined with 5-HT immunohistochemistry to locate the cell bodies of 5-HT-ir neurons with axons in p9. About 100 neurons had axons in p9. Only about ten neurons, however, were both backfilled and 5-HT-ir. These double-labeled neurons were all located in the pedal ganglion associated with p9, which had a total of approximately 42 5-HT-ir somata. The discrepancy between the number of 5-HT-ir axons and double-labeled cell bodies is not likely due to neurons having multiple axons in the nerve; intracellular fills suggest that these neurons do not branch before entering p9. Additionally, no evidence was found for peripheral 5-HT-ir cell bodies that project axons centrally through p9. Thus, approximately 70% of the neurons that give rise to the 5-HT-ir axons in tail nerve are unaccounted for, but likely to reside in the pedal ganglion.  相似文献   

12.
Neurons in the mammalian neocortex arise from asymmetric divisions of progenitors residing in the ventricular zone. While in most progenitor divisions, the mitotic spindle is parallel to the ventricular surface, some progenitors reorient the spindle and divide in oblique orientations. Here, we use conditional deletion and overexpression of mouse Inscuteable (mInsc) to analyze the relevance of spindle reorientation in cortical progenitors. Mutating mInsc almost abolishes oblique and vertical mitotic spindles, while mInsc overexpression has the opposite effect. Our data suggest that oblique divisions are essential for generating the correct numbers of neurons in all cortical layers. Using clonal analysis, we demonstrate that spindle orientation affects the rate of indirect neurogenesis, a process where progenitors give rise to basal progenitors, which in turn divide symmetrically into two differentiating neurons. Our results indicate that the orientation of progenitor cell divisions is important for correct lineage specification in the developing mammalian brain.  相似文献   

13.
Neural crest cells (NCC) migrate, proliferate, and differentiate within the wall of the gastrointestinal tract to give rise to the neurons and glial cells of the enteric nervous system (ENS). The intestinal microenvironment is critical in this process and endothelin-3 (ET3) is known to have an essential role. Mutations of this gene cause distal intestinal aganglionosis in rodents, but its mechanism of action is poorly understood. We find that inhibition of ET3 signaling in cultured avian intestine also leads to hindgut aganglionosis. The aim of this study was to determine the role of ET3 during formation of the avian hindgut ENS. To answer this question, we created chick-quail intestinal chimeras by transplanting preganglionic quail hindguts into the coelomic cavity of chick embryos. The quail grafts develop two ganglionated plexuses of differentiated neurons and glial cells originating entirely from the host neural crest. The presence of excess ET3 in the grafts results in a significant increase in ganglion cell number, while inhibition of endothelin receptor-B (EDNRB) leads to severe hypoganglionosis. The ET3-induced hyperganglionosis is associated with an increase in enteric crest cell proliferation. Using hindgut explants cultured in collagen gel, we find that ET3 also inhibits neuronal differentiation in the ENS. Finally, ET3, which is strongly expressed in the ceca, inhibits the chemoattraction of NCC to glial-derived neurotrophic factor (GDNF). Our results demonstrate multiple roles for ET3 signaling during ENS development in the avian hindgut, where it influences NCC proliferation, differentiation, and migration.  相似文献   

14.
Previous studies have indicated that the formation of stereotyped segmental nerves in leech embryos depends on the interactions between CNS projections and ingrowing afferents from peripheral neurons. Especially, CNS-ablation experiments have suggested that CNS-derived guidance cues are required for the correct navigation of several groups of peripheral sensory neurons. In order to directly test this hypothesis we have performed transplantations of CNS ganglia into ectopic sites in segments from which the resident ganglia have been removed. We find that the transplanted ganglia extend numerous axons distributed roughly equally in all directions. When these CNS projections reach and make contact with peripheral sensory axons they are used as guides for peripheral neurons to grow toward and into the ectopic ganglia even when this means following novel pathways that cross the midline and/or segmental boundaries. The peripheral sensory axons turn and grow toward the ectopic ganglia only when in physical contact with CNS axons, suggesting that diffusible chemoattractants are not a factor. These results demonstrate that the guidance cues provided by ectopic CNS projections are both necessary and sufficient to steer peripheral sensory neuron axons into the CNS.  相似文献   

15.
Elongation of the efferent fibers of dorsal root ganglion (DRG) neurons toward their peripheral targets occurs during development. Attractive or permissive systems may be involved in this elongation. However, the molecular mechanisms that control it are largely unknown. Here we show that class 5 semaphorin Sema5A had attractive/permissive effects on DRG axons. In mouse embryos, Sema5A was expressed in and around the path of DRG efferent fibers, and cell aggregates secreting Sema5A attracted DRG axons in vitro. We also found that ectopic Sema5A expression in the spinal cord attracted DRG axons. Together, these findings suggest that Sema5A functions as an attractant to elongate DRG fibers and contributes to the formation of the early sensory network.  相似文献   

16.
Elongation of the efferent fibers of dorsal root ganglion (DRG) neurons toward their peripheral targets occurs during development. Attractive or permissive systems may be involved in this elongation. However, the molecular mechanisms that control it are largely unknown. Here we show that class 5 semaphorin Sema5A had attractive/permissive effects on DRG axons. In mouse embryos, Sema5A was expressed in and around the path of DRG efferent fibers, and cell aggregates secreting Sema5A attracted DRG axons in vitro. We also found that ectopic Sema5A expression in the spinal cord attracted DRG axons. Together, these findings suggest that Sema5A functions as an attractant to elongate DRG fibers and contributes to the formation of the early sensory network.  相似文献   

17.
Taste buds are multicellular receptor organs innervated by the VIIth, IXth, and Xth cranial nerves. In most vertebrates, taste buds differentiate after nerve fibers have reached the lingual epithelium, suggesting that nerves induce taste buds. However, under experimental conditions, taste buds of amphibians develop independently of innervation. Thus, rather than being induced by nerves, the developing taste periphery likely regulates ingrowing nerve fibers. To test this idea, we devised a culture approach using axolotl embryos. Gustatory neurons were generated from cultured epibranchial placodes, and when cultured alone, axon outgrowth was random over 4 days, a time period coincident with axon growth to the periphery in vivo. In contrast, cocultures of placodal neurons with oropharyngeal endoderm (OPE), the normal taste bud-containing target for these neurons, resulted in neurite growth toward the target tissue. Unexpectedly, placodal neurons also grew toward flank ectoderm (FE), which these neurons do not encounter in vivo. To compare further the impact of OPE and FE explants on gustatory neurons, cocultures were extended and examined at 6, 8, and 10 days, when, in vivo, placodal fibers have innervated the epithelium but prior to taste bud formation, when taste buds have differentiated and are innervated, and when the mouth has opened and larvae have begun to feed, respectively. The behavior of placodal axons with respect to target type did not differ between OPE and FE cocultures at 6 days. However, by 8 days, differences in axonal outgrowth were observed with respect to target type, and these differences were enhanced by 10 days in vitro. Most clearly, exuberant placodal fibers grew in 10-day OPE cocultures, and numerous neurites had invaded OPE explants by this time, whereas gustatory neurites were sparse in FE cocultures, and rarely approached and almost never contacted FE explants. Thus, embryonic endoderm destined to give rise to taste buds specifically attracts its innervation early in development, as placodal neurons send out axons. Later, when gustatory axons synapse with differentiated taste buds in vivo, the OPE provides trophic support for cultured gustatory neurons.  相似文献   

18.
19.
In vertebrates, certain Hox genes are known to control cellular identities along the anterior-posterior (A-P) axis in the developing hindbrain. In mouse Hoxa3 mutants, truncation of the glossopharyngeal (IXth) nerve or the fusion of the IXth and vagus (Xth) nerves was reported, although its underlying mechanism is largely unknown. To elucidate the mechanism of the IXth nerve defects, we reexamined the phenotype of Hoxa3 mutant embryos. In Hoxa3 mutants, we observed an abnormal caudal stream of the migrating Hoxa3-expressing neural crest cells at the prospective IXth nerve-forming area. Dorsomedial migration of the placode-derived neuronal precursor cells of the IXth nerve was also affected. Motor neurons at rhombomere 6 (r6), where those of the IXth nerve were positioned, often projected axons to the Xth nerve. In summary, the Hoxa3 gene has crucial roles in ensuring the correct axon projection pattern of all three components of the IXth nerve, i.e., motor neurons and sensory neurons of the proximal and distal ganglia.  相似文献   

20.
Cell division cycle of cultured neural precursor cells from Drosophila   总被引:1,自引:0,他引:1  
In Drosophila neuroblast cells, which give rise to the embryonic nervous system, undergo a limited number of asymmetric cell divisions. These cell lineages result in the formation of clusters of neurons when neuroblasts are isolated and cultured. A significant proportion of these neural cell clusters (NCC) arise from individual precursor cells. The formation of NCC containing more than two neurons is repressed when DNA synthesis is inhibited. Cell division during NCC development was examined by [3H]thymidine autoradiography. The pattern of DNA synthesis by neural cells was that expected based on observations in situ. The pattern in individual NCC was consistent with single precursor origins for more than 80% of NCC, under our conditions of culture. Based on this, we show that the largest neural precursors at gastrulation undergo the most cell divisions in culture. The neuroblast cell division cycle averages approximately 1.5 hr, and is similar to that of blastoderm cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号