首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Germ cell sex is defined by factors derived from somatic cells. CYP26B1 is known to be a male sex-promoting factor that inactivates retinoic acid (RA) in somatic cells. In CYP26B1-null XY gonads, germ cells are exposed to a higher level of RA than in normal XY gonads and this activates Stra8 to induce meiosis while male-specific gene expression is suppressed. However, it is unknown whether meiotic entry by an elevated level of RA is responsible for the suppression of male-type gene expression. To address this question, we have generated Cyp26b1/Stra8 double knockout (dKO) embryos. We successfully suppressed the induction of meiosis in CYP26B1-null XY germ cells by removing the Stra8 gene. Concomitantly, we found that the male genetic program represented by the expression of NANOS2 and DNMT3L was totally rescued in about half of dKO germ cells, indicating that meiotic entry causes the suppression of male differentiation. However, half of the germ cells still failed to enter the appropriate male pathway in the dKO condition. Using microarray analyses together with immunohistochemistry, we found that KIT expression was accompanied by mitotic activation, but was canceled by inhibition of the RA signaling pathway. Taken together, we conclude that inhibition of RA is one of the essential factors to promote male germ cell differentiation, and that CYP26B1 suppresses two distinct genetic programs induced by RA: a Stra8-dependent meiotic pathway, and a Stra8-independent mitotic pathway.  相似文献   

2.
3.
Type I collagen, synthesized in all tissues as the heterotrimer of two α1(I) polypeptides and one α2(I) polypeptide, is the most abundant protein in the human body. Here we show that intact nonmuscle myosin filaments are required for the synthesis of heterotrimeric type I collagen. Conserved 5′ stem-loop in collagen α1(I) and α2(I) mRNAs binds the RNA-binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle myosin filaments results in secretion of collagen α1(I) homotrimer, diminished intracellular colocalization of collagen α1(I) and α2(I) polypeptides (required for folding of the heterotrimer), and their increased intracellular degradation. Inhibition of the motor function of myosin has similar collagen-specific effects, while disruption of actin filaments has a general effect on protein secretion. Nonmuscle myosin copurifies with polysomes, and there is a subset of polysomes involved in myosin-dependent translation of collagen mRNAs. These results indicate that association of collagen mRNAs with nonmuscle myosin filaments is necessary to coordinately synthesize collagen α1(I) and α2(I) polypeptides. We postulate that LARP6/myosin-dependent mechanism regulates the synthesis of heterotrimeric type I collagen by coordinating the translation of collagen mRNAs.  相似文献   

4.
5.
6.
We demonstrate enhanced differentiation of oligodendrocytes during neurogenesis of human embryonic stem cells (hESCs) using an extracellular matrix protein, vitronectin (VN). We show that VN is expressed in the ventral part of the developing human spinal cord. Combined treatment of retinoic acid, sonic hedgehog, and noggin in the presence of VN allows hESCs to differentiate into O4-positive oligodendrocytes. Particularly, VN profoundly promotes the derivation of oligodendrocyte progenitors that proliferate and differentiate into oligodendrocytes in response to mitogenic and survival factors. These results support the beneficial effect of VN on oligodendrocytic differentiation of hESCs.  相似文献   

7.
8.
The neural guidance protein semaphorin 3A (Sema3A) is expressed in corneal epithelial cells of the adult rat. We have now further investigated the localization of Sema3A in the normal rat corneal epithelium as well as changes in its expression pattern during wound healing after central corneal epithelial debridement. The expression pattern of Sema3A was compared with that of the tight-junction protein zonula occludens-1 (ZO-1), the gap-junction protein connexin43 (Cx43), or the cell proliferation marker Ki67. Immunofluorescence analysis revealed that Sema3A was present predominantly in the membrane of basal and wing cells of the intact corneal epithelium. The expression of Sema3A at the basal side of basal cells was increased in the peripheral epithelium compared with that in the central region. Sema3A was detected in all layers at the leading edge of the migrating corneal epithelium at 6 h after central epithelial debridement. The expression of Sema3A was markedly up-regulated in the basal and lateral membranes of columnar basal cells apparent in the thickened, newly healed epithelium at 1 day after debridement, but it had largely returned to the normal pattern at 3 days after debridement. The expression of ZO-1 was restricted to superficial epithelial cells and remained mostly unchanged during the wound healing process. The expression of Cx43 in basal cells was down-regulated at the leading edge of the migrating epithelium but was stable in the remaining portion of the epithelium. Ki67 was not detected in basal cells of the central epithelium at 1 day after epithelial debridement, when Sema3A was prominently expressed. Immunoblot analysis showed that the abundance of Sema3A in the central cornea was increased 1 day after epithelial debridement, whereas that of ZO-1 or Cx43 remained largely unchanged. This increase in Sema3A expression was accompanied by up-regulation of the Sema3A coreceptor neuropilin-1. Our observations have thus shown that the expression of Sema3A is increased markedly in basal cells of the newly healed corneal epithelium, and that this up-regulation of Sema3A is not associated with cell proliferation. They further suggest that Sema3A might play a role in the regulation of corneal epithelial wound healing.  相似文献   

9.
The aim of the current paper is to evaluate the correlation of germ and follicular cells kinetics during ovarian morphogenesis. Thus, immunohistochemical detection of PCNA and Ki-67 proteins has been examined using PC10 (Dako) and NCL-Ki-67 (Novocastra) antibodies in the developing ovaries of Wistar rat embryos and neonates [14.5, 18.5, 20.5days post-coitum (dpc), birth (day 0), 1, 3, 5, 7day post-partum (dpp)]. Estimation of reactive/total cell ratio, per cell type (germ and follicular cells) and visual field was achieved using the Image Pro Plus Software. The statistical interpretation of the results has shown that, before birth, using the PCNA antibody, the percentage of labeled/total germ cells (labeling index, LI) increases from 71.19% at 14.5dpc to 75.66% at 18.5dpc. It then decreases to 73.26% at 20.5dpc. At birth, the labeling index drops significantly (28.57%). Immediately after birth, the percentage of labeled/total germ cells increases, reaching 43.58% at 1dpp. Subsequently, a further decrease in the percentage of reactive cells is observed resulting to a maximum drop of the LI at 7dpp (18.41%). Using the Ki-67 antibody, the percentage of labeled/total germ cells is generally lower although the fluctuation is similar with that observed using the first marker of cell proliferation. Using the PCNA antibody, the LI of follicular cells in the developing ovary, increases from 0.70% (at 14.5dpc) to 28.94% (at 18.5dpc) and then drops to 18.03% (at 20.5dpc). At birth, the percentage of reactive follicular cells, reaches 27.66% and remains high thereafter. Similar results are obtained using the Ki-67 antibody. In conclusion, follicular cell reaction ratio, using both antibodies (PCNA and Ki-67), increases continuously throughout the examined period with a maximum value at 7dpp, suggesting a kinetics profile similar to that observed for Sertoli cells in the testis. In all age groups, PCNA labeling is more intense than Ki-67, a result that may be attributed to selective staining at different periods of the cell cycle.  相似文献   

10.
11.
12.
The epigenetic regulation of microRNAs is one of several mechanisms underlying carcinogenesis. We found that microRNA-195 (miR-195) and microRNA-378 (miR-378) were significantly down-regulated in gastric cancer tissues and gastric cancer cell lines. The expression of miR-195 and miR-378 in gastric cancer cells was significantly restored by 5-aza-dC, a demethylation reagent. The low expression of miR-195 and miR-378 was closely related to the presence of promoter CpG island methylation. Treatment with miR-195/miR-378 mimics strikingly suppressed the growth of gastric cancer cells whereas promoted the growth of normal gastric epithelial cells. In contrast, administration of miR-195/miR-378 inhibitors significantly prevented the growth of normal gastric epithelial cells. Expression of cyclin-dependent kinase 6 and vascular endothelial growth factor was down-regulated by exogenous miR-195 and miR-378, respectively. In conclusion, miR-195 and miR-378 are abnormally expressed and epigenetically regulated in gastric cancer cell lines and tissues via the suppression of CDK6 and VEGF signaling, suggesting that miR-195 and miR-378 have tumor suppressor properties in gastric cancer.  相似文献   

13.
14.
15.
16.
Jumonji (Jmj) proteins are histone demethylases, which control the identity of stem cells. Jmj genes were characterized from plants to mammals where they have been implicated in the epigenetic regulation of development. Despite the Pacific oyster Crassostrea gigas representing one of the most important aquaculture resources worldwide, the molecular mechanisms governing the embryogenesis and reproduction of this lophotrochozoan species remain poorly understood. However, annotations in the C. gigas EST library suggested the presence of putative Jumonji genes, raising the question of the conservation of this family of histone demethylases in the oyster.  相似文献   

17.
Mitogen-activated protein kinase kinase 4 (Map2k4) is a dual specificity serin/threonine protein kinase that is unique among all MAP2Ks in activating two different subfamilies of mitogen-activated protein kinases, the c-Jun N-terminal kinases (JNKs) and p38 kinases. Map2k4 is essential during embryogenesis and involved in a variety of physiological and pathological processes. However, studies on its role in cancer development revealed partially conflicting data. In the present study, we report the identification of a novel splice variant of Map2k4, Map2k4δ, with an additional exon in front of the substrate binding D-domain. Map2k4δ is expressed together with Map2k4 in various tissues from rat, mouse and human. In PC12 cells, both splice variants control cell cycle progression and basal apoptosis by using different signaling pathways. If expression and activation of Map2k4 and Map2k4δ are at a certain, cell type-specific equilibrium, an appropriate cell growth is ensured. Overexpression of one kinase disrupts the intricate balance and either results in a highly proliferative or pro-apoptotic phenotype, partially reflecting the discrepancies in the literature on Map2k4 and its role in tumor development. Our findings contribute to the understanding of previous studies and point out that Map2k4 has not always a definite function, but rather triggers a cellular reaction in concert with other modulators.  相似文献   

18.
The only known structural protein required for formation of myelin, produced by oligodendrocytes in the central nervous system, is myelin basic protein (MBP). This peripheral membrane protein has different developmentally-regulated isoforms, generated by alternative splicing. The isoforms are targeted to distinct subcellular locations, which is governed by the presence or absence of exon-II, although their functional expression is often less clear. Here, we investigated the role of exon-II-containing MBP isoforms and their link with cell proliferation. Live-cell imaging and FRAP analysis revealed a dynamic nucleocytoplasmic translocation of the exon-II-containing postnatal 21.5-kDa MBP isoform upon mitogenic modulation. Its nuclear export was blocked upon treatment with leptomycin B, an inhibitor of nuclear protein export. Next to the postnatal MBP isoforms, embryonic exon-II-containing MBP (e-MBP) is expressed in primary (immature) oligodendrocytes. The e-MBP isoform is exclusively present in OLN-93 cells, a rat-derived oligodendrocyte progenitor cell line, and interestingly, also in several non-CNS cell lines. As seen for postnatal MBPs, a similar nucleocytoplasmic translocation upon mitogenic modulation was observed for e-MBP. Thus, upon serum deprivation, e-MBP was excluded from the nucleus, whereas re-addition of serum re-established its nuclear localization, with a concomitant increase in proliferation. Knockdown of MBP by shRNA confirmed a role for e-MBP in OLN-93 proliferation, whereas the absence of e-MBP similarly reduced the proliferative capacity of non-CNS cell lines. Thus, exon-II-containing MBP isoforms may regulate cell proliferation via a mechanism that relies on their dynamic nuclear import and export, which is not restricted to the oligodendrocyte lineage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号