首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Glycation is a non-enzymatic reaction that is initiated by the primary addition of sugars to amino groups of proteins. In the early phase of glycation, the synthesis of intermediates leads to formation of Amadori compounds. In the last phase, advanced glycation end products (AGE) are irreversibly formed following a complex cascade of reactions. It has recently been shown that glycation also affects diabetes-related complications and Alzheimer’s disease. In this study, human serum albumin at a concentration of 10 mg/ml was incubated in PBS with 40 mM of glucose and in different concentrations of papaverine (25, 100, 250, 500 μM) for 42 days at 37 °C. HSA with no additives as well as with glucose 40 mM were incubated as a control and as a glycated sample, respectively. Following the incubation, the samples were prepared for circular dichroism, fluorescence and absorbance techniques. The results showed that in presence of papaverine and glucose, the glycation of HSA increased notably compared with the glycated sample. In conclusion, in this work, we showed that papaverine affects HSA and increases its glycation level.  相似文献   

2.
The prolonged glycation of human serum albumin (HSA) results in significant changes in its structure. The identity of these structural changes and the influence of carbohydrates on these changes require further study. Here, we evaluated structural changes and amyloid formation of HSA upon incubation with Glc, Fru, or Rib. Fluorescence spectrophotometry, surface tension analysis, and transmission electron microscopy (TEM) were utilized to evaluate the structures of glycated HSA. The physicochemical properties including excess free energy, protein adsorption at the air-water interface, critical aggregation concentration (CAC), and surface activity indicated an increase in hydrophobicity and partial unfolding of HSA structure upon glycation. Thus, it appears that AGE products can act as detergents. Incubation of HSA with these sugars after 20 wks induced significant amyloid nanofibril formation. Together these results indicate that prolonged glycation of HSA is associated with a transition from helical structure to beta-sheet (amyloid formation).  相似文献   

3.
Advanced glycation end products (AGEs) accumulate with age and at an accelerated rate in diabetes. AGEs bind cell-surface receptors including the receptor for advanced glycation end products (RAGE). The dependence of RAGE binding on specific biochemical characteristics of AGEs is currently unknown. Using standardized procedures and a variety of AGE measures, the present study aimed to characterize the AGEs that bind to RAGE and their formation kinetics in vitro. To produce AGEs with varying RAGE binding affinity, bovine serum albumin (BSA) AGEs were prepared with 0.5M glucose, fructose, or ribose at times of incubation from 0 to 12 weeks or for up to 3 days with glycolaldehyde or glyoxylic acid. The AGE-BSAs were characterized for RAGE binding affinity, fluorescence, absorbance, carbonyl content, reactive free amine content, molecular weight, pentosidine content, and N-epsilon-carboxymethyl lysine content. Ribose-AGEs bound RAGE with high affinity within 1 week of incubation in contrast to glucose- and fructose-AGE, which required 12 and 6 weeks, respectively, to generate equivalent RAGE ligands (IC50=0.66, 0.93, and 1.7 microM, respectively). Over time, all of the measured AGE characteristics increased. However, only free amine content robustly correlated with RAGE binding affinity. In addition, detailed protocols for the generation of AGEs that reproducibly bind RAGE with high affinity were developed, which will allow for further study of the RAGE-AGE interaction.  相似文献   

4.
We monitored the unfolding of human serum albumin (HSA) and glycated human serum albumin (gHSA) subjected to guanidine hydrochloride (GndHCl) by using fluorescence and circular dichroism (CD) spectroscopy. A two-state model with sloping baselines best described the Trp-214 fluorescence unfolding measurements, while a three-state model best described the far-UV CD unfolding data. Glycation of HSA increased the [D](50%) point by approximately 0.20M. This corresponded to an increase in the free energy of unfolding of gHSA relative to HSA of 2.6kJ/mol. The intrinsic fluorescence of Trp-214 in gHSA is 0.72 of that of HSA and the far-UV CD spectrum of gHSA is nearly identical to that of HSA. These results showed that glycation altered the local structure around Trp-214 while not significantly impacting the secondary structure, and this alteration translated into an overall change in the stability of gHSA compared to HSA.  相似文献   

5.
The interactions of the unpaired thiol residue (Cys34) of human serum albumin (HSA) with low-molecular-weight thiols and an Au(I)-based antiarthritic drug have been examined using electrospray ionization mass spectrometry. Early measurements of the amount of HSA containing Cys34 as the free thiol suggested that up to 30% of circulating HSA bound cysteine as a mixed disulfide. It has also been suggested that reaction of HSA with cysteine, occurs only on handling and storage of plasma. In our experiments, there were three components of HSA in freshly collected plasma from normal volunteers, HSA, HSA+cysteine, and HSA+glucose in the ratio approximately 50:25:25. We addressed this controversy by using iodoacetamide to block the free thiol of HSA in fresh plasma, preventing its reaction with plasma cysteine. When iodoacetamide was injected into a vacutaner tube as blood was collected, the HSA was modified by iodoacetamide, with 20-30% present as the mixed disulfide with cysteine (HSA+cys). These data provide strong evidence that 20-30% of HSA in normal plasma contains one bound cysteine. Reaction of HSA with [Au(S(2)O(3))(2)](3-) resulted in formation of the adducts HSA+Au(S(2)O(3)) and HSA+Au. Reaction of HSA with iodoacetamide prior to treatment with [Au(S(2)O(3))(2)](3-) blocked the formation of gold adducts.  相似文献   

6.
This report examines the use of high-performance affinity chromatography as a screening tool for studying the change in binding by sulfonylurea drugs to the protein human serum albumin (HSA) during diabetes. The effects of both the non-enzymatic glycation of HSA and the presence of fatty acids on these interactions were considered using a zonal elution format. It was found that there was a significant increase (i.e., 2.7- to 3.6-fold) in the relative retention of several sulfonylurea drugs (i.e., acetohexamide, tolbutamide, glybenclamide and gliclazide) on columns containing normal versus glycated HSA. The addition of various long chain fatty acids to the mobile phase gave the same trend in retention for the tested drugs on both the HSA and glycated HSA columns, generally leading to lower binding. Most of the fatty acids examined produced similar or moderately different relative shifts in retention; however, palmitic acid was found to produce a much larger change in retention on columns containing glycated HSA versus normal HSA under the conditions used in this study.  相似文献   

7.
Acetohexamide is a drug used to treat type II diabetes and is tightly bound to the protein human serum albumin (HSA) in the circulation. It has been proposed that the binding of some drugs with HSA can be affected by the non-enzymatic glycation of this protein. This study used high-performance affinity chromatography to examine the changes in acetohexamide–HSA binding that take place as the glycation of HSA is increased. It was found in frontal analysis experiments that the binding of acetohexamide to glycated HSA could be described by a two-site model involving both strong and weak affinity interactions. The average association equilibrium constant (Ka) for the high affinity interactions was in the range of 1.2–2.0 × 105 M−1 and increased in moving from normal HSA to HSA with glycation levels that might be found in advanced diabetes. It was found through competition studies that acetohexamide was binding at both Sudlow sites I and II on the glycated HSA. The Ka for acetohexamide at Sudlow site I increased by 40% in going from normal HSA to minimally glycated HSA but then decreased back to near-normal values in going to more highly glycated HSA. At Sudlow site II, the Ka for acetohexamide first decreased by about 40% and then increased in going from normal HSA to minimally glycated HSA and more highly glycated HSA. This information demonstrates the importance of conducting both frontal analysis and site-specific binding studies in examining the effects of glycation on the interactions of a drug with HSA.  相似文献   

8.
Amino groups of human serum albumin (HSA) can react non-enzymatically with carbonyl groups of reducing sugars to form advanced glycation end products (AGEs). These AGEs contribute to many of the chronic complications of diabetes including atherosclerosis, cataract formation and renal failure. The current study focused on in vitro non-enzymatic reactivity of glyceraldehyde (GA) and methylglyoxal (MG) with HSA and evaluated the rate and extent of AGE formation in the presence of varied concentrations of Zn(II). At normal physiological conditions, GA and MG readily react with HSA. The presence of Zn(II) in HSA-GA or HSA-MG incubation mixtures reduced AGE formation. This finding was confirmed by UV and fluorescence spectrometry, HPLC techniques, and matrix assisted laser desorption ionization mass spectrometry (MALDI-TOF). HPLC studies revealed decreased adduct formation of the glycated protein in the presence of Zn(II). The inhibition of AGE formation was intense at elevated Zn(II) concentrations. The results of this study suggest that Zn(II) may prove to be a potent agent in reducing AGE formation.  相似文献   

9.
Antioxidant protection of human serum albumin by chitosan   总被引:1,自引:0,他引:1  
Inhibition of protein oxidation by reactive oxygen species (ROS) would confer benefit to living organisms exposed to oxidative stress, because oxidized proteins are associated with many diseases and can propagate ROS-induced damage. We measured the ability of 2800Da chitosan, D-glucosamine and N-acetyl glucosamine to protect human serum albumin from oxidation by peroxyl radicals derived from 2,2'-azobis(2-amidinopropane)dihydrochloride and N-centered radicals from 1,1'-diphenyl-2-picrylhydrazyl and from 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid). Comparison with the antioxidant action of vitamin C showed that, on a molar basis, chitosan was equally effective in preventing formation of carbonyl and hydroperoxide groups in human serum albumin exposed to peroxyl radicals. It was also a potent inhibitor of conformational changes in the protein, assessed by absorption spectrum and intrinsic fluorescence. D-glucosamine was much less effective and N-acetyl glucosamine was not a useful antioxidant. Protection of the albumin from peroxyl radicals was achieved by scavenging of peroxyl radical. Chitosan was also a good scavenger of N-centered radicals, with glucosamine and N-acetyl glucosamine much less effective. The results suggest that administration of low molecular weight chitosans may inhibit neutrophil activation and oxidation of serum albumin commonly observed in patients undergoing hemodialysis, resulting in reduction of oxidative stress associated with uremia.  相似文献   

10.
Advanced glycation end products (AGEs) are implicated in the development of diabetic complications via the receptor for AGEs (RAGE). We have reported that the 3-hydroxypyridinium (3HP)-containing AGEs derived from α-hydroxyaldehydes physically interact with RAGE and show cytotoxicity. Lactaldehyde (LA) is formed from a reaction between threonine and myeloperoxidase, but no LA-derived AGEs have been characterized. Here, we identify the structure and physiological effects of an AGE derived from LA. We isolated a novel 3HP derivative, 2-acetamido-6-(3-hydroxy-5-methyl-pyridin-1-ium-1-yl)hexanoate, named as N-acetyl-LAPL (lactaldehyde-derived pyridinium-type lysine adduct), from a mixture of LA with Nα-acetyl-L-lysine. LAPL was also detected in the LA-modified protein. LAPL elicited toxicity in PC12 neuronal cells, but the effect was suppressed by the soluble form of RAGE as a decoy receptor. Moreover, surface plasmon resonance-based analysis revealed that LAPL specifically binds to recombinant RAGE. These results indicate that LA generates an AGE containing the 3HP moiety and contributes to RAGE-dependent cytotoxicity.

Abbreviations: AGEs: advanced glycation end products; RAGE: receptor for advanced glycation end products; 3HP: 3-hydroxypyridinium; LA: lactaldehyde; LAPL: lactaldehyde-derived pyridinium-type lysine adduct; BSA: bovine serum albumin; GLAP: glyceraldehyde-derived pyridinium; MPO: myeloperoxidase; HFBA: heptafluorobutyric acid; TFA: trifluoroacetic acid; HPLC: high performance liquid chromatography; LC-ESI-QTOF-MS: liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry; NMR: nuclear magnetic resonance; LA-BSA: lactaldehyde-modified bovine serum albumin; PBS: phosphate buffered saline, GST, glutathione S-transferase; SPR: surface plasmon resonance; OP-lysine: 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate; GLO1: glyoxalase 1; MG, methylglyoxal  相似文献   


11.
High-performance affinity chromatography was used to study the binding of phenytoin to an immobilized human serum albumin (HSA) column. This was accomplished through frontal analysis and competitive binding zonal elution experiments, the latter of which used four probe compounds for the major and minor binding sites of HSA injected into the presence of mobile phases containing known concentrations of phenytoin. It was found that phenytoin can interact with HSA at the warfarin-azapropazone, indole-benzodiazepine, tamoxifen, and digitoxin sites of this protein. The association constants for phenytoin at the indole-benzodiazepine and digitoxin sites were determined to be 1.04 (+/-0.05) x 10(4)M(-1) and 6.5 (+/-0.6) x 10(3)M(-1), respectively, at pH 7.4 and 37 degrees C. Both allosteric interactions and direct binding for phenytoin appear to take place at the warfarin-azapropazone and tamoxifen sites. This rather complex binding system indicates the importance of identifying the binding regions on HSA for specific drugs as a means for understanding the transport of such substances in blood and in characterizing their potential for drug-drug interactions.  相似文献   

12.
The Maillard reaction in vivo entails alteration of proteins or free amino acids by non-enzymatic glycation or glycoxidation. The resulting modifications are called advanced glycation end products (AGEs) and play a prominent role in various pathologies, including normoglycemic uremia. Recently, we established a new class of lysine amide modifications in vitro. Now, human plasma levels of the novel amide-AGEs N(6)-acetyl lysine, N(6)-formyl lysine, N(6)-lactoyl lysine, and N(6)-glycerinyl lysine were determined by means of LC-MS/MS. They were significantly higher in uremic patients undergoing hemodialysis than in healthy subjects. Model reactions with N(1)-t-butoxycarbonyl-lysine under physiological conditions confirmed 1-deoxy-d-erythro-hexo-2,3-diulose as an immediate precursor. Because formation of N(6)-formyl lysine from glucose responded considerably to the presence of oxygen, glucosone was identified as another precursor. Comparison of the in vivo results with the model experiments enabled us to elucidate possible formation pathways linked to Maillard chemistry. The results strongly suggest a major participation of non-enzymatic Maillard mechanisms on amide-AGE formation pathways in vivo, which, in the case of N(6)-acetyl lysine, parallels enzymatic processes.  相似文献   

13.
The characteristics of albumin adsorption on histidyl-aminohexyl-Sepharose 4B were investigated. In particular, the adsorption capacity of the gel was studied as a function of conductivity and pH of the running buffer. The adsorption was maximum at low salt concentration around neutral pH, involving electrostatic and hydrophobic interactions. Kinetic aspects were also investigated. Dissociation constant (KD) and maximum capacity (Qx) were, respectively, estimated to be 4.5×10−5 M (medium affinity) and 93.3 mg (high capacity) of human serum albumin per ml of adsorbent. According to these preliminary results, separation of HSA and its non-enzymatically glycated isoforms (conventionally named advanced glycated end products: AGEs) was achieved. Chromatographic potential of this separation tool is discussed.  相似文献   

14.
The use of immobilized human serum albumin (HSA) as a stationary phase in affinity chromatography has been shown to be useful in resolving optical antipodes or to investigate interactions between drugs and protein. However, to our knowledge, no inorganic ion binding has been studied on this immobilized protein type. To do this, the human serum albumin stationary phase was assimilated to a weak cation-exchanger by working with a mobile phase pH equal to 6.5. A study of the eluent ionic strength effect on ion retention was carried out by varying the buffer concentrations and the column temperatures. The thermodynamic parameters for magnesium and calcium transfer from the mobile to the stationary phase were determined from linear van’t Hoff plots. An enthalpy–entropy compensation study revealed that the type of interaction was independent of the mobile phase composition. A simple model based on the Gouy–Chapman theory was considered in order to describe the retention behavior of the test cations with the mobile phase ionic strength. From this theoretical approach, the relative charge densities of the human serum albumin surface implied in the binding process were estimated at different column temperatures.  相似文献   

15.
This study describes the partitioning of fluorescent macromolecules in aqueous two-phase systems (ATPS) comprising phosphate salt and poly(ethylene glycol) of three different molecular masses (i.e. 1000, 1450 and 2000 Da). The impact of system assembly was studied with fluorescent macromolecules introduced in contact with either (i) first salt, then polymer or (ii) first polymer, then salt, or (iii) with both salt and polymer simultaneously. Native human serum albumin (HSA) and derivatives labelled with N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulphonic acid (1,5-IAEDANS) were partitioned using selected ATPS. Partitioning behaviour was characterised by molecular rotational studies of recovered proteins based upon changes of depolarisation. Measurements were undertaken by steady-state fluorescence or time-decay fluorescence using a single-photon counting system. In addition, circular dichroism was used as a tool for the study of macromolecular secondary structure. Two discrete categories of stable molecular structure have been identified that exist irrespective of the phase environment. The findings form the basis for a discussion of polymer–protein interactions and the molecular micro-environment of proteins in ATPS.  相似文献   

16.
This paper demonstrates the use of a near-infrared (NIR) dye as a non-covalent label for human serum albumin (HSA). The dye is a water soluble, heptamethine cyanine dye. The utility of the dye as a tracer illustrating the binding of various drugs to HSA is demonstrated via affinity capillary electrophoresis with near-infrared laser-induced fluorescence detection (ACE-NIR-LIF). Additionally, the factors affecting the separation of relevant species were investigated. The change in quantum yield of the dye upon complexation with HSA was calculated. Spectrophotometric measurements were conducted to study the stoichiometry of the dye albumin complex.  相似文献   

17.
Human serum albumin is a mixture of mercapt- (HMA, reduced form) and nonmercaptalbumin (HNA, oxidized form). We studied the mercapt↔nonmercapt conversion of human serum albumin, which reflects the redox state of the extracellular fluids, in cardiac and other common surgical patients using high-performance liquid chromatography. Mean values of [(HMA)/(HMA + HNA)] ± standard deviation [fHMA ± σ], for patients who received common surgery (group 1) and cardiac surgery (group 2) at the start of anesthesia were0.636±0.50(n=83) and 0.615±0.062(n=14), respectively. fHMA values were markedly lower than those for healthy male adults of 0.750±0.028(n=28). fHMA values increased at 24 h after the start of anesthesia and decreased on the 4th postoperative day in most of the patients. These postoperative changes were prominent in surgical cardiac patients. Although fHMA values after the 7th postoperative day recovered to those at the start of anesthesia in almost all of common surgical patients, those in cardiac surgical patients, never recovered even on the 21st postoperative day.  相似文献   

18.
19.
Chesne S  Rondeau P  Armenta S  Bourdon E 《Biochimie》2006,88(10):1467-1477
Non-enzymatic glycosylation (glycation) and oxidative damages represent major research areas insofar as such modifications of proteins are frequently observed in numerous states of disease. Albumin undergoes structural and functional alterations, caused by increased glycosylation during non insulin-dependent diabetes mellitus, which is closely linked with the early occurrence of vascular complications. In this work, we first characterized structural modifications induced by the glycation of bovine serum albumin (BSA). A pathophysiological effect of glycated BSA was identified in primary cultures of human adipocytes as it induces an accumulation of oxidatively modified proteins in these cells. BSA was incubated in the presence or absence of physiological, pathological or supra-physiological concentrations of glucose at 37 degrees C for 7 weeks. Enhanced BSA glycation percentages were determined using boronate affinity columns. The occurrence of oxidative modifications was found to be enhanced in glycated BSA, after determination of the free thiol groups content, electrophoretic migration and infrared spectrometry spectra. An accumulation of carbonyl-modified proteins and an increased release of isoprostane were observed in cell media following the exposure of adipocytes to glycated albumin. These results provide a new possible mechanism for enhanced oxidative damages in diabetes.  相似文献   

20.
We report a method to enrich cysteinyl adducts of human serum albumin (HSA), representing biomarkers of exposure to systemic electrophiles. Because the major site of HSA adduction is the single free sulfhydryl group at Cys34, we used thiol-affinity resins to remove mercaptalbumin (i.e., unadducted HSA) from the cysteinyl adducts. Electrospray ionization mass spectrometry was used to detect mercaptalbumin and HSA-Cys34 modifications before and after enrichment of HSA. Differences in adduct content were detected across samples of freshly isolated, archived, and commercial HSA. Cysteinylated and glycosylated adducts were present in all samples, with abundances decreasing in the following order: commercial HSA > archived HSA > fresh HSA. After enrichment of HSA, mercaptalbumin was no longer observed in mass spectra. The ratios of HSA adducts post-/preenrichment, quantified via the Bradford assay and gel electrophoresis, were 0.029 mg adducts/mg HSA in fresh HSA and 0.323 mg adducts/mg HSA in archived HSA. The apparent elevation of adduct levels in archived samples could be due to differences in specimen preparation and storage rather than to differences in circulating HSA adducts. We conclude that thiol-affinity resins can efficiently remove mercaptalbumin from HSA samples prior to characterization and quantitation of protein adducts of reactive systemic electrophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号