共查询到20条相似文献,搜索用时 0 毫秒
1.
Mice deficient in Dmrt7 show infertility with spermatogenic arrest at pachytene stage 总被引:2,自引:0,他引:2
Genes including DM domain regulate sexual development in diverse metazoan phyla. One of these genes, Dmrt7, was expressed only in testes of adult mice. To determine the role of Dmrt7 in mice, we generated Dmrt7-knockout mice (Dmrt7-/-). Although the Dmrt7-/- showed normal growth, null males were infertile. No sperm was detected in the epididymis of Dmrt7-/- adult males. Absence of spermatids in a histological analysis, decreased expression of Ccna1 mRNA and the accumulation of SCP3-positive spermatocytes showed the arrest of spermatogenesis at the pachytene stage in the Dmrt7-knockout mice. 相似文献
2.
Steven S. Barham Dr. Jerry D. Berlin Randolph B. Brackeen 《Cell and tissue research》1976,166(4):497-510
Summary Electron microscopic cytochemistry was used to determine the localization of five phosphatase enzymes—glucose-6-phosphatase, inosine diphosphatase, thiamine pyrophosphatase, acid phosphatase, and adenosine triphosphatase—in control human testes. Glucose-6-phosphatase occurred in the endoplasmic reticulum and nuclear envelope of Sertoli cells, Leydig cells and primitive spermatogonia, but was not observed in more advanced spermatogenic cells. The presence of glucose-6-phosphatase activity paralleled the presence of glycogen in spermatogenic cells, i.e., both occurred in type AL and AD spermatogonia but not in type AP or B spermatogonia or in more advanced spermatogenic cells. Inosine diphosphatase activity was found in the endoplasmic reticulum, nuclear envelope, and Golgi complex of Sertoli cells and all spermatogenic cells except late spermatids. Additionally, inosine diphosphatase activity was localized at the junctions between Sertoli cells and late spermatids, but was not associated with any other plasma membrane. Thiamine pyrophosphatase reaction product was found in the Golgi bodies of Sertoli cells and in spermatogenic cells through immature spermatids. Neither inosine diphosphatase nor thiamine pyrophosphatase was observed in the Golgi bodies of spermatids during acrosomal formation. Acid phosphatase activity was found in lysosomes of spermatogonia, spermatocytes, and spermatids, in lysosomes of Leydig cells, and in lysosomes, lipofuscin bodies, and Golgi cisternae of Sertoli cells. It is thought that Sertoli lysosomes play a role in the phagocytosis of degenerating germ cells; however, the role of spermatogenic or Leydig lysosomes is unknown. Adenosine triphosphatase activity occurred at the interfaces between two spermatogonia, and between Sertoli cells and spermatogonia, but was not observed in the spaces between two Sertoli cells, two spermatocytes, two spermatids, or between Sertoli cells and spermatocytes, or between Sertoli cells and spermatids.Supported in part by a grant from the U.S. Atomic Energy Commission (AT-(40-1)-4002). 相似文献
3.
4.
5.
6.
《Animal cells and systems.》2012,16(1):65-70
Rbm is a male infertility gene located in the AZFb region of the Y chromosome. Expression pattern of Rbm indicates that Rbm is critical for early phase of male germ cell development. It shares strong structural homology with hnRNP G, suggesting a function as an RNA processing factor. In order to gain a clue on the molecular mechanisms of Rbm on male germ cell development, we examined interactions of Rbm with selected proteins in yeast. The results revealed specific interactions between Rbm, hnRNP K and Tra2α. These results suggest that hnRNP K and Tra2α may be functional partners of Rbm in male germ cells. We propose a model in which hnRNP K may play a role as a platform for Rbm and Tra2α. 相似文献
7.
Keisuke Okada Hideaki Miyake Kohei Yamaguchi Koji Chiba Kazuhiro Maeta Shymaa E. Bilasy Hironori Edamatsu Tohru Kataoka Masato Fujisawa 《Biochemical and biophysical research communications》2014
Small GTPase Rap1 has been implicated in the proper differentiation of testicular germ cells. In the present study, we investigated the functional significance of RA-GEF-2/Rapgef6, a guanine nucleotide exchange factor for Rap1, in testicular differentiation using mice lacking RA-GEF-2. RA-GEF-2 was expressed predominantly on the luminal side of the seminiferous tubules in wild-type mice. No significant differences were observed in the body weights or hormonal parameters of RA-GEF-2−/− and wild-type mice. However, the testes of RA-GEF-2−/− male mice were significantly smaller than those of wild-type mice and were markedly atrophied as well as hypospermatogenic. The concentration and motility of epididymal sperm were also markedly reduced and frequently had an abnormal shape. The pregnancy rate and number of fetuses were markedly lower in wild-type females after they mated with RA-GEF-2−/− males than with wild-type males, which demonstrated the male infertility phenotype of RA-GEF-2−/− mice. Furthermore, a significant reduction and alteration were observed in the expression level and cell junctional localization of N-cadherin, respectively, in RA-GEF-2−/− testes, which may, at least in part, account for the defects in testicular differentiation and spermatogenesis in these mice. 相似文献
8.
Ashour AE Abdel-Hamied HE Korashy HM Al-Shabanah OA Abd-Allah AR 《Chemico-biological interactions》2011,189(3):198-205
In the present study, lipopolysaccharide (LPS), as an immune modulator in male adult rats and alpha-lipoic acid (ALA), as a powerful biological antioxidant and anti-inflammatory, are examined to help understanding the role of the immune and redox perturbation in testicular dysfunction with a possible protection. A total of 60 male Swiss albino rats were divided into 5 groups (10/group) respectively as follows Saline, ALA-vehicle, ALA (200 mg/kg), LPS (5 mg/kg) started with 20 rats and LPS + ALA. Obtained data from previously reported study, in our laboratory, and from the present one revealed that LPS induced marked reductions in sperm's count, motility and resulted in deterioration of the testicular histological features. In addition, LPS decreased testicular reduced glutathione (GSH) level and lactate dehydrogenase isoenzyme-x (LDH-x) activity. However, it increased testicular levels of malondialdehyde (MDA), nitric oxide (NO) and 8-hydroxydeoxyguanosine (8-HDG) in testicular DNA, along with increased serum IL-2 level. In contrast, rats pretreated with ALA showed almost complete normalization of all the tested parameters. In conclusion, LPS induced perturbation of the immune-testicular barrier as a result of redox imbalance with a subsequent testicular dysfunction. Pretreatment with ALA ameliorated all these effects by its immune-modulator and antioxidant mechanisms suggesting a protective role against male infertility in septic or severely infected patients. 相似文献
9.
10.
Heat shock proteins (HSPs) are molecular chaperones involved in protein folding, assembly and transport, and which play critical roles in the regulation of cell growth, survival and differentiation. We set out to test the hypothesis that HSP27 protein is expressed in the human testes and its expression varies with the state of spermatogenesis. HSP27 expression was examined in 30 human testicular biopsy specimens (normal spermatogenesis, maturation arrest and Sertoli cell only syndrome, 10 cases each) using immunofluorescent methods. The biopsies were obtained from patients undergoing investigations for infertility. The seminiferous epithelium of the human testes showing normal spermatogenesis had a cell type-specific expression of HSP27. HSP27 expression was strong in the cytoplasm of the Sertoli cells, spermatogonia, and Leydig cells. Alternatively, the expression was moderate in the spermatocytes, weak in the spermatids and absent in the spermatozoa. In testes showing maturation arrest, HSP27 expression was strong in the Sertoli cells, weak in the spermatogonia, and spermatocytes. It was absent in the spermatids and Leydig cells. In Sertoli cell only syndrome, HSP27 expression was strong in the Sertoli cells and absent in the Leydig cells. We report for the first time the expression patterns of HSP27 in the human testes and show differential expression during normal spermatogenesis, indicating a possible role in this process. The altered expression of this protein in testes showing abnormal spermatogenesis may be related to the pathogenesis of male infertility. 相似文献
11.
Normal spermatogenesis is heavily dependent on the balance of germ cell proliferation, differentiation and apoptosis. Growth differentiation factor 9 (GDF9) and cyclin-dependent kinase inhibitor 1 B (CDKN1B) are strongly associated with cell cycle transition from G0/G1 to S and G2/M phase and hence regulating the growth and development of testicular germ cells and somatic cells. The current study was aimed at seeking out scientific evidence to determine if GDF9 and CDKN1B gene expression functions in the development of Tibetan sheep testes. To this end, developmental testes were derived from three-month-old (pre-puberty), one-year-old (sexual maturity), and three-year-old (adult) Tibetan sheep and then the expression and localization patterns of GDF9 and CDKN1B in these testes were evaluated using quantitative real-time PCR (qRT-PCR), Western blot and immunofluorescence. qRT-PCR and Western blot results showed that GDF9 and CDKN1B were detected in the testes throughout the different developmental stages. The abundance of GDF9 mRNA and protein in the testes of one- and three-year-old Tibetan sheep were higher than that in the testes of three-month-old Tibetan sheep; the mRNA and protein abundance of the CDKN1B gene in three-month-old Tibetan sheep testes were higher than that in the testes of the one-and three-year-old sheep. Moreover, immunofluorescence results suggested that the GDF9 protein was expressed in spermatogonia and Leydig cells, and that the CDKN1B protein was localized mainly in Leydig cells with some in the seminiferous epithelium throughout developmental stages. This indicated a novel role of the GDF9 and CDKN1B genes in Leydig cell development over and above their known roles in germ cell development. These findings have significant implications for our understanding of the molecular mechanisms of GDF9 and CDKN1B genes in Tibetan sheep spermatogenesis. 相似文献
12.
13.
Wei Gu Yunhee Kwon Richard Oko Louis Hermo Norman B. Hecht 《Molecular reproduction and development》1995,40(3):273-285
RNA-binding proteins that bind to the 3′ untranslated region of mRNAs play important roles in regulating gene expression. Here we examine the association between the 70 kDa poly (A) binding protein (PABP) and stored (RNP) and polysomal mRNAs during mammalian male germ cell development. PABP mRNA levels increase as germ cells enter meiosis, reaching a maximum in the early postmeiotic stages, and decreasing to a nearly nondetectable level towards the end of spermatogenesis. Most of the PABP mRNA is found in the nonpolysomal fractions of postmitochondrial extracts, suggesting that PABP mRNA is either inefficiently translated or stored as RNPs during spermatogenesis. Virtually all of the testicular PABP is bound to either polysomal or nonpolysomal mRNAs, with little, if any, free PABP detectable. Analysis of several specific mRNAs reveals PABP is bound to both stored (RNP) and translated forms of the mRNAs. Western blot analysis and immunocytochemistry indicate PABP is widespread in the mammalian testis, with maximal amounts detected in postmeiotic round spermatids. The presence of PABP in elongating spermatids, a cell type in which PABP mRNA is nearly absent, suggests that PABP is a stable protein in the later stages of male germ cell development. The high level of testicular PABP in round spermatids and in mRNPs suggests a role for PABP in the storage as well as in the subsequent translation of developmentally regulated mRNAs in the mammalian testis. © 1995 Wiley-Liss, Inc. 相似文献
14.
15.
《Reproductive biology》2020,20(2):210-219
During androgen biosynthesis, the human testes normally produce only small quantities of Δ4-C21 steroids as these are products of the Δ4-pathway and healthy human testes preferentially use the Δ5-pathway. However, the Δ4-C21 steroid progesterone accumulates in the thickened lamina propria of the seminiferous tubules in testes with deteriorated spermatogenesis. The objectives of this study were to analyse the pregnenolone metabolites in testes with deteriorated spermatogenesis and to establish whether the androgen biosynthesis pathway changes in this condition. Biopsied or orchiectomised testicular samples were obtained from patients with varicocele, non-obstructive azoospermia, obstructive azoospermia, testicular cancer, and cryptorchidism. The samples were segregated into spermatogenesis related Johnsen’s score groups: Low-JS (< 5.0) and High-JS (> 7.8). Higher levels of progesterone and 17α-hydroxyprogesterone were metabolised under in vitro conversion in the Low-JS testes than the High-JS testes when cell-free homogenates from each group were separately incubated with 14C-labelled pregnenolone. Nevertheless, the serum hormone levels did not differ between groups. Two novel pregnenolone metabolites 5β-pregnan-3β-ol-20-one and 5α-pregnan-3α, 21diol-20-one were identified from in vitro conversion in Low-JS testes and by recrystallisation. Immunohistochemistry revealed the higher βHSD expression in the Low-JS than the High-JS testes. However, the CYP17A1 expression levels did not differ between groups. Infertile testes increase the relative βHSD levels in their Leydig cells and synthesised testosterone from pregnenolone via the Δ4- rather than the Δ5-pathway. A new insight into a change of metabolites in Low-JS testes will be relevant to understand the mechanism of the deteriorated spermatogenesis under the normal range of testosterone level. 相似文献
16.
To gain insight into the mechanisms of cAMP signaling in germ cells, the expression and subcellular localization of the full-length form of the soluble adenylyl cyclase (sAC) was investigated during rat spermatogenesis and in spermatozoa. A full-length sAC-specific antibody was generated by using a glutathione S-transferase (GST)-sAC carboxyl-terminal region (1399aa-1608aa) fusion protein as the antigen. The selectivity of the purified antibody was confirmed by immunoblotting with lysates from HEK293 cells overexpressing full-length sAC or truncated sAC. Western blot analysis demonstrated that full-length sAC protein appeared on day 25 during testis development. The expression levels increased progressively on days 30 and 35 and remained elevated in adult testis. Full-length sAC protein is retained in spermatozoa from the cauda epididymis. Consistent with the timing of the appearance of the Western blot signal, immunohistochemistry with testis sections at different stages of development detected sAC in late pachytene spermatocytes as well as round and elongating spermatids. Further experiments on the subcellular localization of native or recombinant enzymes revealed that full-length sAC is not only recovered in soluble fractions but also in particulate fractions of testis extracts. Immunofluorescence detection showed localization of the protein in the cytoplasm as well as in organelles of pachytene spermatocytes and spermatids. These findings indicate that cAMP production in spermatids and spermatozoa may occur at sites other than the plasma membrane and suggest that full-length sAC may play a role during spermatid differentiation. 相似文献
17.
Hiroki Inoue Yuuki Hiradate Yoshiki Shirakata Kenta Kanai Keita Kosaka Aina Gotoh Yasuhiro Fukuda Yutaka Nakai Takafumi Uchida Eimei Sato Kentaro Tanemura 《FEBS letters》2014
Tau is one of the microtubule-associated proteins and a major component of paired helical filaments, a hallmark of Alzheimer’s disease. Its expression has also been indicated in the testis. However, its function and modification in the testis have not been established. Here, we analyzed the dynamics of phosphorylation patterns during spermatogenesis. The expression of Tau protein and its phosphorylation were shown in the mouse testis. Immunohistochemistry revealed that the phosphorylation was strongly detected during meiosis. Correspondingly, the expression of acetylated tubulin was inversely weakened during meiosis. These results suggest that phosphorylation of Tau protein contributes to spermatogenesis, especially in meiosis. 相似文献
18.
“蛋白质组学”一词由Wilkins在1994年提出,被称作后基因组时代一个新兴的研究手段.它从整体水平上对组织或者细胞的蛋白质表达、功能、相互作用进行研究,现在成为生命科学未来发展的主要分支之一.睾丸是哺乳动物雄性生殖系统中的一个重要的器官,由曲精小管和间质细胞组成.蛋白质组学在睾丸和精子发生研究上的应用及其技术手段的不断创新,对睾丸功能、生殖机理、生殖疾病的研究起到了极其重要的作用.所以,从蛋白质水平对睾丸和精子发生进行研究,为更好地理解雄性哺乳动物的生殖机理和疾病提供了一个新思路. 相似文献
19.
Lüers GH Thiele S Schad A Völkl A Yokota S Seitz J 《Histochemistry and cell biology》2006,125(6):693-703
Peroxisomes are organelles that are almost ubiquitous in eukaryotic cells. They have, however, never been described in germ cells within the testis. Since some peroxisomal diseases like Adrenoleukodystrophy are associated with reduced fertility, we have re-investigated the peroxisomal compartment of the germinal epithelium of mice using in situ hybridization, immunohistochemistry, Western blotting and immunoelectron microscopy. Within the seminiferous tubules, peroxisomes are present in Sertoli cells and in germ cells. We could show that small-sized peroxisomes of typical ultrastructure are concentrated in spermatogonia and disappear during the course of spermatogenesis. Peroxisomes of spermatogonia differ in their relative protein composition from previously described peroxisomes of interstitial cells of Leydig. Since germ cells differentiate in mouse testis in a synchronized fashion, the disappearence of peroxisomes could be a suitable model system to investigate the degradation of an organelle as part of a physiological differentiation process in higher eukaryotes. 相似文献