首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study explores physical effects associated with the application of cryopreservation via vitrification using a class of compounds which are defined here as synthetic ice modulators (SIMs). The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. A sub-category of SIMs, referred to in the literature as synthetic ice blockers (SIBs), are compounds that interact directly with ice nuclei or crystals to modify their structure and/or rate of growth. The current study is part of an ongoing effort to characterize thermo-mechanical effects during vitrification, with emphasis on measuring the physical property of thermal expansion-the driving mechanism to thermo-mechanical stress. Materials under investigation are the cryoprotective agent (CPA) cocktail DP6 in combination with one of the following SIMs: 12% polyethylene glycol 400, 6% 1,3 cyclohexanediol, and 6% 2,3 butanediol. Results are presented for the CPA-SIM cocktail in the absence and presence of bovine muscle and goat artery specimens. This study focuses on the upper part of the cryogenic temperature range, where the CPA behaves as a fluid for all practical applications. Results of this study indicate that the addition of SIMs to DP6 allows lower cooling rates to ensure vitrification and extends the range of measurements. It is demonstrated that the combination of SIM with DP6 increases the thermal expansion of the cocktail, with implications for the likelihood of fracture formation-the most dramatic outcome of thermo-mechanical stress.  相似文献   

2.
3.
Rabin Y  Bell E 《Cryobiology》2003,46(3):264-270
As part of an ongoing effort to characterize the mechanical behavior of biological tissues in the cryogenic temperature range, the current study focuses on thermal expansion measurements of cryoprotective agents. Utilizing the experimental apparatus described in the previous report (Part I), the current report (Part II) includes thermal expansion measurements of the cryoprotectant mixtures DP6 and VS55, and comparison with available data from the literature on DMSO. In the temperature range in which the cryoprotectant mixture behaves like low viscosity liquid, results of this study show that the thermal expansion coefficient of VS55 and DP6 is 22% and 40% lower than that of 3M DMSO, respectively, where 3M DMSO is only one component of each cryoprotectant mixture. This significant difference is attributed to the presence of 3M formamide in VS55.  相似文献   

4.
《Cryobiology》2014,68(3):264-273
The objective of the current study is to develop a new cryomacroscope prototype for the study of vitrification in large-size specimens. The unique contribution in the current study is in developing a cryomacroscope setup as an add-on device to a commercial controlled-rate cooler and in demonstration of physical events in cryoprotective cocktails containing synthetic ice modulators (SIM)—compounds which hinder ice crystal growth. Cryopreservation by vitrification is a highly complex application, where the likelihood of crystallization, fracture formation, degradation of the biomaterial quality, and other physical events are dependent not only upon the instantaneous cryogenic conditions, but more significantly upon the evolution of conditions along the cryogenic protocol. Nevertheless, cryopreservation success is most frequently assessed by evaluating the cryopreserved product at its end states—either at the cryogenic storage temperature or room temperature. The cryomacroscope is the only available device for visualization of large-size specimens along the thermal protocol, in an effort to correlate the quality of the cryopreserved product with physical events. Compared with earlier cryomacroscope prototypes, the new Cryomacroscope-III evaluated here benefits from a higher resolution color camera, improved illumination, digital recording capabilities, and high repeatability in tested thermal conditions via a commercial controlled-rate cooler. A specialized software package was developed in the current study, having two modes of operation: (a) experimentation mode to control the operation of the camera, record camera frames sequentially, log thermal data from sensors, and save case-specific information; and (b) post-processing mode to generate a compact file integrating images, elapsed time, and thermal data for each experiment. The benefits of the Cryomacroscope-III are demonstrated using various tested mixtures of SIMs with the cryoprotective cocktail DP6, which were found effective in preventing ice growth, even at significantly subcritical cooling rates with reference to the pure DP6.  相似文献   

5.
The objective of the current study is to develop a new cryomacroscope prototype for the study of vitrification in large-size specimens. The unique contribution in the current study is in developing a cryomacroscope setup as an add-on device to a commercial controlled-rate cooler and in demonstration of physical events in cryoprotective cocktails containing synthetic ice modulators (SIM)—compounds which hinder ice crystal growth. Cryopreservation by vitrification is a highly complex application, where the likelihood of crystallization, fracture formation, degradation of the biomaterial quality, and other physical events are dependent not only upon the instantaneous cryogenic conditions, but more significantly upon the evolution of conditions along the cryogenic protocol. Nevertheless, cryopreservation success is most frequently assessed by evaluating the cryopreserved product at its end states—either at the cryogenic storage temperature or room temperature. The cryomacroscope is the only available device for visualization of large-size specimens along the thermal protocol, in an effort to correlate the quality of the cryopreserved product with physical events. Compared with earlier cryomacroscope prototypes, the new Cryomacroscope-III evaluated here benefits from a higher resolution color camera, improved illumination, digital recording capabilities, and high repeatability in tested thermal conditions via a commercial controlled-rate cooler. A specialized software package was developed in the current study, having two modes of operation: (a) experimentation mode to control the operation of the camera, record camera frames sequentially, log thermal data from sensors, and save case-specific information; and (b) post-processing mode to generate a compact file integrating images, elapsed time, and thermal data for each experiment. The benefits of the Cryomacroscope-III are demonstrated using various tested mixtures of SIMs with the cryoprotective cocktail DP6, which were found effective in preventing ice growth, even at significantly subcritical cooling rates with reference to the pure DP6.  相似文献   

6.
Rios JL  Rabin Y 《Cryobiology》2006,52(2):284-294
As part of the ongoing effort to study the mechanical behavior of biological materials in cryopreservation processes, the current study focuses on thermal expansion during vitrification (vitreous in Latin means glassy). A new device is utilized in this study, which has been described in detail in the companion paper (Part I). The current study (Part II) focuses on measurements of vitrified blood vessels permeated with the cryoprotectants VS55, DP6, and DMSO. Data analysis in this study includes polynomial approximation of experimental results in the lower part of the cryogenic temperature range, where the material behaves as solid over a practical time scale. The study further includes a unified thermal expansion analysis throughout the entire cryogenic temperature range by compiling the current results with previously reported data. Finally, analysis of the glass transition temperature, based on thermal strain data is presented.  相似文献   

7.
As part of the ongoing effort to study the mechanical behavior of biological material during cryopreservation processes, the current study focuses on thermal expansion of blood vessels at low cryogenic temperatures. The current paper (Part I) describes a new experimental device for thermal expansion measurements of blood vessels in typical conditions of vitrification, which are associated with rapid cooling rates. For validation purposes, the thermal strain of frozen arteries in the absence of cryoprotectants was measured, and found to be about 10% larger than that of polycrystalline water; this observation agrees with literature data. The companion paper (Part II) reports on experimental results of cryoprotectants permeated with VS55, DP6, and 7.05 M DMSO at high cooling rates applicable to vitrification.  相似文献   

8.
Jeunghwan Choi 《Cryobiology》2010,60(1):52-2221
It is well accepted in cryobiology that the temperature history and cooling rates experienced in biomaterials during freezing procedures correlate strongly with biological outcome. Therefore, heat transfer measurement and prediction in the cryogenic regime is central to the field. Although direct measurement of temperature history (i.e. heat transfer) can be performed, accuracy is usually achieved only for local measurements within a given system and cannot be readily generalized to another system without the aid of predictive models. The accuracy of these models rely upon thermal properties which are known to be highly dependent on temperature, and in the case of significant cryoprotectant loading, also on crystallized fraction. In this work, we review the available thermal properties of biomaterials in the cryogenic regime. The review shows a lack of properties for many biomaterials in the subzero temperature domain, and especially for systems with cryoprotective agents. Unfortunately, use of values from the limited data available (usually only down to −40 °C) lead to an underestimation of thermal property change (i.e. conductivity rise and specific heat drop due to ice crystallization) with lower temperatures. Conversely, use of surrogate values based solely on ice thermal properties lead to an overestimation of thermal property change for most biomaterials. Additionally, recent work extending the range of available thermal properties to −150 °C has shown that the thermal conductivity will drop in both PBS and tissue (liver) due to amorphous/glassy phases (versus crystalline) of biomaterials with the addition of cryoprotective additives such as glycerol. Thus, we investigated the implications of using approximated or constant property values versus measured temperature-dependent values for predicting temperature history during freezing in PBS (phosphate-buffered saline) and porcine liver with and without cryoprotectants (glycerol). Using measured property values (thermal conductivity, specific heat, and latent heat of phase change) of porcine liver, a standard was created which showed that values based on surrogate ice properties under-predicted cooling times, while constant properties (i.e. based on limited data reported near the freezing point) over-predicted cooling times. Additionally, a new iterative numerical method that accommodates non-equilibrium cooling effects as a function of time and position (i.e. crystallization versus amorphous phase) was used to predict temperature history during freezing in glycerol loaded systems. Results indicate that in addition to the increase in cooling times due to the lowering of thermal diffusivity with more glycerol, non-equilibrium effects such as the prevention of maximal crystallization (i.e. amorphous phases) will further increase required cooling times. It was also found that the amplified effect of non-equilibrium cooling and crystallization with system size prevents the thermal history to be described with non-dimensional lengths, such as was possible under equilibrium cooling. These results affirm the need to use accurate thermal properties that incorporate temperature dependence and crystallized fraction. Further studies are needed to extract thermal properties of other important biomaterials in the subzero temperature domain and to develop accurate numerical methods which take into account non-equilibrium cooling events encountered in cryobiology when partial or total vitrification occurs.  相似文献   

9.
Thermal expansion data are essential for analyses of cryodestruction associated with thermal stresses during cryopreservation protocols as well as during cryosurgery. The present study tests a commonly used hypothesis that the thermal expansion of frozen tissues is similar to that of pure water ice crystals. This study further provides insight into the potential effect of the presence of cryoprotectants on thermal expansion. A new apparatus for thermal strain measurements of frozen biological tissues within a cryogenic temperature range is presented. Results are presented for fresh tissue samples taken from beef muscle, chicken muscle, rabbit muscle, rabbit bone, and pig liver. Pilot studies of the effect of cryoprotectants on thermal expansion are further presented for rabbit muscle immersed in dimethyl sulphoxide (2 mols/l) and glycerol (2 mols/l), and for pig liver perfused with dimethyl sulphoxide (2 mols/l). Thermal expansion of frozen soft biological tissues was found to be similar to that of water ice crystals in the absence of cryoprotectant. Thermal expansion of the rabbit bone was found to be about one half of that of frozen soft tissues. A significant reduction in the thermal expansion at higher temperatures was observed in the presence of cryoprotectants. A rapid change of thermal strain near -100 degrees C was also observed, which is likely to be associated with the glass transition process of the cryoprotectant solutions.  相似文献   

10.
Thermal conductivity of dimethyl-sulfoxide (DMSO) solution is measured in this study using a transient hot wire technique, where DMSO is a key ingredient in many cryoprotective agent (CPA) cocktails. Characterization of thermal properties of cryoprotective agents is essential to the analysis of cryopreservation processes, either when evaluating experimental data or for the design of new protocols. Also presented are reference measurements of thermal conductivity for pure water ice and glycerol. The thermal conductivity measurement setup is integrated into the experimentation stage of a scanning cryomacroscope apparatus, which facilitates the correlation of measured data with visualization of physical events. Thermal conductivity measurements were conducted for a DMSO concentration range of 2M and 10M, in a temperature range of -180°C and 25°C. Vitrified samples showed decreased thermal conductivity with decreasing temperature, while crystalline samples showed increased thermal conductivity with decreasing temperature. These different behaviors result in up to a tenfold difference in thermal conductivity at -180°C. Such dramatic differences can drastically impact heat transfer during cryopreservation and their quantification is therefore critical to cryobiology.  相似文献   

11.
Choi JH  Bischof JC 《Cryobiology》2008,57(2):79-83
There is a lack of information on the effect of cryoprotective agents (CPAs) on the thermal properties of biomaterials at cryobiologically relevant temperatures (i.e. <233.15 K, −40 °C). Thermal properties that are of most interest include: thermal conductivity, density, specific heat, and latent heat resulting from phase change in tissue systems. Availability of such information would be beneficial for accurate mathematical modeling of cryobiological applications. Recently, we reported these thermal properties in phosphate buffered saline (PBS) with varying concentrations of glycerol, a widely used cryoprotective agent. In this study we extend these results by assessing the effects of glycerol on the thermal properties of porcine liver at subzero temperatures. Differential scanning calorimeter (DSC) was used to measure the specific heat and the latent heat release of porcine liver immersed in PBS and varying concentrations of glycerol. The specific heat data obtained from the DSC experiments were also used to predict the bulk thermal conductivity. This was done using a transient heat transfer model with a thermistor probe technique. Results show that the introduction of glycerol significantly alters thermal properties from known values for H2O and non-treated liver. Therefore, inaccuracies in thermal predictions can be expected due to the application of measured vs. predicted thermal properties such as from weight averaging. This supports the need for these and other measurements of biomaterial thermal properties, with and without CPA addition, in the cryogenic regime.  相似文献   

12.
Xu Y  Hua TC  Sun DW  Zhou GY  Xu F 《Journal of biomechanics》2007,40(14):3201-3206
Thermal expansion data are essential for thermal stress analysis in order to predict the likelihood of fracture formation in tissues during cryopreservation as well as cryosurgery. The current study focuses on examining the thermal expansion behavior of rabbit aorta during freezing, especially phase change processes. Thermo mechanical analysis (TMA) was used to investigate the effects of different concentrations of dimethyl sulfoxide (DMSO) cryoprotective agent (CPA) (0%, 5%, 10%, and 15% (v/v) DMSO) and different freezing rates (3, 5 and 10 degrees C/min). The results showed that (1) the maximum of thermal strain for 10 degrees C/min was approximately four times greater than that for 3 degrees C/min, and 1.4 times greater than that for 5 degrees C/min, and the higher the freezing rate, the larger the corresponding thermal expansion coefficient; (2) the maximum thermal strain of sample permeated by 5% DMSO approached that of 0% DMSO (i.e., no DMSO was added); however, it showed very significant difference from that of 15% DMSO (only half of that with 5% DMSO), and the thermal expansion coefficient decreased when the concentration of DMSO solution increased; (3) comparison with data available from the literature and with theoretically calculated values illustrated that the thermal expansion change was not equal to the volume change from free water to ice during freezing, but was related to the freezing rate of samples and the DMSO concentration.  相似文献   

13.
As a part of an ongoing effort to study the continuum mechanics effects associated with cryopreservation, the current report focuses on fracture formation in vitrified thin films of cryoprotective agents. The current study combines experimental observations with continuum mechanics analysis. Experimental results have been developed using a new imaging device, termed a "cryomacroscope", which has been recently presented by the current research team. A newly developed liquid nitrogen-based cooling stage is presented in this paper. The samples under investigation are 0.5 ml droplets of cryoprotective agents, having a characteristic diameter of 20 mm and a characteristic thickness of 1.5 mm. Tested samples included dimethyl sulfoxide (DMSO) in a concentration range from 6 to 8.4M, and the cryoprotectant cocktails VS55 and DP6. Some samples contained small bovine muscle segments, having a characteristic dimension of 1mm, in order to study stress concentration effects. Experimental results show that the onset of fracturing in vitrified films of cryoprotectants is very consistent, occurring over a small temperature range. Fracture pattern, however, was affected by the cooling rate. The presence of tissue segments did not affect the onset temperature of fracture, but affected the fracture pattern. The continuum mechanics analysis solidified the hypothesis that fracture is driven by thermal stress, not by temperature per se, and allowed fracture strain to be inferred from observed fracture temperature. In conjunction with the current report, additional photos of fracture formation in thin films are available at .  相似文献   

14.
Mao X  Liu Z  Ma J  Pang H  Zhang F 《Cryobiology》2011,62(2):91-99
Many ectotherms organisms produce antifreeze proteins (AFPs) which inhibit the growth of ice by binding to the surface of ice crystals. In this study, a novel antifreeze protein gene from the desert beetle Anatolica polita (named as Apafp752) was expressed in a high level in Escherichia coli strain BL21 (DE3). An approximately 30 kDa fusion protein thioredoxin (Trx)-ApAFP752 was purified through Ni–NTA affinity chromatography and gel filtration chromatography. The activity of the purified fusion protein Trx-ApAFP752 was analyzed by thermal hysteresis activity (THA) and cryoprotection assay. The results suggested that Trx-ApAFP752 conferred freeze resistance on bacterium in a concentration- and time-dependent manner and the cryoprotective effect increased under alkaline conditions. Circular Dichroism (CD) spectrum analysis showed that the recombinant protein of ApAFP752 possessing β-sheet as the main structure was stable under a wide range of pH from 2.0 to 11.0 and thermal stability below 50 °C. The predicted 3D structure showed that Trx-ApAFP752 could form a β-helix structure on the antifreeze protein part, which placed most of the Thr in a regular array on one side of the protein to form a putative ice-binding surface.  相似文献   

15.
This study aims at the thermal analysis of marginal conditions leading to cryopreservation by vitrification, which appears to be the only alternative for indefinite preservation of large-size tissues and organs. The term “marginal conditions” here refers to cooling rates in close range with the so-called critical cooling rate, above which crystallization is avoided. The analysis of thermal effects associated with partial crystallization during vitrification is associated with the coupled phenomena of heat transfer and kinetics of crystallization. This study takes a practical, semi-empirical approach, where heat transfer is analyzed based on its underlying theoretical principles, while the thermal effects associated with partial crystallization are taken into account by means of empirical correlations. This study presents a computation framework to solve the coupled problem, while presenting a proof-of-concept for DP6 as a representative cryoprotective agent. The thermal effects associated with crystallization at various relevant cooling rates are measured in this study by means of differential scanning calorimetry. Results of this study demonstrate that, due to the thermal effects associated with partial crystallization, the cooling rate at the center of a large organ may lag behind the cooling rate in its surroundings under some scenarios, but may also exceed the surroundings cooling rate in other scenarios, leading to counter-intuitive effects associated with partial crystallization.  相似文献   

16.
The ice recrystallization inhibition activity of various mono- and disaccharides has been correlated with their ability to cryopreserve human cell lines at various concentrations. Cell viabilities after cryopreservation were compared with control experiments where cells were cryopreserved with dimethylsulfoxide (DMSO). The most potent inhibitors of ice recrystallization were 220?mM solutions of disaccharides; however, the best cell viability was obtained when a 200?mM d-galactose solution was utilized. This solution was minimally cytotoxic at physiological temperature and effectively preserved cells during freeze-thaw. In fact, this carbohydrate was just as effective as a 5% DMSO solution. Further studies indicated that the cryoprotective benefit of d-galactose was a result of its internalization and its ability to mitigate osmotic stress, prevent intracellular ice formation and/or inhibit ice recrystallization. This study supports the hypothesis that the ability of a cryoprotectant to inhibit ice recrystallization is an important property to enhance cell viability post-freeze-thaw. This cryoprotective benefit is observed in three different human cell lines. Furthermore, we demonstrated that the ability of a potential cryoprotectant to inhibit ice recrystallation may be used as a predictor of its ability to preserve cells at subzero temperatures.  相似文献   

17.
The nucleation and growth of crystalline ice during cooling, and further crystallization processes during re-warming are considered to be key processes determining the success of low temperature storage of biological objects, as used in medical, agricultural and nature conservation applications. To avoid these problems a method, termed vitrification, is being developed to inhibit ice formation by use of high concentration of cryoprotectants and ultra-rapid cooling, but this is only successful across a limited number of biological objects and in small volume applications. This study explores physical processes of ice crystal formation in a model cryoprotective solution used previously in trials on vitrification of complex biological systems, to improve our understanding of the process and identify limiting biophysical factors. Here we present results of neutron scattering experiments which show that even if ice crystal formation has been suppressed during quench cooling, the water molecules, mobilised during warming, can crystallise as detectable ice. The crystallisation happens right after melting of the glass phase formed during quench cooling, whilst the sample is still transiting deep cryogenic temperatures. We also observe strong water isotope effects on ice crystallisation processes in the cryoprotectant mixture. In the neutron scattering experiment with a fully protiated water component, we observe ready crystallisation occurring just after the glass melting transition. On the contrary with a fully deuteriated water component, the process of crystallisation is either completely or substantially supressed. This behaviour might be explained by nuclear quantum effects in water. The strong isotope effect, observed here, may play an important role in development of new cryopreservation strategies.  相似文献   

18.
This study addresses the problem of thermal stress development in bulky specimens during cryopreservation via vitrification (vitreous means glassy in Latin). While this study is a part of an ongoing effort to associate the developing mechanical stress with the relevant physical properties of the cryopreserved media and to its the thermal history, the current paper focuses exclusively on the role of temperature gradients. Temperature gradients arise due to the high cooling rates necessary to facilitate vitrification; the resulting non-uniform temperature distribution leads to differential thermal strain, possibly resulting in cracking. The cooling rate is assumed constant on the outer surface in this study, and the material properties are assumed constant. It is demonstrated that under these assumptions, mechanical stress develops only when the temperature distribution in the specimen approaches thermal equilibrium at a cryogenic storage temperature. It is shown that the maximum possible stresses for a given cooling rate can be computed with a simple thermo-elastic analysis; these stresses are associated with cooling to sufficiently low temperatures and are independent of the variation of viscosity with temperature. Analytic estimates for these stresses are obtained for several idealized shapes, while finite element analysis is used to determine stresses for geometries used in cryopreservation practice. Stresses that develop under a wider range of storage temperatures are also studied with finite element analysis, and the results are summarized with suitable normalizations. It is found that no stresses arise if cooling ceases above the set-temperature, which defines the transition from viscous-dominated to elastic-dominated behavior; the set-temperature is determined principally by the dependency of viscosity upon temperature. Strategies for rapidly reaching low temperatures and avoiding high stresses are inferred from the results.  相似文献   

19.
P Boutron 《Cryobiology》1984,21(2):183-191
It is generally assumed that when cells are cooled at rates close to those corresponding to the maximum of survival, once supercooling has ceased, above the eutectic melting temperature the extracellular ice is in equilibrium with the residual solution. This did not seem evident to us due to the difficulty of ice crystallization in cryoprotective solutions. The maximum quantities of ice crystallized in glycerol and 1,2-propanediol solutions have been calculated from the area of the solidification and fusion peaks obtained with a Perkin-Elmer DSC-2 differential scanning calorimeter. The accuracy has been improved by several corrections: better defined baseline, thermal variation of the heat of fusion of the ice, heat of solution of the water from its melting with the residual solution. More ice crystallizes in the glycerol than in the 1,2-propanediol solutions, of which the amorphous residue contains about 40 to 55% 1,2-propanediol. The equilibrium values are unknown in the presence of 1,2-propanediol. With glycerol, in our experiments, the maximum is first lower than the equilibrium but approaches it as the concentration increases. It is not completely determined by the colligative properties of the solutes.  相似文献   

20.
Cryogenic storage techniques have been developed and adopted for more than 100 (mainly agricultural) plant species worldwide, and within Australia, at least 30 critically endangered plants have been stored long term using cryogenic approaches. Nevertheless, there are many species that are very difficult to store using current procedures, and organizations involved in plant germplasm conservation (such as botanic gardens, agricultural institutions, etc.) that utilise cryogenic storage techniques are in some respects at a crossroads in their endeavours to cheaply and effectively store a wide selection of species and genotypes for conservation and agricultural/horticultural purposes. For taxa that are not amenable to current cryogenic approaches, new ways of developing cryogenic storage techniques need to be investigated, including research into the ways in which cell membranes interact and change when cooled to cryogenic temperatures (−196°C in liquid nitrogen) in the presence of various cryoprotective agents. This review highlights the current state of cryogenic research both within Australia and internationally, provides a case study on threatened plant species and also describes several new research initiatives that aim to provide answers to why some native species are quite amenable to widely utilised cryogenic approaches whilst others are currently non-responsive. New approaches aim to integrate laboratory and membrane modelling paradigms to provide guidelines for the development of new cryopreservation protocols and to assess the robustness of theoretical models in predicting optimum cryogenic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号