首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Axial eye patterning determines the positional code of retinal ganglion cells (RGCs), which is crucial for their topographic projection to the midbrain. Several asymmetrically expressed determinants of retinal patterning are known, but it is unclear how axial polarity is first established. We find that Fgf signals, including Fgf8, determine retinal patterning along the nasotemporal (NT) axis during early zebrafish embryogenesis: Fgf8 induces nasal and/or suppresses temporal retinal cell fates; and inhibition of all Fgf-receptor signaling leads to complete retinal temporalization and concomitant loss of all nasal fates. Misprojections of RGCs with Fgf-dependent alterations in retinal patterning to the midbrain demonstrate the importance of this early patterning process for late topographic map formation. The crucial period of Fgf-dependent patterning is at the onset of eye morphogenesis. Fgf8 expression, the restricted temporal requirement for Fgf-receptor signaling and target gene expression at this stage suggests that the telencephalic primordium is the source of Fgf8 and acts as novel signaling center for non-autonomous axial patterning of the prospective neural retina.  相似文献   

4.
5.
Nonmuscle myosin-II is a motor protein that drives cell movement and changes in cell shape during tissue and organ development. This study has determined the dynamic changes in myosin-II distribution during Drosophila compound eye morphogenesis. In photoreceptor neurons, myosin-II is undetectable at the apical domain throughout the first half of pupal life, at which time this membrane domain is involuted into the epithelium and progresses toward the retinal floor. Myosin-II is deployed at the apical surface at about 60% of pupal development, once the developing rhabdomeres reach the retinal floor. Subsequently, myosin-II becomes restricted to two stripes at the sides of the developing rhabdomere, adopting its final position within the visual cells R1-6; here, myosin-II is associated with a set of actin filaments that extend alongside the rhabdomeres. At the midpupal stage, myosin-II is also incorporated into stress-fiber-like arrays within the basal endfeet of the pigment cells that then change their shape. This spatiotemporal pattern of myosin-II localization and the morphological defects observed in the eyes of a myosin-II mutant suggest that the myosin-II/F-actin system is involved in the alignment of the rhabdomeres within the retina and in the flattening of the retinal floor. The observation that the myosin-II/F-actin arrays are incomplete or disorganized in R7/R8 and in rhodopsin-1-null R1-6 suggests further that the establishment and stability of this cytoskeletal system depend on rhodopsin-1 expression.  相似文献   

6.
Drosophila photoreceptors undergo marked changes in their morphology during pupal development. These changes include a five-fold elongation of the retinal cell body and the morphogenesis of the rhabdomere, the light sensing structure of the cell. Here we show that twinstar (tsr), which encodes Drosophila cofilin/ADF (actin-depolymerizing factor), is required for both of these processes. In tsr mutants, the retina is shorter than normal, the result of a lack of retinal elongation. In addition, in a strong tsr mutant, the rhabdomere structure is disorganized and the microvilli are short and occasionally unraveled. In an intermediate tsr mutant, the rhabdomeres are not disorganized but have a wider than normal structure. The adherens junctions connecting photoreceptor cells to each other are also found to be wider than normal. We propose, and provide data supporting, that these wide rhabdomeres and adherens junctions are secondary events caused by the inhibition of retinal elongation. These results provide insight into the functions of the actin cytoskeleton during morphogenesis of the Drosophila eye.  相似文献   

7.
Cells exhibit an amazingly wide range of different forms, and in most cases the shape of a cell is crucial for performing its specific function(s). But how does a cell obtain its particular shape during development, how can the shape be adapted to different environmental conditions, and what are the consequences if morphogenesis is impaired? An ideal cell type to study these questions is the photoreceptor cell, a photosensitive cell present in most metazoa, highly specialised to transform the energy from the light into a visual response. In the last few years, studies in the Drosophila eye have led to a considerable increase in understanding of the genetic control of photoreceptor morphogenesis; lessons, which may apply to other cell types as well. Most of the genes involved have been conserved during evolution, and mutations in several of them result in retinal degeneration, both in flies and humans. This makes the fly eye an attractive model to unravel the genetic, molecular and cell biological basis of the mechanisms that prevent retinal dystrophies.  相似文献   

8.
The rap (retina aberrant in pattern) gene encodes the Fizzy-related protein (Fzr), which as an activator of the ubiquitin ligase complex; APC/C (anaphase promoting complex/cyclosome) facilitates the cell cycle stage-specific degradation of cyclins. Loss-of-function mutations in rap cause unscheduled accumulation of cyclin B in the developing eye imaginal disc, resulting in additional mitotic cycles and defective patterning of the developing Drosophila eye. Targeted mis-expression of rap/fzr in the eye primordial cells causes precocious cell cycle exit, and smaller primordial eye fields, which either eliminate or drastically reduce the size of the adult eye. Although mitosis is inhibited in the mis-expression animals, cells with abnormally large nuclei form tumor-like structures from continued endoreplication, cell growth and retinal differentiation. Interestingly, overexpression of Rap/Fzr in the eye primordia also increases the size of the antennal primordium resulting in the induction of ectopic antennae. These results suggest that Rap/Fzr plays an essential role in the timely exit of precursor cells from mitotic cycles and indicate that mechanisms that regulate cell cycle exit are critical during pattern formation and morphogenesis.  相似文献   

9.
In early vertebrate eye development, the retinal anlage is specified in the anterior neuroectoderm. During neurulation, the optic vesicles evaginate from the lateral wall of the prosencephalon. Here we describe the temperature-sensitive mutation eyeless in the Japanese medakafish. Marker gene analysis indicates that, whereas, specification of two retinal primordia and proximodistal patterning takes place in the mutant embryo, optic vesicle evagination does not occur and subsequent differentiation of the retinal primordia is not observed. The mutation eyeless thus uncouples patterning and morphogenesis at early steps of retinal development. Temperature-shift experiments indicate a requirement for eyeless activity prior to optic vesicle evagination. Cell transplantation shows that eyeless acts cell autonomously.  相似文献   

10.
Fgf signaling plays crucial roles in morphogenesis. Fgf19 is required for zebrafish forebrain development. Here, we examined the roles of Fgf19 in the formation of the lens and retina in zebrafish. Knockdown of Fgf19 caused a size reduction of the lens and the retina, failure of closure of the choroids fissure, and a progressive expansion of the retinal tissue to the midline of the forebrain. Fgf19 expressed in the nasal retina and lens was involved in cell survival but not cell proliferation during embryonic lens and retina development. Fgf19 was essential for the differentiation of lens fiber cells in the lens but not for the neuronal differentiation and lamination in the retina. Loss of nasal fate in the retina caused by the knockdown of Fgf19, expansion of nasal fate in the retina caused by the overexpression of Fgf19 and eye transplantation indicated that Fgf19 in the retina was crucial for the nasal-temporal patterning of the retina that is critical for the guidance of retinal ganglion cell axons. Knockdown of Fgf19 also caused incorrect axon pathfinding. The present findings indicate that Fgf19 positively regulates the patterning and growth of the retina, and the differentiation and growth of the lens in zebrafish.  相似文献   

11.
12.
Correct cellular patterning is central to tissue morphogenesis, but the role of epithelial junctions in this process is not well-understood. The Drosophila pupal eye provides a sensitive and accessible model for testing the role of junction-associated proteins in cells that undergo dynamic and coordinated movements during development. Mutations in polychaetoid (pyd), the Drosophila homologue of Zonula Occludens-1, are characterized by two phenotypes visible in the adult fly: increased sensory bristle number and the formation of a rough eye produced by poorly arranged ommatidia. We found that Pyd was localized to the adherens junction in cells of the developing pupal retina. Reducing Pyd function in the pupal eye resulted in mis-patterning of the interommatidial cells and a failure to consistently switch cone cell contacts from an anterior-posterior to an equatorial-polar orientation. Levels of Roughest, DE-Cadherin and several other adherens junction-associated proteins were increased at the membrane when Pyd protein was reduced. Further, both over-expression and mutations in several junction-associated proteins greatly enhanced the patterning defects caused by reduction of Pyd. Our results suggest that Pyd modulates adherens junction strength and Roughest-mediated preferential cell adhesion.  相似文献   

13.
The correct organization of cells within an epithelium is essential for proper tissue and organ morphogenesis. The role of Decapentaplegic/Bone morphogenetic protein (Dpp/BMP) signaling in cellular morphogenesis during epithelial development is poorly understood. In this paper, we used the developing Drosophila pupal retina--looking specifically at the reorganization of glial-like support cells that lie between the retinal ommatidia--to better understand the role of Dpp signaling during epithelial patterning. Our results indicate that Dpp pathway activity is tightly regulated across time in the pupal retina and that epithelial cells in this tissue require Dpp signaling to achieve their correct shape and position within the ommatidial hexagon. These results point to the Dpp pathway as a third component and functional link between two adhesion systems, Hibris-Roughest and DE-cadherin. A balanced interplay between these three systems is essential for epithelial patterning during morphogenesis of the pupal retina. Importantly, we identify a similar functional connection between Dpp activity and DE-cadherin and Rho1 during cell fate determination in the wing, suggesting a broader link between Dpp function and junctional integrity during epithelial development.  相似文献   

14.
Apoptosis is crucial during the morphogenesis of most organs and tissues, and is utilized for tissues to achieve their proper size, shape and patterning. Many signaling pathways contribute to the precise regulation of apoptosis. Here we show that Jun N-terminal Kinase (JNK) activity contributes to the coordinated removal of interommatidial cells via apoptosis in the Drosophila pupal retina. This is consistent with previous findings that JNK activity promotes apoptosis in other epithelia. However, we found that JNK activity is repressed by Cindr (the CIN85 and CD2AP ortholog) in order to promote cell survival. Reducing the amount of Cindr resulted in ectopic cell death. Increased expression of the Drosophila JNK basket in the setting of reduced cindr expression was found to result in even more severe apoptosis, whilst ectopic death was found to be reduced if retinas were heterozygous for basket. Hence Cindr is required to properly restrict JNK-mediated apoptosis in the pupal eye, resulting in the correct number of interommatidial cells. A lack of precise control over developmental apoptosis can lead to improper tissue morphogenesis.  相似文献   

15.
16.
17.
18.
19.
Chen G  Rogers AK  League GP  Nam SC 《PloS one》2011,6(1):e16127

Background

Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes'' role in photoreceptor morphogenesis.

Methodology/Principal Findings

Here, we have found a genetic interaction between baz and centrosomin (cnn). Cnn is a core protein for centrosome which is a major microtubule-organizing center. We analyzed the effect of the cnn mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn''s gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs).

Conclusions/Significance

These results strongly suggest that the interaction of Baz and Cnn is essential for apical domain and AJ modulation during photoreceptor morphogenesis, but not for the initial photoreceptor differentiation in the Drosophila photoreceptor.  相似文献   

20.
Adult body plan differentiation in holometabolous insects depends on global induction and control by ecdysteroid hormones during the final phase of postembryogenesis. Studies in Drosophila melanogaster and Manduca sexta have shown that this pertains also to the development of the compound eye retina. It is unclear whether the hormonal control of postembryonic eye development in holometabolous insects represents evolutionary novelty or heritage from hemimetabolous insects, which develop compound eyes during embryogenesis. We therefore investigated the effect of manipulating ecdysteroid signaling in cultured embryonic eye primordia of the American desert locust Schistocerca americana, in which ecdysteroid level changes are known to induce three rounds of embryonic molt. Although at a considerably reduced rate compared to in vivo development, early differentiation and terminal maturation of the embryonic retina was observed in culture even if challenged with the ecdysteroid antagonist cucurbitacin B. Supplementing cultures with 20-hydroxyecdysone (20E) accelerated differentiation and maturation, and enhanced cell proliferation. Considering these results, and the relation between retina differentiation and ecdysteroid level changes during locust embryogenesis, we conclude that ecdysteroids are not an essential but possibly a modulatory component of embryonic retina development in S. americana. We furthermore found evidence that 20E initiated precocious epithelial morphogenesis of the posterior retinal margin indicating a more general role of ecdysteroids in insect embryogenesis.Electronic Supplementary Material Supplementary material is available in the online version of this article at Edited by C. Desplan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号