首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible pinocytosis of horseradish peroxidase in lymphoid cells   总被引:3,自引:0,他引:3  
A detailed study of fluid phase endocytosis of horseradish peroxidase (HRP) in rat lymph node cells (LNC) is presented in this paper. Preliminary experiments have shown that HRP was internalized by non-receptor-mediated endocytosis and interacted minimally or not at all with plasma membrane of LNC, and can then be considered as a true fluid phase marker for these cells. Kinetics of uptake of HRP was found not to be linear with incubation time at 37 degrees C and deviation from linearity can be attributed to constant exocytosis of HRP. The kinetics of exocytosis cannot be described by a single exponential process. Rather, a minimum of two exponentials is required to account for exocytosis. This suggests that at least two intracellular compartments are involved in this process. The first turns over very rapidly with a t 1/2 release of about 3 min and is saturated after 10 min of exposure with HRP. The second, which turns over very slowly, is characterized by a t 1/2 release of about 500 min and accounts for the intracellular accumulation of HRP. Similar biphasic kinetics of exocytosis were observed with unfractionated LNC, with T lymphocyte-enriched LNC and with lymphocytes purified according to their density. This suggests that most, if not all, LNC are able to release HRP and that each cell type is endowed with the two intracellular compartments. Kinetics of uptake of HRP in these two compartments indicated that they are probably filled by two endocytic pathways, at least partially independent. Taken together, these results seem to indicate that a rapid membrane recycling occurs in lymphocytes. Furthermore, the weak base ammonium chloride and the carboxylic ionophore monensin were shown in our study to inhibit fluid phase endocytosis of HRP. The inhibition was time-dependent and required a preincubation of the cells with the drugs to be observed. Our results suggest that a perturbation of the vesicular traffic or a sequestration of membranes involved in HRP uptake is induced by these drugs. Under these conditions the release of cell-associated HRP was also reduced and to the same extent as the inhibition of uptake. Distribution of HRP between the two compartments and the t 1/2 release of HRP from either compartment were not perturbed. Taken together these results seem to indicate that exocytosis is not specifically affected by these drugs. Inhibition of uptake in drug-treated cells could result from a general decrease of membrane recycling or to the formation of smaller pinocytic vesicles with a different surface to volume ratio.  相似文献   

2.
Summary The uptake in vitro of horseradish peroxidase (HRP) in mouse skeletal muscle was examined by electron microscopy and chemical determination.In muscles exposed to an HRP solution for 60 min at +37°C, HRP infiltrated the basal lamina of muscle fibres and caused an intense labelling of their sarcolemma. In addition HRP was found within the transverse tubules. Exposure to HRP for 30 min at +37°C followed by HRP together with a polycationic protein (protamine) for 30 min at +37°C caused an intracellular vesicular uptake of HRP. Intracellular HRP was found in numerous vesicles, membrane limited bodies and vacuoles. Protamine also induced focal autophagic vacuolation with progressive muscle fibre degeneration. An intracellular HRP uptake or muscle cell vacuolation could not be detected in the absence of protamine or when the incubation temperature was + 4°C. Chemical determination of HRP uptake was in general agreement with the morphological results. The uptake of HRP in the presence of protamine was stimulated at +31°C and blocked at +4°C.The results suggest that in skeletal muscle in vitro intracellular uptake of macromolecules occurs by endocytosis.  相似文献   

3.
A fibroblast mutant cell line lacking the Na+/H+ antiporter was used to study the influence of low cytoplasmic pH on membrane transport in the endocytic and exocytic pathways. After being loaded with protons, the mutant cells were acidified at pH 6.2 to 6.8 for 20 min while the parent cells regulated their pH within 1 min. Cytoplasmic acidification did not affect the level of intracellular ATP or the number of clathrin-coated pits at the cell surface. However, cytosolic acidification below pH 6.8 blocked the uptake of two fluid phase markers, Lucifer Yellow and horseradish peroxidase, as well as the internalization and the recycling of transferrin. When the cytoplasmic pH was reversed to physiological values, both fluid phase endocytosis and receptor-mediated endocytosis resumed with identical kinetics. Low cytoplasmic pH also inhibited the rate of intracellular transport from the Golgi complex to the plasma membrane. This was shown in cells infected by the temperature-sensitive mutant ts 045 of the vesicular stomatitis virus (VSV) using as a marker of transport the mutated viral membrane glycoprotein (VSV-G protein). The VSV-G protein was accumulated in the trans-Golgi network (TGN) by an incubation at 19.5 degrees C and was transported to the cell surface upon shifting the temperature to 31 degrees C. This transport was arrested in acidified cells maintained at low cytosolic pH and resumed during the recovery phase of the cytosolic pH. Electron microscopy performed on epon and cryo-sections of mutant cells acidified below pH 6.8 showed that the VSV-G protein was present in the TGN. These results indicate that acidification of the cytosol to a pH less than 6.8 inhibits reversibly membrane transport in both endocytic and exocytic pathways. In all likelihood, the clathrin and nonclathrin coated vesicles that are involved in endo- and exocytosis cannot pinch off from the cell surface or from the TGN below this critical value of internal pH.  相似文献   

4.
An immunoelectron microscopic study was undertaken to survey the intracellular pathway taken by the integral membrane protein (G-protein) of vesicular stomatitis virus from its site of synthesis in the rough endoplasmic reticulum to the plasma membrane of virus-infected Chinese hamster ovary cells. Intracellular transport of the G-protein was synchronized by using a temperature-sensitive mutant of the virus (0-45). At the nonpermissive temperature (39.8 degrees C), the G-protein is synthesized in the cell infected with 0-45, but does not leave the rough endoplasmic reticulum. Upon shifting the temperature to 32 degrees C, the G-protein moves by stages to the plasma membrane. Ultrathin frozen sections of 0-45-infected cells were prepared and indirectly immunolabeled for the G-protein at different times after the temperature shift. By 3 min, the G-protein was seen at high density in saccules at one face of the Golgi apparatus. No large accumulation of G-protein-containing vesicles were observed near this entry face, but a few 50-70-mm electron-dense vesicular structures labeled for G-protein were observed that might be transfer vesicles between the rough endoplasmic reticulum and the Golgi complex. At blebbed sites on the nuclear envelope at these early times there was a suggestion that the G-protein was concentrated, these sites perhaps serving as some of the transitional elements for subsequent transfer of the G-protein from the rough endoplasmic reticulum to the Golgi complex. By 3 min after its initial asymmetric entry into the Golgi complex, the G-protein was uniformly distributed throughout all the saccules of the complex. At later times, after the G-protein left the Golgi complex and was on its way to the plasma membrane, a new class of G-protein-containing vesicles of approximately 200-nm diameter was observed that are probably involved in this stage of the transport process. These data are discussed, and the further prospects of this experimental approach are assessed.  相似文献   

5.
We have used defined subcellular fractions to reconstitute in a cell-free system vesicle fusions occurring in the endocytic pathway. The endosomal fractions were prepared by immuno-isolation using as antigen an epitope located on a foreign protein, the transmembrane glycoprotein G (G-protein) of vesicular stomatitis virus. The G-protein was first implanted in the cell plasma membrane and subsequently endocytosed for 15 to 30 min at 37 degrees C. The endosomal fractions were immuno-isolated on a solid support using as antigen the cytoplasmic domain of the G-protein in combination with a specific monoclonal antibody. For comparative studies the plasma membrane was immuno-isolated from cells in the absence of G internalization with a monoclonal antibody against the exoplasmic domain of the G-protein. The immuno-isolated endosomal vesicles contained 70% of horseradish peroxidase internalized in the endosome fluid phase, exhibited an acidic luminal pH as shown by acridine orange fluorescence and differed in their protein composition from the immuno-isolated plasma membrane fraction. The fusion of endocytic vesicles originating from different stages of the pathway was studied in a cell-free assay using both a bio-chemical and a morphological detection system. These well defined endosomal vesicles were immuno-isolated with the G-protein on the solid support and provided the recipient compartment of the fusion (acceptor). They were mixed with a post-nuclear supernatant containing endosomes loaded with exogenous lactoperoxidase (donor) at 37 degrees C. Fusion delivered the donor peroxidase to the lumen of acceptor vesicles permitting fusion-specific iodination of the G-protein itself. The fusion of vesicles required ATP and was detected only with an endosomal fraction prepared after internalization of the G-protein for 15 min at 37 degrees C but not with a plasma membrane or with an endosomal fraction prepared after 30 min G-protein internalization.  相似文献   

6.
Cytokinesis is the final stage of cell division and produces two independent daughter cells. Vesicles derived from internal membrane stores, such as the Golgi, lysosomes, and early and recycling endosomes accumulate at the intracellular bridge (ICB) during cytokinesis. Here, we use electron tomography to show that many ICB vesicles are not independent but connected, forming a newly described ICB vesicular structure – narrow tubules that are often branched. These ‘midbody tubules’ labelled with horseradish peroxidase (HRP) within 10 min after addition to the surrounding medium demonstrating that they are derived from endocytosis. HRP‐labelled vesicles and tubules were observed at the rim of the ICB after only 1 min, suggesting that midbody tubules are likely to be generated by local endocytosis occurring at the ICB rim. Indeed, at least one tubule was open to the extracellular space, indicative of a local origin within the ICB. Inhibition of cholesterol‐dependent endocytosis by exposure to methyl‐β‐cyclodextrin and filipin reduced formation of HRP‐labelled midbody tubules, and induced multinucleation following ICB formation. In contrast, dynamin inhibitors, which block clathrin‐mediated endocytosis, induced multinucleation but had no effect on the formation of HRP‐labelled midbody tubules. Therefore, our data reveal the existence of a cholesterol‐dependent endocytic pathway occurring locally at the ICB, which contributes to the accumulation of vesicles and tubules that contribute to the completion of cytokinesis.   相似文献   

7.
Surface immunoglobulin (Ig)-mediated endocytosis has been investigated in rat B lymphocytes and plasma cells, using horseradish peroxidase (HRP)-labeled sheep anti-rat Ig Fab' fragment of antibody and HRP as monomeric ligands, respectively. Quantitative estimates of HRP activity associated either with plasma membrane or with endomembrane compartments were made in several experimental conditions. Binding of HRP-conjugate on B lymphocytes was followed by its endocytosis in combination with surface Ig, as shown by the progressive disappearance of plasma membrane-associated HRP activity. Between 1 and 6 h at 37 degrees C in presence of conjugate the total amount of cell-associated activity was constant. These results indicate that during this time no reappearance of surface Ig occurred by neosynthesis, by the expression of an intracellular pool or by the recycling in a free form of the previously internalized molecules. On the contrary, at saturating doses, internalization of HRP by anti-HRP plasma cells increased linearly with time at 37 degrees C in presence of antigen, when, during the same time, the plasma membrane HRP-binding capacity remained constant. Cycloheximide did not affect continuous HRP uptake. The existence of a large intracellular pool of receptors has been ruled out by experiments of removal of binding sites with pronase. In addition, monensin caused a progressive decrease in the number of surface receptors on plasma cells but not on B lymphocytes. Our data then indicate that, unlike B lymphocytes, plasma cells were able to recycle their surface Ig.  相似文献   

8.
Annexin A6 (AnxA6) is a Ca(2+)-dependent membrane-binding protein involved in vesicular traffic. The likely participation of AnxA6 in the response of lymphocytes to Ca(2+) signals has not been investigated yet. The present study focuses on intracellular relocation of AnxA6 in human Jurkat T lymphoblasts upon stimulation followed by transient increase of intracellular [Ca(2+)] and exocytosis of interleukin-2 (IL-2). Stimulation of the cells under different experimental conditions (by lowering pH and/or by rising extracellular [Ca(2+)] in the presence of ionomycin) induced time-dependent transients of intracellular [Ca(2+)] and concomitant changes in AnxA6 intracellular localization and in IL-2 secretion, with only minor effects on cell viability and apoptosis. In resting conditions (in the presence of EGTA or with no ionophore) AnxA6 was localized uniformly in the cytosol, whereas it translocated to vesicular structures beneath the plasma membrane within 5 min following stimulation of Jurkat T cells and rise of intracellular [Ca(2+)] at pH 7.4. Lowering the extracellular pH value from 7.4 to 6.0 significantly enhanced this process. AnxA6 changed its location from the cytosol to the secretory granules and early endosomes which seem to represent membranous targets for annexin. In conclusion, AnxA6 is sensitive to variations in intracellular [Ca(2+)] upon stimulation of Jurkat T cells, as manifested by a switch in its intracellular localization from the cytosol to vesicular structures located in close proximity to the plasma membrane, suggestive of participation of AnxA6 in calcium- and proton-dependent secretion of cytokines by lymphocytes.  相似文献   

9.
It was previously shown that cultured mouse peritoneal macrophages ingest anionic derivatives of horseradish peroxidase (HRP) and ferritin by fluid-phase endocytosis and accumulate them in lysosomes. Cationic derivatives were taken up by adsorptive endocytosis and transported to lysosomes but subsequently appeared also in stacked cisternae, tubules, and vesicles of the Golgi complex. In the present investigation, the effect of molecular net charge on the rate of cellular inactivation of a protein was studied. The results demonstrate that anionized HRP was inactivated at a higher initial rate than cationized HRP. This is in agreement with the finding that the cationic protein partly escaped from the digestive compartment of the cells, that means the lysosomes. The effects of phorbol myristate acetate (PMA)--a diterpene ester and a tumor promoter--and monensin--a carboxylic ionophore and a perturbant of the Golgi complex--on fluid-phase endocytosis of HRP and intracellular transport of cationized ferritin (CF) were also studied. PMA stimulated fluid-phase endocytosis of HRP but did not interfere with transport of CF to the Golgi complex. Contrarily, monensin inhibited uptake of HRP and almost totally blocked transport of CF to the Golgi complex. The findings support the idea that membrane and content of endocytic vesicles are treated separately. The content is emptied into lysosomes where macromolecular material normally is degraded. The membrane becomes part of the lysosomal envelope in connection with endocytic vesicle-lysosome fusion. Subsequently, membrane patches are detached from the lysosomes and reutilized. This is at least partly mediated via the Golgi complex and particularly its tubular and vesicular parts. Since the cationic tracers do not bind to the membrane in a stable way, it is not possible to extend the conclusions to individual membrane constituents.  相似文献   

10.
We compared the intracellular pathways of the transferrin receptor (TfR) with those of the asialoglycoprotein receptor (ASGPR) and the cation-independent mannose 6-phosphate receptor (MPR)/insulin-like growth factor II receptor during endocytosis in Hep G2 cells. Cells were allowed to endocytose a conjugate of horseradish peroxidase and transferrin (Tf/HRP) via the TfR system. Postnuclear supernatants of homogenized cells were incubated with 3,3'-diaminobenzidine (DAB) and H2O2. Peroxidase-catalyzed oxidation of DAB within Tf/HRP-containing endosomes cross-linked their contents to DAB polymer. The cross-linking efficiency was dependent on the intravesicular Tf/HRP concentration. The loss of detectable receptors from samples of cell homogenates treated with DAB/H2O2 was used as a measure of colocalization with Tf/HRP. To compare the distribution of internalized plasma membrane receptors with Tf/HRP, cells were first surface-labeled with 125I at 0 degrees C. After uptake of surface 125I-labeled receptors at 37 degrees C in the presence of Tf/HRP, proteinase K was used at 0 degrees C to remove receptors remaining at the plasma membrane. Endocytosed receptors were isolated by means of immunoprecipitation. 125I-TfR and 125I-ASGPR were not sorted from endocytosed Tf/HRP. 125I-MPR initially also resided in Tf/HRP-containing compartments, however 70% was sorted from the Tf/HRP pathway between 20 and 45 min after uptake. To study the accessibility of total intracellular receptor pools to endocytosed Tf/HRP, nonlabeled cells were used, and the receptors were detected by means of Western blotting. The entire intracellular TfR population, but only 70 and 50% of ASGPR and MPR, respectively, were accessible to endocytosed Tf/HRP. These steady-state levels were reached by 10 min of continuous Tf/HRP uptake at 37 degrees C. We conclude that 30% of the intracellular ASGPR pool is not involved in endocytosis (i.e., is silent). Double-labeling immunoelectron microscopy on DAB-labeled cells showed a considerable pool of ASGPR in secretory albumin-positive, Tf/HRP-negative, trans-Golgi reticulum. We suggest that this pool represents the silent ASGPR that has been biochemically determined. A model of receptor transport routes is presented and discussed.  相似文献   

11.
Tubular early endosomal networks in AtT20 and other cells   总被引:29,自引:19,他引:10       下载免费PDF全文
Using horseradish peroxidase (HRP) as a fluid-phase endocytic tracer, we observed through the electron microscope numerous tubular endosomes with a diameter of 30-50 nm and lengths of greater than 2 microns in thick sections (0.2-0.5 microns) of AtT20 cells. These tubular endosomes are multibranching and form local networks but not a single reticulum throughout the cytoplasm. They are sometimes in continuity with vesicular endosomal structures but have not been observed in continuity with AtT20 cell late endosomes. Tubular endosomal networks are not uniformly distributed throughout the cytoplasm, but are particularly abundant in growth cones, in patches below the plasma membrane of the cell body, and surrounding the centrioles and microtubule organizing center (MTOC). Tubular endosomes at all these locations receive HRP within the first 5 min of endocytosis but approximately 30 min of endocytosis are required to load the tubular endosomal networks with HRP so that their full extent can be visualized in the electron microscope. After 10 min of endocytosis, complete unloading occurs within 30 min of chase, but between 30 and 60 min are required to chase out all the tracer from the tubular endosomes loaded to steady state during 60 min endocytosis of 10 mg/ml HRP. In interphase cells, neither the loading nor unloading of tubular endosomes depends on microtubules but in cells blocked in mitosis by depolymerization of the mitotic spindle with nocodazole, HRP does not chase out of tubular endosomes. The thread-like shape of tubular endosomes is not dependent on microtubules. Furthermore, HRP is delivered to AtT20 tubular endosomes at 20 degrees C. All these properties indicate that AtT20 cell tubular endosomes are an early endocytic compartment distinct from late endosomes. Tubular endosomes like those in AtT20 cells have been seen in cells of the following lines: PC12, HeLa, Hep2, Vero, MDCK I and II, CCL64, RK13, and NRK; they are particularly abundant in the first three lines. In contrast, tubular endosomes are sparse in 3T3 and BHK21 cells. The tubular endosomes we have observed appear to be identical to the endosomal reticulum observed in the living Hep2 cells by Hopkins, C. R., A. Gibson, H. Shipman, and K. Miller. 1990.  相似文献   

12.
We have shown that endocytosis at the apical plasma membrane ofpancreatic acinar cells is regulated by the pH of the acinar lumen andis associated with cleavage of GP2, a glycosylphosphatidylinositol-anchored protein. The aim of this study was todetermine the transduction pathway by which endocytosis is activated.Apical endocytosis was studied in rat pancreatic acini byprestimulation with cholecystokinin followed by measurement ofhorseradish peroxidase (HRP) uptake. Lanthanum, staurosporine, andforskolin had no effect on HRP uptake. Cytochalasin D significantlyinhibited endocytosis, indicating a dependence on actin filamentintegrity. Genistein and the specific tyrphostin inhibitor B42 alsoinhibited HRP uptake, implicating tyrosine kinases in the regulation ofHRP uptake. With the use of an Src kinase-specific substrate, Srckinase activity was temporally related to activation of endocytosis.The tyrosine-dependent phosphorylation of an 85-kDa substrate in bothrat and mouse pancreatic acini correlated with Src kinase activationand pH-dependent regulation of HRP uptake. These results indicate thatapical endocytosis in acinar cells is associated with tyrosine kinaseactivation and is dependent on the actin cytoskeleton.  相似文献   

13.
Xue L  Zhang Z  McNeil BD  Luo F  Wu XS  Sheng J  Shin W  Wu LG 《Cell reports》2012,1(6):632-638
Although calcium influx triggers endocytosis at many synapses and non-neuronal secretory cells, the identity of the calcium channel is unclear. The plasma membrane voltage-dependent calcium channel (VDCC) is a candidate, and it was recently proposed that exocytosis transiently inserts vesicular calcium channels at the plasma membrane, thus triggering endocytosis and coupling it to exocytosis, a mechanism suggested to be conserved from sea urchin to human. Here, we report that the vesicular membrane, when inserted into the plasma membrane upon exocytosis, does not generate a calcium current or calcium increase at a mammalian nerve terminal. Instead, VDCCs at the plasma membrane, including the P/Q-type, provide the calcium influx to trigger rapid and slow endocytosis and, thus, couple endocytosis to exocytosis. These findings call for reconsideration of the vesicular calcium channel hypothesis. They are likely to apply to many synapses and non-neuronal cells in which VDCCs control exocytosis, and exocytosis is coupled to endocytosis.  相似文献   

14.
Cultured rat embryo fibroblasts were first allowed to store for 24 h fluorescein-labeled goat immunoglobulins directed against rabbit immunoglobulins (F anti-R IgG), and were subsequently exposed for 24 h to [(3)H]acetylated rabbit immunoglobulins known to bind to the cell membrane either specifically (anti-plasma membrane IgG: A anti-PM IgG) or unspecifically (contol IgG: AC IgG). As a result of immunological interaction between the two antibodies (no effect was found if the cells had been preloaded with control goat FC IgG), a substantial portion of the stored F anti-R IgG was unloaded from its intracellular storage site, appearing in the medium in the form of soluble immune complexes with rabbit A IgG. Part of the unloaded F anti-R IgG also was recovered in association with the plasma membrane, but only when A anti-PM IgG was used. In addition, significant reverse translocation of AC IgG from plasma membrane to lysosomes or some related intracellular storage compartment was also observed. With A anti-PM IgG, this translocation was less marked and affecte at the same time the plasma membrane marker 5’- nucleotidase. Cells that had stored horseradish peroxidase (HRP) simultaneously with F anti-R IgG did not unload HRP when exposed to A anti-PM IgG. These results support strongly, though not unequivocally, the concept that plasma membrane patches interiorized by endocytosis are recycled, or shuttled, back to the cell surface. In the framework of this concept, recycling antibody-coated membrane is taken to serve as vehicle for the selective intracellular capture and extracellular discharge of immunologically bound F anti-R IgG. The alternative explanation of regurgitation triggered off by immune complexes is considered less likely in view of the lack of HRP unloading.  相似文献   

15.
Fc receptors on the luminal membranes of intestinal epithelial cells in the neonatal rat mediate the vesicular transfer of functionally intact IgG from the intestinal lumen to the circulation. In addition, there is a low level of nonselective protein uptake, but in this case transfer does not occur. To determine whether a specialized class of endocytic vesicles could account for the selective transfer of IgG, mixtures of IgG conjugated to ferritin (IgG-Ft) and unconjugated horseradish peroxidase (HRP) were injected together into the proximal intestine of 10-d-old rats, and the cellular distribution of these two different tracers was determined by electron microscopy. Virtually all apical endocytic vesicles contained both tracers, indicating simultaneous uptake of both proteins within the same vesicle. However, only IgG-Ft bound to the apical plasma membrane, appeared within coated vesicles at the lateral cell surface, and was released from cells. HRP did not bind to the luminal membrane and was not transferred across cells but was confined to apical lysosomes as identified by acid phosphatase and aryl sulfatase activities. To test the possibility that the binding of IgG to its receptor stimulated endocytosis, HRP was used as a fluid volume tracer, and the amount of HRP taken up by cells in the presence and absence of IgG was measured morphologically and biochemically. The results demonstrate that endocytosis in these cells is constitutive and occurs at the same level in the absence of IgG. The evidence presented indicates that the principal selective mechanism for IgG transfer is the binding of IgG to its receptor during endocytosis. Continued binding to vesicle membranes appears to be required for successful transfer because unbound proteins are removed from the transport pathway before exocytosis. These results favor the proposal that IgG is transferred across cells as an IgG-receptor complex.  相似文献   

16.
The present experiments report the existence of an apico-basal plasma membrane shuttle in cultured renal collecting duct principal cell epithelium. Apical and basal perfusion under isotonic conditions, 290 mosm phosphate-buffered saline (PBS), has no effect on the shape of the epithelium. In contrast, gradient perfusion of the epithelium with 75 mosm PBS on the apical side and 290 mosm PBS on the basal side for 10 min alters the morphology of the epithelium by causing the originally columnar epithelial cells to become lower, the intercellular spaces to dilate, and the intracellular vesicles to enlarge. Perfusion of the epithelium with isotonic PBS in the presence of electron-dense cellular markers such as gold-coupled GPCDI antibody, recognizing a glycoprotein in the plasma membrane of collecting duct cells (W.W. Minuth, G. Lauer, S. Bachman and W. Kriz, Histochemistry 80:171-182, 1984), cationized ferritin (CF), horseradish peroxidase (HRP) and native ferritin (NF) for 10 min reveals their binding at the apical plasma membrane. Little endocytosis is observable. However, after labeling the luminal side by the cellular markers and following exposure to apical hypotonicity, 75 mosm PBS for 10 min, endocytosis of all markers is enhanced to a high degree. Furthermore, the gold-coupled GPCDI antibody and cationized ferritin are transported within vesicles unidirectionally through the epithelium and are exocytosed at the basolateral aspect, indicating the retrieval and possible translocation of apical plasma membrane. In contrast, volume markers such as NF and HRP are also endocytosed under osmotic gradient exposure, but are not seen to be transcytosed. Therefore, the function of this membrane pathway seems not to be related to water reabsorption, but may be part of a cellular response as protection against the osmotic gradient.  相似文献   

17.
The utilization of cellulose or cellobiose by Bacteroides succinogenes S85 was severely inhibited at pH values of less than 5.7. Since low pH inhibited the utilization of both cellobiose and cellulose, changes in cellulase activity could not explain the effect. At an extracellular pH of 6.9, the pH gradient (delta pH) across the cell membrane was only 0.07 U. As extracellular pH declined from 6.9 to 5.7, intracellular pH decreased to a smaller extent than extracellular pH and delta pH increased. Below pH 5.7, there was a linear and nearly proportional decrease in intracellular pH. B. succinogenes took up the lipophilic cation tetraphenylphosphonium ion (TPP+) in the presence of cellobiose, and uptake was sensitive to the ionophore valinomycin. As pH was decreased with phosphoric acid, the cells lost TPP+ and electrical potential, delta psi, decreased. From extracellular pH 6.9 to 5.7, the decrease in delta psi was compensated for by an increase in delta pH, and the proton motive force ranged from 152 to 158 mV. At a pH of less than 5.7, there was a large decrease in proton motive force, and this decrease corresponded to the inhibition of cellobiose utilization.  相似文献   

18.
The utilization of cellulose or cellobiose by Bacteroides succinogenes S85 was severely inhibited at pH values of less than 5.7. Since low pH inhibited the utilization of both cellobiose and cellulose, changes in cellulase activity could not explain the effect. At an extracellular pH of 6.9, the pH gradient (delta pH) across the cell membrane was only 0.07 U. As extracellular pH declined from 6.9 to 5.7, intracellular pH decreased to a smaller extent than extracellular pH and delta pH increased. Below pH 5.7, there was a linear and nearly proportional decrease in intracellular pH. B. succinogenes took up the lipophilic cation tetraphenylphosphonium ion (TPP+) in the presence of cellobiose, and uptake was sensitive to the ionophore valinomycin. As pH was decreased with phosphoric acid, the cells lost TPP+ and electrical potential, delta psi, decreased. From extracellular pH 6.9 to 5.7, the decrease in delta psi was compensated for by an increase in delta pH, and the proton motive force ranged from 152 to 158 mV. At a pH of less than 5.7, there was a large decrease in proton motive force, and this decrease corresponded to the inhibition of cellobiose utilization.  相似文献   

19.
Summary The present experiments report the existence of an apico-basal plasma membrane shuttle in cultured renal collecting duct principal cell epithelium. Apical and basal perfusion under isotonic conditions, 290 mosm phosphate-buffered saline (PBS), has no effect on the shape of the epithelium. In contrast, gradient perfusion bf the epithelium with 75 mosm PBS on the apical side and 290 mosm PBS on the basal side for 10 min alters the morphology of the epithelium by causing the originally columnar epithelial cells to become lower, the intercellular spaces to dilate, and the intracellular vesicles to enlarge. Perfusion of the epithelium with isotonic PBS in the presence of electron-dense cellular markers such as gold-coupled GPCDI antibody, recognizing a glycoprotein in the plasma membrane of collecting duct cells (W.W. Minuth, G. Lauer, S. Bachman and W. Kriz,Histochemistry 80:171–182, 1984), cationized ferritin (CF), horseradish peroxidase (HRP) and native ferritin (NF) for 10 min reveals their binding at the apical plasma membrane. Little endocytosis is observable. However, after labeling the luminal side by the cellular markers and following exposure to apical hypotonicity, 75 mosm PBS for 10 min, endocytosis of all markers is enhanced to a high degree. Furthermore, the gold-coupled GPCDI antibody and cationized ferritin are transported within vesicles unidirectionally through the epithelium and are exocytosed at the basolateral aspect, indicating the retrieval and possible translocation of apical plasma membrane. In contrast, volume markers such as NF and HRP are also endocytosed under osmotic gradient exposure, but are not seen to be transcytosed. Therefore, the function of this membrane pathway seems not to be related to water reabsorption, but may be part of a cellular response as protection against the osmotic gradient.  相似文献   

20.
We have studied the effects of brefeldin A (BFA) on endocytosis and intracellular traffic in polarized MDCK cells by using the galactose-binding protein toxin ricin as a membrane marker and HRP as a marker of fluid phase transport. We found that BFA treatment rapidly increased apical endocytosis of both ricin and HRP, whereas basolateral endocytosis was unaffected, as was endocytosis of HRP in the poorly polarized carcinoma cell lines HEp-2 and T47D. Tubular endosomes were induced by BFA both apically and basolaterally in some MDCK cells, comparable with those seen in HEp-2 and T47D cells. In addition, in MDCK cells, BFA induced formation of small (< 300 nm) vesicles, labeled both after apical and basolateral uptake of HRP, as well as some very large (> 700 nm) vacuoles, which were only labeled when HRP was present in the apical medium. In contrast, neither in MDCK nor in HEp-2 or T47D cells, did BFA have any effect on lysosomal morphology. Moreover, transcytosis in the basolateral-apical direction was stimulated both for HRP and ricin. Other vesicular transport routes were less affected or unaffected by BFA treatment. Two closely related structural analogues of BFA (B16 and B21), unable to produce the changes in Golgi and endosomal morphology seen after BFA treatment in a number of different cell lines, were also unable to mimic the effects of BFA on MDCK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号