首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complexes of valyl-tRNA synthetase with tRNAIVal and arginyl-tRNA synthetase with tRNAIIArg from E. coli were studied by light scattering measurements and analytical ultracentrifugation of concentrations as low as 40 μg/ml. The molecular weights determined from these studies were 260,000 ± 2,000 for the valyl-tRNA synthetase·tRNA complex, and 310,000 ± 1,500 for the arginyl-tRNA synthetase·tRNA complex at pH 7.1. The stoichiometry for the complexes are apparently 2:1 for valyl-tRNA synthetase and tRNA and 4:1 in the case of the arginyl-tRNA synthetase and tRNA. From the angular dependence of the scattered intensity a radius of gyration of 54.5 Å for the complex between valyl-tRNA synthetase and tRNA was found, whereas for the other complex a value of 59.1 Å was found.  相似文献   

2.
3.
1. Leucyl- and threonyl-tRNA synthetases were partially purified up to 100-fold and 30-fold respectively from cotyledons of Aesculus hippocastanum and were largely separated from the other aminoacyl-tRNA synthetases. Valyl-tRNA synthetase was purified 25-fold from cotyledons of Aesculus californica. 2. Some properties are reported for the three enzymes when assayed by the [32P]pyrophosphate-ATP exchange technique. 3. β-(Methylenecyclopropyl)alanine, isoleucine, azaleucine, norleucine and γ-hydroxynorvaline acted as alternative substrates for the leucyl-tRNA synthetase; the enzyme's affinity for β-(methylenecyclopropyl)-alanine and for isoleucine was about 80-fold less than that exhibited for leucine. 4. α-Cyclopropylglycine and α-cyclobutylglycine acted as alternative substrates for the valyl-tRNA synthetase.  相似文献   

4.
Isolation of isoaccepting tRNAs   总被引:2,自引:0,他引:2  
The N-hydroxysuccinimide ester of succinated polyethylene oxide (polyethylene glycol 6000) has been prepared. The ester has been used to make the N-acyl derivatives of valyl-tRNA and phenylalanyl-tRNA from E. coli K-12. Because of the large molecular weight, high solubility in phenol, and the binding to Corning porous glass of polyethylene oxide, the acyl derivative, N-(succinated polyethylene oxide)-aminoacyl-tRNA, has been separated from unreacted tRNA. Since the reaction is reasonably specific for the amino group of the amino acid, large purifications have been obtained for tRNAval and tRNAphe. Evidence is presented to show that the ester can react with tRNA at a slow rate. The limitations on the purification due to this reaction are quantitatively evaluated. The highest ratios, pmoles aminoacyl-tRNA/ OD260, obtained for valyl-tRNA and phenylalanyl-tRNA were 800 and 360.  相似文献   

5.
Populations of transfer ribonucleic acid (tRNA) extracted from control and type 2 adenovirus (Ad2)-infected KB cells were compared. No consistent differences in acceptor activity for 11 amino acids were observed. Comparison of methylated albumin-kieselguhr (MAK) elution profiles of arginyl-tRNA from control and infected cells revealed a minor modification in that the proportion of arginyl-tRNA eluting at high salt concentration was somewhat greater in infected cells. No similar differences were observed in MAK elution profiles of aspartyl-, isoleucyl-, leucyl-, phenylalanyl-, seryl-, tyrosyl-, and valyl-tRNA. Hybridization of 4S RNA from infected cells labeled by incorporation of 3H-uridine with Ad2 deoxyribonucleic acid revealed the presence of a complementary species of RNA in this preparation. Hybridization of 3H-arginyl-tRNA and of 3H-aminoacyl-tRNA labeled by charging with 3H-arginine or a 3H-mixture of amino acids, respectively, failed to detect the presence of virus-specific tRNA in Ad2-infected cells.  相似文献   

6.
7.
Accurate translation of genetic information into proteins is vital for cell sustainability. ProXp-ala prevents proteome-wide Pro-to-Ala mutations by hydrolyzing misacylated Ala-tRNAPro, which is synthesized by prolyl-tRNA synthetase. Bacterial ProXp-ala was previously shown to combine a size-based exclusion mechanism with conformational and chemical selection for the recognition of the alanyl moiety, whereas tRNAPro is selected via recognition of tRNA acceptor-stem elements G72 and A73. The identity of these critical bases changed during evolution with eukaryotic cytosolic tRNAPro possessing a cytosine at the corresponding positions. The mechanism by which eukaryotic ProXp-ala adapted to these changes remains unknown. In this work, recognition of the aminoacyl moiety and tRNA acceptor stem by human (Homo sapiens, or Hs) ProXp-ala was examined. Enzymatic assays revealed that Hs ProXp-ala requires C72 and C73 in the context of Hs cytosolic tRNAPro for efficient deacylation of mischarged Ala-tRNAPro. The strong dependence on these bases prevents cross-species deacylation of bacterial Ala-tRNAPro or of Hs mitochondrial Ala-tRNAPro by the human enzyme. Similar to the bacterial enzyme, Hs ProXp-ala showed strong tRNA acceptor-stem recognition but differed in its amino acid specificity profile relative to bacterial ProXp-ala. Changes at conserved residues in both the Hs and bacterial ProXp-ala substrate-binding pockets modulated this specificity. These results illustrate how the mechanism of substrate selection diverged during the evolution of the ProXp-ala family, providing the first example of a trans-editing domain whose specificity evolved to adapt to changes in its tRNA substrate.  相似文献   

8.
Exposure of dark grown resting Euglena to light induced the synthesis of chloroplast valyl-tRNA synthetase. Ethanol, a specific inhibitor of Euglena chloroplast development had little effect on chloroplast valyl-tRNA synthetase induction during the first 12 h of light exposure. Ethanol, however, completely inhibited enzyme synthesis between 12–72 h of light exposure. Malate, an alternative carbon source, had little effect on the photoinduction of valyl-tRNA synthetase. When dark grown resting cells were exposed to 2 h of light and returned to the dark, chloroplast valyl-tRNA synthetase continued to accumulate for 8–12 h at a rate which was less than the rate in cells maintained continuously in the light. The mutant strain W3BUL lacks detectable chloroplast DNA and phototransformable protochlorophyllide, but retains a plastid remnant. Exposure of strain W3BUL to light induced the synthesis of chloroplast valyl-tRNA synthetase and enzyme induction was not inhibited by ethanol. After 72 h of light exposure in the presence or absence of ethanol, enzyme levels in strain W3BUL were comparable to the levels found in the wildtype strain after 8–14 h of light exposure. These results suggest that the nonchloroplast photoreceptor regulates the initial phase of enzyme synthesis. Mutant strain W10BSmL differs from strain W3BUL in that the plastid remnant if present, is greatly reduced. Chloroplast valyl-tRNA synthetase was undetectable in the strain W10BSmL suggesting that the levels of active, cytoplasmically synthesized, chloroplast localized enzymes may be related to the developmental status of the chloroplast through the extent to which the enzyme precursor can be accumulated and or posttranslationally processed into an active enzyme within the chloroplast or chloroplast remnant.This research was supported by National Institutes of Health Grant GM26994, Biomedical support grant RR-0755 and funds from the Research Council, University of Nebraska  相似文献   

9.
The requirement for pseudouridine and other uridine-derived minor nucleotides for activity of transfer RNA in several of the intermediate steps in protein synthesis was examined using a purified preparation of Escherichia coli valine transfer RNA in which the uridine and uridine-derived nucleotides were replaced by 5-fluorouridine. The degree of substitution was 87% or better for uridine, pseudouridine, ribothymidine, dihydrouridine, and 4-thiouridine, and at least 75% for uridine-5-oxyacetic acid. Each of these nucleotides, except for uridine, occurs only once in this transfer RNA species.The rate and yield of ternary complex formation with elongation factor Tu-GTP of E. coli, the rate and extent of elongation factor-dependent binding to ribosomes at 10 mm-Mg2+, and the rate and extent of synthesis of the co-polypeptide (Phen,Val) dependent on poly(U3,G) were all unchanged when the fluorouridine-containing transfer RNA was used in place of the normal control. In all yield assays, the amount of product formed was proportional to the amount of valyl-tRNA added. Non-enzymatic binding to ribosomes in the presence of tetracycline was more efficient for the fluorouridine-substituted tRNA than for the control. At 15 to 20 mm-Mg2+ the polynucleotide-dependent binding, as a percentage of tRNA added, was 44% for the control and 65% for the modified tRNA, while at 5 mm-Mg2+, the figures were 10% and 40%, respectively.We conclude from these results that there is no essential requirement for pseudouridine or ribothymidine in the GTψC loop of tRNA for its proper functioning in protein synthesis in vitro. Confirming earlier work, dihydrouridine and 4-thiouridine are also not essential.  相似文献   

10.
The role of isoleucyl-, valyl-, and leucyl-tRNA synthetases in attenuation of the ilvEDA operon was examined. The results indicate that the activities of isoleucyl- and valyl-tRNA synthetases are necessary to maintain attenuation of the ilvEDA operon. Leucyl-tRNA synthetase activity is nonessential for attenuation. These studies imply that uncharged tRNAIle and tRNAVal each may cause deattenuation.  相似文献   

11.
Phenotypic diversity associated with pathogenic mutations of the human mitochondrial genome (mtDNA) has often been explained by unequal segregation of the mutated and wild-type genomes (heteroplasmy). However, this simple hypothesis cannot explain the tissue specificity of disorders caused by homoplasmic mtDNA mutations. We have previously associated a homoplasmic point mutation (1624C>T) in MTTV with a profound metabolic disorder that resulted in the neonatal deaths of numerous siblings. Affected tissues harboured a marked biochemical defect in components of the mitochondrial respiratory chain, presumably due to the extremely low (<1%) steady-state levels of mt-tRNAVal. In primary myoblasts and transmitochondrial cybrids established from the proband (index case) and offspring, the marked respiratory deficiency was lost and steady-state levels of the mutated mt-tRNAVal were greater than in the biopsy material, but were still an order of magnitude lower than in control myoblasts. We present evidence that the generalized decrease in steady-state mt-tRNAVal observed in the homoplasmic 1624C>T-cell lines is caused by a rapid degradation of the deacylated form of the abnormal mt-tRNAVal. By both establishing the identity of the human mitochondrial valyl-tRNA synthetase then inducing its overexpression in transmitochondrial cell lines, we have been able to partially restore steady-state levels of the mutated mt-tRNAVal, consistent with an increased stability of the charged mt-tRNA. These data indicate that variations in the levels of VARS2L between tissue types and patients could underlie the difference in clinical presentation between individuals homoplasmic for the 1624C>T mutation.  相似文献   

12.
Euglena gracilis chloroplast valyl-tRNA synthetase was purified 990 fold to a specific activity of about 1100 units/mg protein, by a series of steps including ammonium sulfate precipitation and chromatography on hydroxyapatite, DEAE-cellulose, Blue Dextran — Sepharose and Sephadex G200. The enzyme gives a single band upon polyacrylamide gel electrophoresis, appears to be a monomer with a molecular weight of 126,000 daltons and has Km values of 1.5 × 10?5 M for L-valine, 5 × 10?5 M for ATP, and 6 × 10?8 for tRNAVal.  相似文献   

13.
Mutations in Amyloid-ß Precursor Protein (APP) and BRI2/ITM2b genes cause Familial Alzheimer and Danish Dementias (FAD/FDD), respectively. APP processing by BACE1, which is inhibited by BRI2, yields sAPPß and ß-CTF. ß-CTF is cleaved by gamma-secretase to produce Aß. A knock-in mouse model of FDD, called FDDKI, shows deficits in memory and synaptic plasticity, which can be attributed to sAPPß/ß-CTF but not Aß. We have investigated further the pathogenic function of ß-CTF focusing on Thr668 of ß-CTF because phosphorylation of Thr668 is increased in AD cases. We created a knock-in mouse bearing a Thr668Ala mutation (APPTA mice) that prevents phosphorylation at this site. This mutation prevents the development of memory and synaptic plasticity deficits in FDDKI mice. These data are consistent with a role for the carboxyl-terminal APP domain in the pathogenesis of dementia and suggest that averting the noxious role of Thr668 is a viable therapeutic strategy for human dementias.  相似文献   

14.
Depletion of Ca2+ from Anacystis nidulans produces an inhibition of O2 evolution that is accompanied both at 39°C and 77 K by a loss of chlorophyll fluorescence of variable yield. This indicates that Ca2+-depletion causes disruption of normal photosystem II function, manifested by the disappearance of photoreduction of Q. Delayed light emission in the ms time range is also eliminated in Ca2+-depleted cells, which confirms that Ca2+ removal prevents charge separation and recombination in reaction centers of photosystem II. Readdition of Ca2+ to depleted cells restores fully the fluorescence of variable yield and delayed light emission, as well as O2 evolution. Thus, Ca2+ may be a required component for photosystem II in A. nidulans.  相似文献   

15.
D E Godar  D C Yang 《Biochemistry》1988,27(6):2181-2186
Valyl-tRNA synthetase from rat liver sediments at 15.5 S with a Stokes radius of 90 A, corresponding to a native molecular weight of 585,000. Purification of valyl-tRNA synthetase to homogeneity by a combination of conventional and affinity column chromatography yields a fully active monomeric form of valyl-tRNA synthetase with a sedimentation coefficient of 7.7 S and a Stokes radius of 45 A. The subunit molecular weight of the monomeric valyl-tRNA synthetase is 140,000, as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. In the presence of 400 mM KCl, the purified monomeric valyl-tRNA synthetase associates to a high molecular weight form. The high molecular weight valyl-tRNA synthetase in the homogenate can be readily converted to the monomeric form by controlled trypsinization. The kinetic parameters of the two forms are nearly identical. The results suggest that the high molecular weight valyl-tRNA synthetase is a homotypic tetramer and converts to the monomeric valyl-tRNA synthetase after the cleavage of a small peptide.  相似文献   

16.
Valyl-tRNA synthetase from mammalian cells is isolated in a high Mr complex with elongation factor 1 (EF-1). This complex, which represents all of the valyl-tRNA synthetase activity and a significant portion of the EF-1 activity in rabbit reticulocytes, contains five polypeptides identified as valyl-tRNA synthetase and the four subunits of EF-1. In this study, we have examined the potential for regulation of the complex by phosphorylation of these components. The valyl-tRNA synthetase.EF-1 complex has been purified by gel filtration and tRNA-Sepharose chromatography from 32P-labeled rabbit reticulocytes stimulated by phorbol 12-myristate 13-acetate (PMA) and compared to the complex purified from control cells. One- and two-dimensional polyacrylamide gel electrophoresis and autoradiography show that valyl-tRNA synthetase and the alpha, beta and delta subunits of EF-1 are phosphorylated in vivo. Phosphorylation of each of the four proteins is increased 2-4-fold in response to PMA. Phosphorylation of valyl-tRNA synthetase in response to PMA is reproducibly accompanied by a 1.7-fold increase in aminoacylation activity, whereas phosphorylation of EF-1 is associated with a 2.0-2.2-fold stimulation of activity, as measured by poly(U)-directed polyphenylalanine synthesis. These data suggest that stimulation of translational rates in response to PMA is mediated, at least in part, by phosphorylation of valyl-tRNA synthetase and EF-1.  相似文献   

17.
The secondary structure of the isolated tRNA-like sequence (n=159) present at the 3' OH terminus of turnip yellow mosaic virus RNA has been established from partial nuclease digestion with S1 nuclease and T1, CL3, and Naja oxiana RNases. The fragment folds into a 6-armed structure with two main domains. The first domain, of loose structure and nearest the 5' OH terminus, is composed of one large arm which extends into the coat protein cistron. The second, more compact domain, is composed of the five other arms and most probably contains the structure recognized by valyl-tRNA synthetase. In this domain three successive arms strikingly resemble the T[unk], anticodon, and D arms found in tRNA. Near the amino-acid accepting terminus, however, there is a new stem and loop region not found in standard tRNA. This secondary structure is compatible with a L-shaped three-dimensional organization in which the corner of the L and the anticodon-containing limb are similar to, and the amino-acid accepting region different from, that in tRNA. Ethylnitrosourea accessibility studies have shown similar tertiary structure features in the T[unk] loop of tRNAVal and in the homologous region of the viral RNA.  相似文献   

18.
The initiation of flowering in Arabidopsis is retarded or abolished by environmental stresses. Focusing on salt stress, we provide a molecular explanation for this well-known fact. A protein complex consisting of GI, a clock component important for flowering and SOS2, a kinase activating the [Na+] antiporter SOS1, exists under no stress conditions. GI prevents SOS2 from activating SOS1. In the presence of NaCl, the SOS2/GI complex disintegrates and GI is degraded. SO2, together with the Ca2+-activated sensor of sodium ions, SOS3, activates SOS1. In gi mutants, SOS1 is constitutively activated and gi plants are more highly salt tolerant than wild type Arabidopsis. The model shows GI as a transitory regulator of SOS pathway activity whose presence or amount connects flowering to environmental conditions.  相似文献   

19.
A high Mr complex isolated from rabbit reticulocytes contains valyl-tRNA synthetase and the four subunits of elongation factor 1 (EF-1). Previously, valyl-tRNA synthetase and the alpha, beta, and delta subunits of EF-1 were shown to be phosphorylated in reticulocytes in response to phorbol 12-myristate 13-acetate (PMA). Phosphorylation of the complex was accompanied by an increase in both valyl-tRNA synthetase and EF-1 activity (Venema, R. C., Peters, H. I., and Traugh, J. A. (1991) J. Biol. Chem., 266, 11993-11998). To investigate phosphorylation of the valyl-tRNA synthetase EF-1 complex in vitro by protein kinase C, the complex has been purified to apparent homogeneity from rabbit reticulocytes by gel filtration on Bio-Gel A-5m, affinity chromatography on tRNA-Sepharose, and fast protein liquid chromatography on Mono Q. Valyl-tRNA synthetase and the beta and delta subunits of EF-1 in the complex are highly phosphorylated by protein kinase C (0.5-0.9 mol of phosphate/mol of subunit), while EF-1 alpha is phosphorylated to a lesser extent (0.2 mol/mol). However, the isolated EF-1 alpha subunit is highly phosphorylated (2.0 mol/mol). Phosphopeptide mapping of EF-1 alpha shows that the same sites are modified by protein kinase C in vitro and in PMA-treated cells. Phosphorylation of the valyl-tRNA synthetase.EF-1 complex results in a 3-fold increase in activity of EF-1 as measured by poly(U)-directed polyphenylalanine synthesis; no effect of phosphorylation is detected with valyl-tRNA synthetase and isolated EF-1 alpha. Thus, phosphorylation and activation of EF-1 by protein kinase C, which has been shown to occur in vitro as well as in reticulocytes, may have a role in PMA stimulation of translational rates.  相似文献   

20.
Secretagogin (SCGN) is a three-domain hexa-EF-hand Ca2+-binding protein that plays a regulatory role in the release of several hormones. SCGN is expressed largely in pancreatic β-cells, certain parts of the brain, and also in neuroendocrine tissues. The expression of SCGN is altered in several diseases, such as diabetes, cancers, and neurodegenerative disorders; however, the precise associations that closely link SCGN expression to such pathophysiologies are not known. In this work, we report that SCGN is an early responder to cellular stress, and SCGN expression is temporally upregulated by oxidative stress and heat shock. We show the overexpression of SCGN efficiently prevents cells from heat shock and oxidative damage. We further demonstrate that in the presence of Ca2+, SCGN efficiently prevents the aggregation of a broad range of model proteins in vitro. Small-angle X-ray scattering (BioSAXS) studies further reveal that Ca2+ induces the conversion of a closed compact apo-SCGN conformation into an open extended holo-SCGN conformation via multistate intermediates, consistent with the augmentation of chaperone activity of SCGN. Furthermore, isothermal titration calorimetry establishes that Ca2+ enables SCGN to bind α-synuclein and insulin, two target proteins of SCGN. Altogether, our data not only demonstrate that SCGN is a Ca2+-dependent generic molecular chaperone involved in protein homeostasis with broad substrate specificity but also elucidate the origin of its altered expression in several cancers. We describe a plausible mechanism of how perturbations in Ca2+ homeostasis and/or deregulated SCGN expression would hasten the process of protein misfolding, which is a feature of many aggregation-based proteinopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号