首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.

Background  

β-catenin is an essential mediator of canonical Wnt signaling and a central component of the cadherin-catenin epithelial adhesion complex. Dysregulation of β-catenin expression has been described in pancreatic neoplasia. Newly published studies have suggested that β-catenin is critical for normal pancreatic development although these reports reached somewhat different conclusions. In addition, the molecular mechanisms by which loss of β-catenin affects pancreas development are not well understood. The goals of this study then were; 1] to further investigate the role of β-catenin in pancreatic development using a conditional knockout approach and 2] to identify possible mechanisms by which loss of β-catenin disrupts pancreatic development. A Pdx1-cre mouse line was used to delete a floxed β-catenin allele specifically in the developing pancreas, and embryonic pancreata were studied by immunohistochemistry and microarray analysis.  相似文献   

4.
During vertebrate heart valve formation, Wnt/β-catenin signaling induces BMP signals in atrioventricular canal (AVC) myocardial cells and underlying AVC endocardial cells then undergo endothelial-mesenchymal transdifferentiation (EMT) by receiving this BMP signals. Histone deacetylases (HDACs) have been implicated in numerous developmental processes by regulating gene expression. However, their specific roles in controlling heart valve development are largely unexplored. To investigate the role of HDACs in vertebrate heart valve formation, we treated zebrafish embryos with trichostatin A (TSA), an inhibitor of class I and II HDACs, from 36 to 48 h post-fertilization (hpf) during which heart looping and valve formation occur. Following TSA treatment, abnormal linear heart tube development was observed. In these embryos, expression of AVC myocardial bmp4 and AVC endocardial notch1b genes was markedly reduced with subsequent failure of EMT in the AVC endocardial cells. However, LiCl-mediated activation of Wnt/β-catenin signaling was able to rescue defective heart tube formation, bmp4 and notch1b expression, and EMT in the AVC region. Taken together, our results demonstrated that HDAC activity plays a pivotal role in vertebrate heart tube formation by activating Wnt/β-catenin signaling which induces bmp4 expression in AVC myocardial cells.  相似文献   

5.
Dermal fibroblasts are required for structural integrity of the skin and for hair follicle development. Uniform Wnt signaling activity is present in dermal fibroblast precursors preceding hair follicle initiation, but the functional requirement of dermal Wnt signaling at early stages of skin differentiation and patterning remains largely uncharacterized. We show in mice that epidermal Wnt ligands are required for uniform dermal Wnt signaling/β-catenin activity and regulate fibroblast cell proliferation and initiation of hair follicle placodes. In the absence of dermal Wnt signaling/β-catenin activity, patterned upregulation of epidermal β-catenin activity and Edar expression are absent. Conversely, forced activation of β-catenin signaling leads to the formation of thickened dermis, enlarged epidermal placodes and dermal condensates that result in prematurely differentiated enlarged hair follicles. These data reveal functional roles for dermal Wnt signaling/β-catenin in fibroblast proliferation and in the epidermal hair follicle initiation program.  相似文献   

6.
7.
Hidekazu Iioka 《FEBS letters》2009,583(4):627-632
The Wnt family of secreted ligands plays critical roles during embryonic development and tumorigenesis. Here we show that Kaiso, a dual specific DNA-binding protein, functions as a bimodal regulator of canonical Wnt signaling. Loss-of-function analysis of Kaiso abrogated Wnt-mediated reporter activity and axis duplication, whereas gain-of-function analysis of Kaiso dose-dependently resulted in synergistic and suppressive effects. Our analyses further suggest Kaiso can regulate TCF/LEF1-activity for these effects via modulating HDAC1 and β-catenin-complex formation. Our studies together provide insights into why Kaiso null mice display resistance to intestinal tumors when crossed onto an ApcMin/+ background.

Stuctured summary

MINT-6823807: HDAC1 (uniprotkb:Q13547) physically interacts (MI:0218) with beta catenin (uniprotkb:P35222) by anti tag coimmunoprecipitation (MI:0007)MINT-6823820: axin (uniprotkb:O15169) physically interacts (MI:0218) with beta catenin (uniprotkb:P35222) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

8.
《Organogenesis》2013,9(2):92-99
Wnt/β-catenin signaling has come to the forefront of liver biology in recent years. This pathway regulates key pathophysiological events inherent to the liver including development, regeneration, and cancer, by dictating several biological processes such as proliferation, apoptosis, differentiation, adhesion, zonation and metabolism in various cells of the liver. This review will examine the studies that have uncovered the relevant roles of Wnt/β-catenin signaling during the process of liver development. We will discuss the potential roles of Wnt/β-catenin signaling during the phases of development, including competence, hepatic induction, expansion, and morphogenesis. In addition, we will discuss the role of negative and positive regulation of this pathway and how the temporal expression of Wnt/β-catenin can direct key processes during hepatic development. We will also identify some of the major deficits in the current understanding of the role of Wnt/β-catenin signaling in liver development in order to provide a perspective for future studies. Thus, this review will provide a contextual overview of the role of Wnt/β-catenin signaling during hepatic organogenesis.  相似文献   

9.
Normal heart formation requires reiterative phases of canonical Wnt/β-catenin (Wnt) signaling. Understanding the mechanisms by which Wnt signaling directs cardiomyocyte (CM) formation in vivo is critical to being able to precisely direct differentiated CMs from stem cells in vitro. Here, we investigate the roles of Wnt signaling in zebrafish CM formation using heat-shock inducible transgenes that increase and decrease Wnt signaling. We find that there are three phases during which CM formation is sensitive to modulation of Wnt signaling through the first 24 h of development. In addition to the previously recognized roles for Wnt signaling during mesoderm specification and in the pre-cardiac mesoderm, we find a previously unrecognized role during CM differentiation where Wnt signaling is necessary and sufficient to promote the differentiation of additional atrial cells. We also extend the previous studies of the roles of Wnt signaling during mesoderm specification and in pre-cardiac mesoderm. Importantly, in pre-cardiac mesoderm we define a new mechanism where Wnt signaling is sufficient to prevent CM differentiation, in contrast to a proposed role in inhibiting cardiac progenitor (CP) specification. The inability of the CPs to differentiate appears to lead to cell death through a p53/Caspase-3 independent mechanism. Together with a report for an even later role for Wnt signaling in restricting proliferation of differentiated ventricular CMs, our results indicate that during the first 3days of development in zebrafish there are four distinct phases during which CMs are sensitive to Wnt signaling.  相似文献   

10.
This study aims to elucidate the mechanisms of Wnt/β-catenin signaling pathway in the development of preeclampsia (PE). The mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were determined by real-time PCR in the placentas. Moreover, the expression levels of Wnt1, β-catenin, Dickkopf-1 (DKK1) and glycogen synthase kinase 3β (GSK-3β) proteins were detected by Western blot. Immunohistochemistry was used in placental tissue microarray to localize the expression of Wnt1, β-catenin, DKK1 proteins in the placentas of two groups. Compared with the control placentas, the mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were decreased in the severe preeclamptic placentas. The Western blot results showed that the expression levels of Wnt1, β-catenin, and GSK-3β proteins were significantly elevated in the control group, while the expression level of DKK1 was significantly decreased. In addition, the staining intensity of Wnt1, β-catenin were weaker in the placentas of the severe PE group while the staining intensity of DKK1 was significantly stronger in the placentas of the severe PE group. Wnt/β-catenin signaling pathway may play a significant role in the pathogenesis of PE by regulating the invasion and proliferation of trophoblast.  相似文献   

11.
12.
Clevers H  Nusse R 《Cell》2012,149(6):1192-1205
The WNT signal transduction cascade controls myriad biological phenomena throughout development and adult life of all animals. In parallel, aberrant Wnt signaling underlies a wide range of pathologies in humans. In this Review, we provide an update of the core Wnt/β-catenin signaling pathway, discuss how its various components contribute to disease, and pose outstanding questions to be addressed in the future.  相似文献   

13.
Zhang C  Chen P  Fei Y  Liu B  Ma K  Fu X  Zhao Z  Sun T  Sheng Z 《Aging cell》2012,11(1):14-23
Aged epidermal cells have the capacity to dedifferentiate into stem cell-like cells. However, the signals that regulate the dedifferentiation of aged epidermal cells remain unclear. Here, we provide evidence that Wnt/β-catenin is critical for aged epidermal cell dedifferentiation in vivo and in vitro. Some aged epidermal cells in human ultrathin epidermal sheets lacking basal stem cells transplanted onto wounds dedifferentiated into stem cell-like cells that were positive for CK19 and β1 integrin but negative for CK10. In addition, Wnt/β-catenin pathway was activated during this process. There was increased expression of Wnt-1, Wnt-4, Wnt-7a, β-catenin, cyclin D1, and c-myc. Secreted frizzled-related protein 1, a Wnt/β-catenin pathway inhibitor, blocked dedifferentiation in vivo. Then, the activator, a highly specific glycogen synthase kinase (GSK)-3β inhibitor, of Wnt/β-catenin pathway was added to the culture medium of aged epidermal cells. Surprisingly, we found that the activator induced higher expression of CK19, β1 integrin, Oct4, and Nanog proteins. The induced aged epidermal cells exhibited high colony-forming efficiency, long-term proliferative potential and could regenerate a skin equivalent (as do epidermal stem cells). These results suggested that activation of Wnt/β-catenin pathway induced the dedifferentiation of aged epidermal cells, which suggest a new approach to generate epidermal stem cell-like cells.  相似文献   

14.
15.
The pronephric kidney controls water and electrolyte balance during early fish and amphibian embryogenesis. Many Wnt signaling components have been implicated in kidney development. Specifically, in Xenopus pronephric development as well as the murine metanephroi, the secreted glycoprotein Wnt-4 has been shown to be essential for renal tubule formation. Despite the importance of Wnt signals in kidney organogenesis, little is known of the definitive downstream signaling pathway(s) that mediate their effects. Here we report that inhibition of Wnt/β-catenin signaling within the pronephric field of Xenopus results in significant losses to kidney epithelial tubulogenesis with little or no effect on adjoining axis or somite development. We find that the requirement for Wnt/β-catenin signaling extends throughout the pronephric primordium and is essential for the development of proximal and distal tubules of the pronephros as well as for the development of the duct and glomus. Although less pronounced than effects upon later pronephric tubule differentiation, inhibition of the Wnt/β-catenin pathway decreased expression of early pronephric mesenchymal markers indicating it is also needed in early pronephric patterning. We find that upstream inhibition of Wnt/β-catenin signals in zebrafish likewise reduces pronephric epithelial tubulogenesis. We also find that exogenous activation of Wnt/β-catenin signaling within the Xenopus pronephric field results in significant tubulogenic losses. Together, we propose Wnt/β-catenin signaling is required for pronephric tubule, duct and glomus formation in Xenopus laevis, and this requirement is conserved in zebrafish pronephric tubule formation.  相似文献   

16.
During eye lens development, regulation of Wnt/β-catenin signaling is critical for two major processes: initially it must be silent in the lens placode for lens development to proceed, but subsequently it is required for maintenance of the lens epithelium. It is not known how these different phases of Wnt/β-catenin activity/inactivity are regulated. Secreted frizzled related protein-2 (Sfrp2), a putative Wnt-Fz antagonist, is expressed in lens placode and in lens epithelial cells and has been put forward as a candidate for regional Wnt/β-catenin pathway regulation. Here we show its closely-related isoform, Sfrp1, has a complimentary pattern of expression in the lens, being absent from the placode and epithelium but expressed in the fibers. As mice with single knockouts of Sfrp1 or Sfrp2 had no defects in lens formation, we examined lenses of Sfrp1 and Sfrp2 double knockout (DKO) mice and showed that they formed lens placode and subsequent lens structures. Consistent with this we did not observe ectopic TCF/Lef activity in lens placode of DKOs. This indicates that Sfrp1 and Sfrp2 individually, or together, do not constitute the putative negative regulator that blocks Wnt/β-catenin signaling during lens induction. In contrast, Sfrp1 and Sfrp2 appear to have a positive regulatory function because Wnt/β-catenin signaling in lens epithelial cells was reduced in Sfrp1 and Sfrp2 DKO mice. Lenses that formed in DKO mice were smaller than controls and exhibited a deficient epithelium. Thus Sfrps play a role in lens development, at least in part, by regulating aspects of Wnt/β-catenin signaling in lens epithelial cells.  相似文献   

17.
Wnt/β-catenin signaling has a great and diverse influence on the formation, development, and vital activity of a great number of vertebrate tissues, including heart tissue. The role of Wnt/β-catenin signaling and β-catenin itself in the processes of cardiogenesis and adult myocardium functioning is not fully elucidated to date. The current review regards the attempt to generalize contemporary literature data on participation of this signaling pathway in embryogenesis and postnatal heart development, as well as in adult myocardium functioning in normal conditions and during stress adaptation, and aging, resulting in hypertrophy and heart remodeling. Based on the experimental articles and reviews, we can assume that Wnt/β-catenin signaling pathway is involved not only in controlling the cardiogenesis but also in processes of adaptation and remodeling of the adult organ. This control can be characterized as complicated and multistep and β-catenin appears to be a prospective candidate as a target for development of new approaches to adult myocardium pathologies therapy.  相似文献   

18.
The Wnt signal transduction pathway is dysregulated in many highly prevalent diseases, including cancer. Unfortunately, drug discovery efforts have been hampered by the paucity of targets and drug-like lead molecules amenable to drug discovery. Recently, we reported the FDA-approved anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling by a unique mechanism, though the target responsible remains unknown. We interrogated the mechanism and structure–activity relationships to understand drivers of potency and to assist target identification efforts. We found inhibition of Wnt signaling by Niclosamide appears unique among the structurally-related anthelmintic agents tested and found the potency and functional response was dependent on small changes in the chemical structure of Niclosamide. Overall, these findings support efforts to identify the target of Niclosamide inhibition of Wnt/β-catenin signaling and the discovery of potent and selective modulators to treat human disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号