首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A proteoglycan-like aggregation factor from the marine sponge Microciona prolifera (MAF) mediates cell-cell recognition via a cell-binding and a self-association domain. After repetitive and prolonged treatment of MAF with glycopeptide-N-glycosidase (PNGase) the specific binding of MAF to homotypic cells was decreased by 72%. Polyacrylamide gel electrophoresis and gel filtration analysis of such PNGase digests showed that: 1) the enzyme released a single glycan type of Mr = 6 X 10(3) (G-6) from MAF, 2) 1 mole of MAF contains at least 830 moles of N-linked chains of G-6 glycan. The correlation between the loss of the binding activity of MAF and the extent of the release of the repetitive G-6 polysaccharide strongly suggests its involvement in MAF-cell association via highly polyvalent interactions.  相似文献   

2.
3.
Sponges are the simplest extant animals but nevertheless possess self-nonself recognition that rivals the specificity of the vertebrate MHC. We have used dissociated cell assays and grafting techniques to study tissue acceptance and rejection in the marine sponge Microciona prolifera. Our data show that allogeneic, but not isogeneic, cell contacts trigger cell death and an increased expression of cell adhesion and apoptosis markers in cells that accumulate in graft interfaces. Experiments investigating the possible existence of immune memory in sponges indicate that faster second set reactions are nonspecific. Among the different cellular types, gray cells have been proposed to be the sponge immunocytes. Fluorescence confocal microscopy results from intact live grafts show the migration of autofluorescent gray cells toward graft contact zones and the inhibition of gray cell movements in the presence of nontoxic concentrations of cyclosporin A. These results suggest that cell motility is an important factor involved in sponge self/nonself recognition. Communication between gray cells in grafted tissues does not require cell contact and is carried by an extracellular diffusible marker. The finding that a commonly used immunosuppressor in human transplantation such as cyclosporin A blocks tissue rejection in marine sponges indicates that the cellular mechanisms for regulating this process in vertebrates might have appeared at the very start of metazoan evolution.  相似文献   

4.
5.
Cell aggregation in the marine sponge Microciona prolifera is mediated by a multimillion molecular weight aggregation factor (MAF) and is based on two functional properties, a Ca2+-independent cell binding activity and a Ca2+-dependent factor-factor self-interaction. Monoclonal antibodies were prepared against purified MAF, and one clone was characterized which selectively inhibited the MAF-MAF association activity. Binding of the blocking antibody (Block 1) to MAF demonstrated that this epitope structure was present in 1100 copies per one MAF molecule of Mr = 2 X 10(7). Such blocking antibodies precipitated a small molecular weight protein-free glycan fraction prepared from MAF by Pronase digestion, thus indicating that the highly repetitive epitope is located in the carbohydrate portion of the molecule. Since the inhibitory activity of the Block 1 antibody could only be achieved when most of the sites were occupied by Fab fragments of this antibody, the self-association of MAF seemed to be based on the polyvalency of the carbohydrate determinants. The affinity of the protein-free glycans was very low as shown by the fact that they did not display any measurable self or MAT binding activity in their monomeric form. After cross-linking them with glutaraldehyde into polymers of the size of MAF, however, the self-interaction could be reconstituted. Thus, the MAF-MAF association activity, which is needed for cell aggregation in sponges, seems to be based on multiple low affinity carbohydrate-carbohydrate interactions, which is different from most interactions mediated by adhesion molecules characterized so far.  相似文献   

6.
7.
Sponges are unique in regard to membrane phospholipid composition. Features virtually without parallel in other organisms are the predominance of the C26-C30 polyenoic acids (demospongic acids) in the phosphatidylethanolamines (PE) and the attachment of identical acyl groups to the glycerol moiety. The biosynthesis and disposition of these unusual phospholipids were followed in the marine sponge Microciona prolifera where PE ( delta 5,9-26:2, delta 5,9-26:2) is a major molecular species. Incorporation experiments with radiolabeled fatty acids, bases, and intact phospholipids revealed the de novo biosynthesis of the two major phosphatides, phosphatidylethanolamines (PE) and phosphatidylcholines (PC), via the cytidine pathway as in higher animals, with ethanolamine selectively incorporated into PE( delta 5,9-26:2, delta 5,9-26:2). Methylation of PE and random acyl chain migration across different phospholipid classes were marginal, but the exchange of PC for PE, apparently mediated by the action of phospholipase, was indicated after uptake of the unnatural PC( delta 9-27:1, delta 9-26:1). The present study demonstrates in the most primitive multicellular animals a phospholipid metabolic pattern similar to that in higher organisms, with unique acyl and phosphoethanolamine transferases apparently involved in the biosynthesis of the (demospongic) di-C26-acyl-PE molecular species.  相似文献   

8.
Species-specific adhesion of dissociated cells from the marine sponge Microciona prolifera is mediated by a Mr = 2 x 10(7) proteoglycan-like aggregation factor (MAF) via two highly polyvalent functional domains, a cell-binding and a self-interaction domain. Glycopeptide N-glycosidase F release of a major glycan of Mr = 6.3 gamma 10(3) (G-6) from the MAF protein core resulted in the loss of cell binding activity, indicating a role of this polysaccharide molecule in MAF-cell association. The G-6 glycan was isolated and purified after complete Pronase digestion of MAF using gel electrophoresis, gel filtration, and ion exchange chromatography. Quantification of the amount of carbohydrate recovered in G-6 showed that one MAF molecule has about 950 repeats of this glycan. In its monomeric state G-6 did not display any measurable binding to cells (K alpha less than or equal to 10(3) M-1). Intermolecular cross-linking of the G-6 glycan with glutaraldehyde resulted, however, in the concomitant recovery of polyvalency (about 2200 repeats of G-6 per polymer of Mr greater than or equal to 1.5 x 10(7) and species-specific high cell binding affinity (K alpha = 1.6 x 10(9) M-1) but not of the MAF-MAF self-interaction activity. Thus, the G-6 glycan is the multiple low affinity cell-binding site involved in cell-cell recognition and adhesion of sponge cells. The G-6 glycan has 7 glucuronic acids, 3 fucoses, 2 mannoses, 5 galactoses, 14 N-acetylglucosamines, 2 sulfates, and 1 asparagine. Such a unique chemical composition indicates a new type of structure which includes features of glycosaminolycans and N-linked polysaccharides.  相似文献   

9.
Multivalent cations were tested for their ability to replace the Ca2+ requirements of aggregation factor (AF) complex in activity, stability, and integrity assays. The ability of each cation to replace the Ca2+ required for the cell aggregation-enhancing activity of AF was examined by replacing the usual 10 mM Ca2+ with the test cation at various concentrations in the serial dilution assay of the AF. The other alkaline earth cations, Mg2+, Sr2+, and Ba2+, could not replace Ca2+; two transition elements, Mn2+ and Cd2+, partially replaced calcium. All 15 of the available lanthanides (including La3+ and Y3+) produced normal activity but only at 10-400-fold lower cation concentrations than Ca2+. An AF preparation is stable and remains active for months in 1 mM Ca2+ but decays rapidly when Ca2+ is lowered. Sr2+ and Ba2+ at 20 mM but not at 1 mM could replace 1 mM Ca2+ and give long term stability. AF was not stable in the presence of Mg2+, even at 100 mM. High Mn2+ concentrations did not stabilize AF even though AF was partially active in Mn2+. Cd2+ gave full stability at 75 mM and La3+ at about 0.1 mM. When Ca2+ is chelated, the macromolecular subunits of the AF slowly dissociate. Permeation chromatography and analytical ultracentrifugation showed that the cations that stabilized activity maintained the integrity of AF complex while those that failed to stabilize activity allowed the complex to dissociate into subunits, indicating that these two Ca2+ requirements are related. The cation specificities for activity and for stability-integrity are different indicating that these are separate Ca2+-dependent functions.  相似文献   

10.
Summary The primitive nature of the sponge epithelium was revealed primarily by the mode of intercellular attachment. The zonula adhaerens (terminal bar) and macula adhaerens (desmosome) which occur in most metazoa are totally lacking in the exo- and endopinacoderms of Micoricona prolifera. Although a careful search was made for examples of the zonula occludens (tight junction complex), none were seen. There is still the possibility that they occur, but if so, they occupy only a small portion of the junctional area.Both exo- and endopinacoderms are single-layered and composed of cells whose thickness is usually 0.5–2 . The similarity of architecture of the endopinacoderm to that of capillary endothelium suggests that the flattened shape of the endopinacocytes is a specialization for rapid diffusion between the water channels and the mesenchyme. Exopinacocytes are distinguished by the location of their nucleus in a club-shaped projection extending below the level of the exopinacoderm and by the mat of fibrous material which usually covers their flattened external surface. The presence of phagosomes in both the endo- and exopinacocytes suggests a nutritive role for these cells.Contrary to the reports of Wilson and Penney (1930) the pinacoderms are not syncytial. Reasons for their failure to see cell borders are discussed.This investigation was supported by N. I. H. Biomedical Support Grant 5 S05 FR0708802 to the University of Tennessee and by a Faculty Research Grant from the University of Tennessee.The author is indebted to Prof. Tracy L. Simpson for his suggestions and critical evaluation of this study.  相似文献   

11.
Explants of Microciona prolifera (Ellis & Solander) maintained in laboratory culture at either 20‰ or 15‰ salinity retained a normal tissue organization. Expiants gradually transferred to 10‰ underwent tissue regression during which flagellated chambers, canals, subdermal spaces and oscula disappeared. When the expiants were gradually returned to 20‰ these structures redeveloped. Reproductive activity in the expiants appeared to be normal at 20‰, somewhat slowed at 15‰, and inhibited at 10‰.  相似文献   

12.
A pair of sponge species, Microciona prolifera and Halichondria bowerbanki, which lack mutual species specificity in their aggregation "factor", are useful in establishing the mechanisms of action of these factors. These sponges were dissociated both mechanically, which leaves the factor on the cell surface, and by Humphrey's (1963) method, which isolates the factor from the cells. The adhesive specificities which arose, in the various combinations tested, point to an intercellular factor bridge consisting of a single symmetrical unit. An analysis of most other workers' results is consistent with this interpretation. However, MacLennan and Dodd's (1967) results using other species would require a bridge consisting of two or more asymmetrical units. Differences were found in the specificity of adhesion of various types of cells within a single species. This presents a heretofore unconsidered problem in assesing the adhesive factor's mechanism of action. Three structurally distinct cell types were separated from a suspension of dissociated Microciona cells by velocity sedimentation. These cells differ greatly in adhesiveness. The differences in adhesion are correlated with numbers and positions of cells incorporated into aggregates. Such differences are considered in explaining the mechanism of action of the factors.  相似文献   

13.
14.
Xia X  Hou F  Li J  Ke Y  Nie H 《Journal of biochemistry》2006,139(4):725-731
Trichosanthin is the active protein component in the Chinese herb Trichosanthes kirilowi, which has distinct pharmacological properties. The cytotoxicity of trichosanthin was demonstrated by its selective inhibition of various choriocarcinoma cells. When Jar cells were treated with trichosanthin, the influx of calcium into the cells was observed by confocal laser scanning microscopy. When the distribution of trichosanthin-binding proteins on Jar cells was studied, two classes of binding sites for trichosanthin were shown by radioligand binding assay. Furthermore, the cytoplasmic membrane of Jar cells was biotinylated and the trichosanthin-binding proteins were isolated with trichosanthin-coupled Sepharose beads. Two protein bands with molecular masses of about 50 kDa and 60 kDa were revealed, further characterization of which should shed light on the mechanism of the selective cytotoxicity of trichosanthin to Jar cells.  相似文献   

15.
16.
Monoclonal antibodies (McAbs) were raised against the aggregation factor (AF) from the marine sponge Geodia cydonium. Two clones were identified that secrete McAbs against the cell binding protein of the AF complex. Fab fragments of McAbs: 5D2-D11 completely abolished the activity of the AF to form secondary aggregates from single cells. The McAbs were determined to react with the AF in vitro; this interaction was prevented by addition of the aggregation receptor, isolated and purified from the same species. After dissociation of the AF by sodium dodecyl sulfate and 2-mercaptoethanol, followed by electrophoretical fractionation, a 47-kD protein was identified by immunoblotting which interacted with the McAbs: 5D2-D11. During this dissociation procedure, the sunburst structure of the AF was destroyed. In a second approach, the 47-kD protein was isolated by immunoprecipitation; 12 molecules of this protein species were calculated to be associated with the intact AF particle. The 47-kD AF fragment bound to dissociated Geodia cells with a high affinity (Ka of 7 X 10(8) M-1) even in the absence of Ca++ ions; the number of binding sites was approximately 4 X 10(6)/cell. This interaction was prevented by addition of the aggregation receptor to the 47-kD protein in the homologous cell system. Moreover, it was established that this binding occurs species-specifically. The 47-kD fragment of the AF was localized only extracellularly by indirect immunofluorescence staining in cryostat slices. These data suggest that the 47-kD protein is the cell binding molecule of the AF from Geodia.  相似文献   

17.
18.
Summary The primary aggregation factor (pAF) of sponge cells is a glycoprotein that is firmly associated with the cell membrane. Polyspecific antibodies (anti-GM) prepared from sera raised against membranes of cells from the siliceous sponge Geodia cydonium were found to inhibit initial aggregation of homologous cells. The inhibition of aggregation, caused by anti-GM was neutralized by pAF. The pAF had been successfully solubilized and enriched by affinity chromatography, gel filtration and density gradient centrifugation, if checked by polyacrylamide gel electrophoresis in the presence of urea. The Mr of the native pAF was approximately 40 000 as estimated by gel filtration; under denaturing conditions three protein species (Mr: 16 500, 15 500 and 13 500) were identified in the pAF preparation. The pAF was precipitable by Ca++ and did not cross-react with antisera against homologous purified secondary aggregation factor and lectin. It is mainly composed of protein (48.0%) and carbohydrate (50.2%). The isolated pAF restored the aggregation potency not only of factor-depleted Geodia cells but also of cells from other Demospongiae. However, the pAF displayed no aggregation enhancing effect on urea-treated cells from species belonging to the Calcispongiae or Hexactinellida. We hypothesize that in contrast to the secondary aggregation, the initial aggregation of Geodia cells is mediated by the one-component system, the bivalent and bifunctional pAF.  相似文献   

19.
Cell aggregation in the marine sponge Microciona prolifera is mediated by a multimillion molecular-mass aggregation factor, termed MAF. Earlier investigations revealed that the cell aggregation activity of MAF depends on two functional domains: (i) a Ca2+-independent cell-binding domain and (ii) a Ca2+-dependent proteoglycan self-interaction domain. Structural analysis of involved carbohydrate fragments of the proteoglycan in the self-association established a sulfated disaccharide β-d-GlcpNAc3S-(1→3)-α-l-Fucp and a pyruvated trisaccharide β-d-Galp4,6(R)Pyr-(1→4)-β-d-GlcpNAc-(1→3)-α-l-Fucp. Recent UV, SPR, and TEM studies, using BSA conjugates and gold nanoparticles of the synthetic sulfated disaccharide, clearly demonstrated self-recognition on the disaccharide level in the presence of Ca2+-ions. To determine binding forces of the carbohydrate–carbohydrate interactions for both synthetic MAF oligosaccharides, atomic force microscopy (AFM) studies were carried out. It turned out that, in the presence of Ca2+-ions, the force required to separate the tip and sample coated with a self-assembling monolayer of thiol-spacer-containing β-d-GlcpNAc-(1→3)-α-l-Fucp-(1→O)(CH2)3S(CH2)6S- was found to be quantized in integer multiples of 30 ± 6 pN. No binding was observed between the two monolayers in the absence of Ca2+-ions. Cd2+-ions could partially induce the self-interaction. In contrast, similar AFM experiments with thiol-spacer-containing β-d-Galp4,6(R)Pyr-(1→4)-β-d-GlcpNAc-(1→3)-α-l-Fucp-(1→O)(CH2)3S(CH2)6S- did not show a binding in the presence of Ca2+-ions. Also TEM experiments of gold nanoparticles coated with the pyruvated trisaccharide could not make visible aggregation in the presence of Ca2+-ions. It is suggested that the self-interaction between the sulfated disaccharide fragments is stronger than that between the pyruvated trisaccharide.  相似文献   

20.
A differentiation-related gelatin-binding 46 kilodalton (kDa) glycoprotein in myoblasts (GP46, colligin) shares several properties with the 78-kDa glucose-regulated protein (GRP78), including location in the endoplasmic reticulum and related C-terminal sequences. These similarities extend to stress inducibility, since we find that GP46 is a heat-shock protein; its synthesis is elevated at 42 degrees C, resulting in a two- to three-fold increase in protein level. Further, GRP78 is a gelatin-binding protein; together with GP46 it is retained on gelatin-Sepharose beads. GRP78 and GP46 do not interact; each protein can be individually eluted, GP46 at low pH and GRP78 by ATP. These results suggest that the proteins have distinct roles in the synthesis of collagen and point to a simple method for purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号