首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryopreservation is the most promising route for the long-term conservation of recalcitrant seed germplasm. Partial dehydration is a standard pre-treatment for the cryopreservation of zygotic embryos or embryonic axes excised from recalcitrant seeds since it reduces the likelihood of lethal ice-crystal generation during cooling. However, there is presently little to no understanding of how pre-conditioning treatments such as partial dehydration imposed at the embryonic stage are translated or manifested during subsequent in and ex vitro seedling growth. The present study assessed the vigour of seedlings recovered from partially dried (D) zygotic embryos, excised from recalcitrant Haemanthus montanus (Baker) seeds. Seedlings recovered from fresh (F) and partially dried (D) embryos in vitro, were hardened-off ex vitro, and subsequently subjected to either 42 days of watering (W) or 42 days of water deficit (S). The adverse effects of partial dehydration on seedling dry mass accumulation observed after 60 days in vitro growth did not disappear with an extension of the in vitro growth period but did appear to be reversible during ex vitro growth. A water stress during ex vitro growth dominated over the effects of embryo pre-treatment with relative growth rates in FS-seedlings (recovered from fresh embryos and subsequently stressed) and DS-seedlings (recovered from dried embryos and subsequently stressed) being statistically comparable. D- and F-seedlings responded typically to the water stress but DS-, compared with FS-seedlings, appeared to have incurred permanent damage to their photosynthetic machinery, were exposed to lower predawn water potentials, were less efficient at adjusting leaf water potential to meet transpirational demands, did not exhibit signs of osmotic adjustment, failed to adopt growth patterns that reduce transpirational water loss, and were more susceptible to persistent turgor loss. It was therefore not surprising that ex vitro seedling mortality occurred in more DS- than FS-seedlings. These results suggest that partial dehydration of recalcitrant H. montanus zygotic embryos, even when not followed by cooling, can reduce the vigour and drought tolerance of recovered seedlings.  相似文献   

2.
Embryo development and germination of Cyclamen persicum have been comparatively characterized for zygotic and somatic embryos with regard to mitotic activity and morphology in order to identify developmental abnormalities in somatic embryogenesis. Zygotic embryo development proved to be highly synchronous with distinct periods of cell division, cell elongation and embryo maturation within a total period of 17 weeks of seed development. Somatic embryo development was accomplished within only 3 weeks, resulting in a mixture of morphologically highly variable embryos. No distinct developmental periods could be identified and no reduction of the mitotic activity was discovered for non-desiccated somatic embryos. Controlled desiccation of somatic embryos severely reduced their germination rate, demonstrating resemblance of somatic embryos to recalcitrant seeds, whereas zygotic Cyclamen seeds could be characterized as typically orthodox.  相似文献   

3.
Zygotic embryos from recalcitrant seeds are sensitive to desiccation. In spite of their sensitivity, rapid partial dehydration is necessary for their successful cryopreservation. However, dehydration to water contents (WCs) that preclude lethal ice crystal formation during cooling and rewarming generally leads to desiccation damage. This study investigated the effects of rapid dehydration on selected stress biomarkers (electrolyte leakage, respiratory competence, rate of protein synthesis, superoxide production, lipid peroxidation, antioxidant activity and degree of cellular vacuolation) in zygotic embryos of four recalcitrant‐seeded species. Most biomarkers indicated differences in the levels of stress/damage incurred by embryos dried to WCs < and >0.4 g·g?1, within species; however, these changes were often unrelated to viability and percentage water loss when data for the four species were pooled for regression analyses. Dehydration‐induced electrolyte leakage was, however, positively related with percentage water loss, while biomarkers of cellular vacuolation were positively related with both percentage water loss and viability. This suggests that electrolyte leakage and degree of cellular vacuolation can be used to quantify dehydration‐induced stress/damage. Biomarkers such as superoxide production, whilst useful in establishing the nature of the dehydration stress incurred may not be able to distinguish the effects of different WCs/drying times. Irrespective of which biomarker is used, the data suggest that understanding differences in desiccation sensitivity across recalcitrant‐seeded species will remain a challenge unless these biomarkers are related to a generic desiccation stress index that integrates the effects of percentage water loss and drying time.  相似文献   

4.
Recalcitrant seed axes were reported to survive to lower water contents under fast-drying conditions. The present study was to examine the hypothesis that drying rate and dehydration duration could interact to determine desiccation tolerance through different physico-chemical mechanisms. The effect of drying rate on desiccation tolerance of Theobroma cacao seed axes at 16 degrees C was examined. Rapid-drying at low relative humidity (RH) and slow-drying at high RH were more harmful to cocoa axes, because electrolyte leakage began to increase and axis viability began to decrease at high water contents. Maximum desiccation tolerance was observed with intermediate drying rates at RH between 88% and 91%, indicating the existence of an optimal drying rate or optimal desiccation duration. This maximum level of desiccation tolerance for cocoa axes (corresponding to a critical water potential of -9 MPa) was also detected using the equilibration method, in which axes were dehydrated over a series of salt solutions or glycerol solutions until the equilibrium. These data confirmed that the physiological basis of the optimal drying rate is related to both mechanical stress during desiccation and the length of desiccation duration during which deleterious reactions may occur. The optimal drying rate represents a situation where combined damages from mechanical and metabolic stresses become minimal.  相似文献   

5.
Studies to elucidate the biochemical basis of survival of excised embryonic axes (EAs) of recalcitrant seeds of Trichilia dregeana at different drying rates revealed significant differences between slow and rapid drying. Rapid drying allowed these EAs to survive dehydration to much lower water contents (WCs; ca. 0.31 g g?1 dry mass basis with 73% germination) compared with slow drying, where 90% of the EAs lost viability at a WC of ca. 0.79 g g?1. In EAs slowly dried within seeds, the levels of hydroxyl radical (three‐ to fivefold at WCs >0.5 g g?1) and lipid peroxidation (50% at similar WC) were significantly higher compared with those dried rapidly to comparable WCs. When EAs were dried slowly, enzymic antioxidant levels were not sustained and declined significantly with prolonged storage. In contrast, sustained activity of enzymic antioxidants was detected in rapidly dried EAs even at relatively low WCs. Furthermore, the greater decline in glutathione (GSH)/GSH disulphide ratio in EAs slowly dried within seeds compared with rapidly dried EAs and a shift in GSH redox potential to relatively more positive values in the EAs slowly dried within seeds was correlated with considerable viability loss. It is apparent from this study that greater retention of viability to lower WCs in rapidly dried EAs from recalcitrant seeds may at least be partly explained by the retention of functional antioxidant status. It is also suggested that the reduction of viability in rapidly dried EAs at very low WCs appears to be a non‐oxidative process.  相似文献   

6.
Longevity of cryogenically stored seeds   总被引:9,自引:0,他引:9  
Though cryogenic storage is presumed to provide nearly infinite longevity to cells, the actual shelf life achieved under ultra-cold temperatures has not been addressed theoretically or empirically. Here, we report measurable changes in germination of dried seeds stored under liquid nitrogen conditions for >10 years. There was considerable variability in the extent of deterioration among species and accessions within a species. Aging time courses for lettuce seeds stored at temperatures between 50 and -196 degrees C were fit to a form of the Avrami equation to determine rate coefficients and predict half-life of accessions. A reduction in the temperature dependency on aging rate, determined as a break in the Arrhenius plot, occurred at about -15 degrees C, and this resulted in faster deterioration than anticipated from extrapolation of kinetics measured at higher temperatures. The break in Arrhenius behavior occurred at temperatures in between the glass transition temperature (28 degrees C) and the Kauzmann temperature (-42 degrees C) and also coincided with a major triacylglycerol phase change (-40 to -7 degrees C). In spite of the faster than anticipated deterioration, cryogenic storage clearly prolonged shelf life of lettuce seeds with half-lives projected as approximately 500 and approximately 3400 years for fresh lettuce seeds stored in the vapor and liquid phases of liquid nitrogen, respectively. The benefit of low temperature storage (-18 or -135 degrees C) on seed longevity was progressively lost if seeds were first stored at 5 degrees C. Collectively, these results demonstrate that lowering storage temperature progressively increases longevity of seeds. However, cryogenic temperatures were not sufficient to stop deterioration, especially if initial stages of aging were allowed to progress at higher storage temperatures. This work contributes to reliable assessments of the potential benefit and cost of different genebanking strategies.  相似文献   

7.

Background and Aims

Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival.

Methods

Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro.

Key Results

Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm2 in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure.

Conclusions

The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches.  相似文献   

8.
The sensitivity of a Polish provenance of dormant Corylus avellana seeds to extreme desiccation and cryopreservation in liquid nitrogen (LN, ?196°C) was investigated. No sensitivity to desiccation was observed as seeds readily germinated and exhibited seedling emergence, even when the critical water content (WC) of seeds (nuts devoid of pericarp) was reduced to 0.027 g H2O/g dry mass, g g?1 by drying. Results of germination and seedling emergence tests indicated that seeds tolerated cooling in LN when desiccated to a WC in the range of 0.05–0.10 and 0.08–0.10 g g?1, respectively. The results of this study demonstrate the feasibility of long‐term cryopreservation of European hazelnut seeds. As the seeds of this species have been classified in several different categories (orthodox, suborthodox and recalcitrant), based on their response to desiccation and low temperature, the assignment of the seeds of hazelnut to a specific category is provided and discussed.  相似文献   

9.
MethodsWater relations and survival of excised axes in response to water loss and cryo-exposure were compared for four Quercus species from subtropical China (Q. franchetii, Q. schottkyana) and temperate USA (Q. gambelii, Q. rubra).ConclusionsQuercus species adapted to arid and semi-humid climates still produce recalcitrant seeds. The ability to avoid freezing rather than drought may be a more important selection factor to increase desiccation tolerance. Cryopreservation of recalcitrant germplasm from temperate species is currently feasible, whilst additional protective treatments are needed for ex situ conservation of Quercus from tropical and subtropical areas.  相似文献   

10.
The desiccation sensitivity in relation to the stage of development was investigated in embryonic axes from the homoiohydrous (recalcitrant) seeds of Landolphia kirkii. Electrolyte leakage, used to assess membrane damage after flash (very rapid) drying, indicated that axes from immature (non-germinable) seeds were the most desiccation-tolerant, followed by those from mature seeds, while axes from seeds germinated for increasing times were progressively more desiccation-sensitive. Differential scanning calorimetry was used to study the relationship between desiccation sensitivity and the properties of water in the tissues. Axes from immature seeds had a lower content of non-freezable water than that of any other developmental stage and a higher enthalpy of melting of freezable water. For mature and immature axes electrolyte leakage increased at the point of loss of freezable water. At other developmental stages the water content at which electrolyte leakage increased markedly correlated with the other properties of the water, such as the change in the shape of the melting endotherm and the onset temperature. Ultrastructural studies of axes at the various developmental stages showed changes in the degree and pattern of vacuolation, the presence and quantities of lipid and starch, and the degree of endomembrane development. The results are discussed in relation to current hypotheses on the basis of desiccation tolerance.Abbreviation DSC differential scanning calorimetry  相似文献   

11.
The post-thaw recovery of mouse embryonic stem cells (mESCs) is often assumed to be adequate with current methods. However as this publication will show, this recovery of viable cells actually varies significantly by genetic background. Therefore there is a need to improve the efficiency and reduce the variability of current mESC cryopreservation methods. To address this need, we employed the principles of fundamental cryobiology to improve the cryopreservation protocol of four mESC lines from different genetic backgrounds (BALB/c, CBA, FVB, and 129R1 mESCs) through a comparative study characterizing the membrane permeability characteristics and membrane integrity osmotic tolerance limits of each cell line. In the companion paper, these values were used to predict optimal cryoprotectants, cooling rates, warming rates, and plunge temperatures, and then these predicted optimal protocols were validated against standard freezing protocols.  相似文献   

12.
Cryopreservation of the germplasm for long-term periods is of great importance to maintain the genetic resource. Argentina is one of the world's highest lemon producing country. The performance of different cooling/warming rates in the cryopreservation method of Citrus limon L. Burm cv. Eureka seeds and their influence on the interval of optimal moisture content in the desiccation stage were analyzed. Water sorption isotherm was determined and modeled using D'Arcy & Watt equation; it provided important information concerning the amounts of water associated to strong, weak and multimolecular binding sites along the sorption isotherm. Seeds tolerated a wide range of desiccation conditions (0.1<aw<0.85) showing a high viability (>80%), however desiccation to 0.0526 g H2O g−1 d.b. (aw = 0.0901) produced a significant loss of viability. Differential Scanning Calorimetry was used to identify the thermal transitions of lipids and water in the seed; enthalpies were used to calculate the unfrozen water fraction (0.19 g H2O g−1 d.b. corresponding to aw = 0.64). Two cooling/warming rates were tested on desiccated seeds (0.11<aw<0.85): i) 200 °C min−1 (reached with seeds placed inside a closed cryogenic vial); ii) 1000 °C min−1 (reached with aluminum-foiled seeds placed in a perforated cryogenic vial). For both methods, viability was maximum (83.3%) at aw = 0.64. Lethal ice formation was responsible for the loss of viability at aw>0.64 corresponding to the unfrozen water fraction. The use of higher cooling/warming rates enables a wider range of desiccation conditions (0.33<aw<0.76) in cryopreservation procedures. This work contributes to the optimization of cryopreservation methods of economically important germplasm.  相似文献   

13.
Summary An efficient procedure for Agrobacterium-mediated transformation of zygotic embryos derived from three different Arabidopsis thaliana ecotypes has been developed. This procedure yielded an average transformation rate of 76% for ecotype C24, and 15–20% for ecotypes Landsberg-erecta and Columbia. A critical step for optimal transformation was the preculture of embryos on a phytohormone-containing medium. Light and electron microscopical studies showed that, during preculture, procambium cells of embryos became highly susceptible to Agrobacterium infection. Transformed cells developed calli and regenerated shoots within 4–5 weeks of culture. A total of 1500 fertile transgenic plants were regenerated. In regenerated plants the presence of inserted DNA was verified by genomic Southern blot analysis, assays of enzymatic activities of reporter genes (neomycin phosphotransferase II and -glucuronidase) as well as by genetic segregation tests. R1 progenies of 45 randomly chosen transformed lines and 150 independent regenerants did not show any somaclonal variations as ascertained by both morphological and cytological criteria. Short duration (7–8 weeks), high efficiency, reproducibility and low frequency of somaclonal variation makes the zygotic embryo transformation particularly well-suited for T-DNA tagging mutagenesis.  相似文献   

14.
Block W 《Cryobiology》2003,47(1):59-72
Encapsulation and dehydration techniques using alginate beads are used increasingly for the pre-treatment of various plant materials for cryopreservation to improve survival post-cryogenic storage. This study reports the effects of the water content of beads (formed with 3% (w/v) alginic acid in liquid S-RIB), polymerisation time (in 100 mM calcium chloride solution), osmotic dehydration (in 0.75 M sucrose solution), and evaporative air desiccation on the thermal properties of alginate beads used in cryopreservation protocols. Experimental beads were assayed using a differential scanning calorimeter (DSC) with a cooling programme to -150 degrees C, followed by re-warming. Resultant thermograms were evaluated with particular reference to the onset temperature and enthalpy of the melt endotherm from which the quantities of frozen and unfrozen water were calculated. Treatments were applied sequentially to samples of beads and their thermal features evaluated at each stage of the protocol. Using 'standard' beads (40-55 mg fresh weight), formed using plastic disposable pipettes, the degree of polymerisation (>10 min) proportionally reduced their dry weight and increased their water content. Thermal characteristics of the beads were unaffected by polymerisation times >10 min, but the maximum level (23%) of unfrozen (osmotically inactive) water was achieved after 15 min polymerisation. Osmotic dehydration using 0.75 M sucrose significantly lowered bead water content and mean dry weight approximately doubled with 20-24 h immersion time. Bead desiccation in still air reduced their water content by 83% of fresh weight, whilst dry weight remained constant. After 8 h desiccation in air between 27 and 37% of the water in the bead was osmotically inactive (unfrozen) in DSC scans. Desiccation >18 h reduced this fraction to zero. The melt onset temperature and the enthalpy of melting were directly related to bead water content. The unfrozen water fraction increased substantially with reduced water content of the beads (from 23 to 37% of total water content), concomitant with a reduction in the ratio of unfrozen to frozen water from 1:3 to 1:2. For successful vitrification and the production of a glass that did not destabilise on rewarming, a bead water content of ca. 26% of fresh weight (0.4 g waterg(-1) dry weight) was required, much of which was osmotically inactive water. These data are discussed in relation to optimal pre-treatments for alginate bead encapsulation techniques used in the cryopreservation of a range of plant germplasm. It is proposed that increased standardisation of alginate beads, in terms of volume, fresh weight, and water content, is required to reduce the variability in physical and thermal features, which in turn will improve survival of plant samples post-cryopreservation.  相似文献   

15.
Cryostorage (usually in, or above liquid nitrogen) is presently the only option for long-term germplasm conservation of species producing recalcitrant (desiccation-sensitive) seeds. The present study investigated the ultrastructural responses of zygotic embryos excised from recalcitrant Amaryllis belladonna seeds to the sequential steps involved in cryopreservation. Flash-dried embryos, with and without prior sucrose (non-penetrating) or glycerol (penetrating) cryoprotection, were cooled rapidly or slowly, recovered in vitro and then assessed for ultrastructural and viability responses. Untreated embryos were 100% viable, the ultrastructure being indicative of their actively metabolic condition. Although nuclear morphology changed, viability was unaffected after exposure to either glycerol or sucrose, but mitochondrial ultrastructure suggested enhancement of metabolic activity particularly after sucrose treatment. When flash dried after sucrose cryoprotection, a significant increase in the degree of vacuolation, abnormal plastid ultrastructure and some wall abnormality accompanied a decline in survival to 70% and 60% at water contents > and <0.4 g g−1, respectively. In contrast, glycerol cryoprotection, which promoted retention of generally normal ultrastructure and also counteracted any increase in the degree of vacuolation, was associated with 100% and 90% survival of embryos at the higher and lower water contents. After exposure to liquid nitrogen (LN), ultrastructural irregularities were minimal in rapidly cooled glycerol-cryoprotected embryos, at water content <0.4 g g−1, which showed 70% survival after retrieval from cryogenic conditions. At the other extreme, no embryos survived LN exposure when sucrose cryoprotected. The study relates the cumulative effects of subcellular abnormality and declining viability, in relation to experimental parameters for cryopreservation.  相似文献   

16.
In Part I, we documented differences in cryopreservation success measured by membrane integrity in four mouse embryonic stem cell (mESC) lines from different genetic backgrounds (BALB/c, CBA, FVB, and 129R1), and we demonstrated a potential biophysical basis for these differences through a comparative study characterizing the membrane permeability characteristics and osmotic tolerance limits of each cell line. Here we use these values to predict optimal cryoprotectants, cooling rates, warming rates, and plunge temperatures. We subsequently verified these predictions experimentally for their effects on post-thaw recovery. From this study, we determined that a cryopreservation protocol utilizing 1 M propylene glycol, a cooling rate of 1 °C/minute, and plunging into liquid nitrogen at −41 °C, combined with subsequent warming in a 22 °C water bath with agitation, significantly improved post-thaw recovery for three of the four mESC lines, and did not diminish post-thaw recovery for our single exception. It is proposed that this protocol can be successfully applied to most mESC lines beyond those included within this study once the effect of propylene glycol on mESC gene expression, growth characteristics, and germ-line transmission has been determined. Mouse ESC lines with poor survival using current standard cryopreservation protocols or our proposed protocol can be optimized on a case-by-case basis using the method we have outlined over two papers. For our single exception, the CBA cell line, a cooling rate of 5 °C/minute in the presence of 1.0 M dimethyl sulfoxide or 1.0 M propylene glycol, combined with plunge temperature of −80 °C was optimal.  相似文献   

17.
BACKGROUND AND AIMS: The purpose of this study was to investigate the basis of the optimal hydration status for cryopreservation of intermediate oily seeds using Citrus as a model. METHODS: The relationships between equilibrium relative humidity (RH), seed water content, presence of freezable water as determined by DSC analysis, and germination percentage after immersion in liquid nitrogen (LN) were investigated in Citrus aurantifolia, C. grandis, C. madurensis and C. reticulata. The relationship between the lipid content of seeds and their unfrozen water content was also investigated. KEY RESULTS: Independent of their level of seed desiccation tolerance, the optimal desiccation RH for seed tolerance to LN exposure was 75-80 % in the four species studied. This optimal hydration status always coincided with that at which presence of frozen water could not be detected in seed tissues during the cooling/thawing process. The unfrozen water content of seeds was variable between species and negatively correlated to seed lipid content. Using the present data, those obtained previously in seven coffee species and those reported by other authors for five other species, a significant linear relationship was found between the lipid content and the unfrozen water content of seeds. CONCLUSIONS: This study provides additional evidence that intermediate oily seeds do not withstand the presence of freezable water in their tissues during the cooling/warming process. Moreover, it offers two important applied perspectives: (1) independent of their level of desiccation tolerance, testing germination of seeds of a given oily seed species after equilibration in 75-80 % RH at 25 degrees C and LN exposure, gives a rapid and reliable evaluation of the possibility of cryopreserving whole seeds of this given species; (2) it is now possible to calculate the interval of water contents in which non-orthodox oily seeds of a given species are likely to withstand LN exposure as a function of their lipid content.  相似文献   

18.
Background and Aims Previous studies have suggested that the drying conditions routinely used by genebanks may not be optimal for subsequent seed longevity. The aim of this study was to compare the effect of hot-air drying and low-temperature drying on subsequent seed longevity for 20 diverse rice accessions and to consider how factors related to seed production history might influence the results.Methods Seeds of rice, Oryza sativa, were produced according to normal regeneration procedures at IRRI. They were harvested at different times [harvest date and days after anthesis (DAA), once for each accession] and dried either in a drying room (DR; 15 % relative humidity, 15 °C) or in a flat-bed heated-air batch dryer (BD; 45 °C, 8 h d–1) for up to six daily cycles followed by drying in the DR. Relative longevity was assessed by storage at 10·9 % moisture content and 45 °C.Key Results Initial drying in the BD resulted in significantly greater longevity compared with the DR for 14 accessions (seed lots): the period of time for viability to fall to 50 % for seeds dried in the BD as a percentage of that for seeds dried throughout in the DR varied between 1.3 and 372·2 % for these accessions. The seed lots that responded the most were those that were harvested earlier in the season and at higher moisture content. Drying in the BD did not reduce subsequent longevity compared with DR drying for any of the remaining accessions.Conclusions Seeds harvested at a moisture content where, according to the moisture desorption isotherm, they could still be metabolically active (>16·2 %) may be in the first stage of the post-mass maturity, desiccation phase of seed development and thus able to increase longevity in response to hot-air drying. The genebank standards regarding seed drying for rice and, perhaps, for other tropical species should therefore be reconsidered.  相似文献   

19.
Ebertz SL  McGann LE 《Cryobiology》2002,45(2):109-117
A human corneal equivalent is under development with potential applications in pharmaceutical testing, biomedical research, and transplantation, but the ability to distribute this engineered tissue, depends on successful cryopreservation. Tissue recovery after exposure to conditions during cryopreservation depends on the response of its constituent cells to the changing environment as ice forms and solutes concentrate. This study defines the osmotic properties that define the rate of water movement across the plasma membrane of isolated human corneal endothelial, stroma, and epithelial cells. Cells were transferred from an isotonic (300 mosm/kg) to an anisotonic (150-1500 mosm/kg) solution at constant temperature, and cell volumes monitored using an electronic particle counter. Histograms describing cell volume changes over time after anisosmotic exposure allowed calculation of hydraulic conductivity (L(p)) and osmotically inactive volume fraction (V(b)). Experimental values for L(p) at 4, 13, 22, and 37 degrees C were used to determine the Arrhenius activation energy (E(a)). The L(p) for endothelial, stroma, and epithelial cells at 37 degrees C was 1.98+/-0.32,1.50+/-0.30, and 1.19+/-0.14 microm/min/atm, and the V(b) was 0.28, 0.27, and 0.41, respectively. The E(a) for endothelial, stroma, and epithelial cells was 14.8, 12.0, and 14.1 kcal/mol, respectively, suggesting the absence of aqueous pores. These osmotic parameters and temperature dependencies allow simulation of osmotic responses of human corneal cells to cryopreservation conditions, allowing amount of supercooling to be calculated to indicate the likelihood of intracellular freezing. Simulations show that differences in the osmotic parameters for the constituent cells in the bioengineered cornea result in significant implications for cryopreservation of the engineered corneal equivalent.  相似文献   

20.
Birtsas V  Armitage WJ 《Cryobiology》2005,50(2):139-143

Aim

To investigate the need for stepwise addition of dimethyl sulphoxide to heart valves and amelioration of putative amphotericin B toxicity.

Methods

There were four groups: an untreated control (Group 1) and three experimental groups. For the latter, porcine heart valves were exposed to the antibiotic/antimycotic mixture used for disinfecting heart valves in the Bristol Heart Valve Bank, for 24 h at 22 °C. Dimethyl sulphoxide (Me2SO, 10% v/v) was added either in two steps (5% then 10%) (Group 2) or in a single step. For single-step addition, valves were either first placed in Hanks’ balanced salt solution for 10 min before transfer to the cryoprotectant solution (Group 3) or immersed directly in the 10% cryoprotectant solution (Group 4). The valve leaflets were dissected from the valves and frozen in 10% Me2SO in multi-well tissue culture plates at 1 °C/min to −80 °C. After storage overnight, the valve leaflets were warmed at approximately 11 °C/min and the cryoprotectant was removed by single-step dilution in excess Hartmann’s solution. Each leaflet was then divided into four pieces, which were placed in separate wells of a culture plate. Outgrowth of cells from the explants was monitored daily and graded according to the extent of cell growth.

Results

After freezing and thawing, only 77% of the explants from valves placed directly into 10% Me2SO (Group 4) showed outgrowth of cells after freezing compared with 89% with two-step addition of Me2SO (Group 2) and 95% with one-step addition after the extra rinse in Hanks’ solution (Group 3) (χ2, p = 0.001). 92% of unfrozen control explants showed outgrowth of cells (Group 1). Only 37% of Group 4 explants reached confluence compared with 63 and 56%, respectively, of Groups 2 and 3 explants (χ2, p = 0.007). The rates of cell growth in Group 2 (two-step addition of Me2SO) and Group 3 (one-step addition of Me2SO with additional Hanks’ solution rinse) were similar and faster than the Group 4 (one-step addition of Me2SO without the additional Hanks’ rinse).

Conclusion

Single-step addition of Me2SO before freezing gave similar results to two-step addition provided an additional rinse in Hanks’ solution was introduced after exposure to the antibiotic/antimycotic mixture. This suggests that antibiotic/antimycotic carryover may have been harmful during freezing and that the additional rinse in Hanks before one-step addition of Me2SO, and the 5% Me2SO step in the two-step protocol, merely served to reduce this carryover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号