首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Xu  T Elliott 《Journal of bacteriology》1993,175(16):4990-4999
The 8th step in the 10-step heme biosynthetic pathway of Salmonella typhimurium is the oxidation of coproporphyrinogen III to protoporphyrinogen IX. On the basis of genetic studies, we have suggested that this reaction may be catalyzed by either of two different enzymes, an oxygen-dependent one encoded by hemF or an oxygen-independent enzyme encoded by hemN. Here, we report the cloning of the S. typhimurium hemF gene and its DNA sequence. The predicted amino acid sequence of the HemF protein is 44% identical to that of the coproporphyrinogen oxidase encoded by the yeast HEM13 gene. The wild-type S. typhimurium strain LT-2 produces an oxygen-dependent coproporphyrinogen oxidase activity detectable in crude extracts, which is not found in hemF mutants and is overproduced in strains carrying the hemF gene on a multicopy plasmid. the hemF gene is the second gene in an operon with an upstream gene with an unknown function, whose amino acid sequence suggests a relation to amidases involved in cell wall synthesis or remodeling. The upstream gene and hemF are cotranscribed from a promoter which was mapped by primer extension. A weaker, hemF-specific promoter is inferred from the behavior of an omega-Cm insertion mutation in the upstream gene. Although this insertion decreases expression of beta-galactosidase about 7.5-fold when placed upstream of a hemF-lacZ operon fusion, it still allows sufficient HemF expression from an otherwise wild-type construct to confer a Hem+ phenotype. The hemF operon is transcribed clockwise with respect to the genetic map.  相似文献   

2.
3.
4.
5.
6.
Al-Sheboul S  Saffarini D 《Anaerobe》2011,17(6):501-505
Shewanella oneidenesis MR-1 is a facultative anaerobe that can use a large number of electron acceptors including metal oxides. During anaerobic respiration, S. oneidensis MR-1 synthesizes a large number of c cytochromes that give the organism its characteristic orange color. Using a modified mariner transposon, a number of S. oneidensis mutants deficient in anaerobic respiration were generated. One mutant, BG163, exhibited reduced pigmentation and was deficient in c cytochromes normally synthesized under anaerobic condition. The deficiencies in BG163 were due to insertional inactivation of hemN1, which exhibits a high degree of similarity to genes encoding anaerobic coproporphyrinogen III oxidases that are involved in heme biosynthesis. The ability of BG163 to synthesize c cytochromes under anaerobic conditions, and to grow anaerobically with different electron acceptors was restored by the introduction of hemN1 on a plasmid. Complementation of the mutant was also achieved by the addition of hemin to the growth medium. The genome sequence of S. oneidensis contains three putative anaerobic coproporphyrinogen III oxidase genes. The protein encoded by hemN1 appears to be the major enzyme that is involved in anaerobic heme synthesis of S. oneidensis. The other two putative anaerobic coproporphyrinogen III oxidase genes may play a minor role in this process.  相似文献   

7.
The hemF gene of Rhodobacter sphaeroides 2.4.1 is predicted to code for an oxygen-dependent coproporphyrinogen III oxidase. We found that a HemF- mutant strain is unable to grow under aerobic conditions. We also determined that hemF expression is controlled by oxygen, which is mediated, at least in part, by the response regulatory protein PrrA.  相似文献   

8.
Summary The first step in heme biosynthesis is the formation of 5-aminolevulinic acid (ALA). We have isolated, mapped and characterized a large number of Salmonella typhimurium mutants auxotrophic for ALA. These mutants carry defects in either one of two genes, both required for ALA synthesis. The previously identified hemA gene maps at 35 min, and the hemL gene maps at 5 min on the S. typhimurium genetic map. Mutants in hemA and hemL are defective for aerobic and anaerobic respiration, and appear to be oxygen sensitive. The Hem phenotype of hemL mutants is less severe than that of hemA mutants. Although hemA and hemL mutants are deficient in heme synthesis, genetic tests indicate that they still synthesize two minor products of the heme pathway, siroheme and cobalamin (vitamin B12), under anaerobic conditions. In contrast, hemB, hemC and cysG mutants, blocked after ALA synthesis, make neither siroheme nor vitamin B12. Double mutants defective in both hemA and hemL also make siroheme. We suggest that hemA and hemL are required for one route of ALA synthesis and that a second, minor route of ALA synthesis may operate in S. typhimurium; this second pathway would be independent of the hemA and hemL functions.Abbreviations Amp ampicillin - Cam chloramphenicol - Kan kanamycin - Tet tetracycline - Str streptomycin - X-gal 5-bromo-4-chloro-3-indolyl--d-galactoside - DES diethyl sulfate  相似文献   

9.
Summary Heme-deficient mutants of Saccharomyces cerevisiae have been isolated from two isogenic strains with the use of an enrichment method based on photodynamic properties of Zn-protoporphyrin. They defined seven non-overlapping complementation groups. A mutant representative of each group was further analysed. Genetic analysis showed that each mutant carried a single nuclear recessive mutation. Biochemical studies showed that the observed accumulation and/or excretion of the different heme synthesis precursors by the mutant cells correlated well with the enzymatic deficiencies measured in acellular extracts. Six of the seven mutants were blocked in a different enzyme activity: 5-aminolevulinate synthase, porphobilinogen synthase, uroporphyrinogen I synthase, uroporphyrinogen decarboxylase, coproporphyrinogen III oxidase and ferrochelatase. The other mutant had the same phenotype as the mutant deficient in ferrochelatase activity. However, it possessed a normal ferrochelatase activity when measured in vitro, so this mutant was assumed to be deficient in protoporphyrinogen oxidase activity or in the transport and/or reduction of iron.The absence of PBG synthesis led to a total lack of uroporphyrinogen I synthase activity. The absence of heme, the end product, led to an important increase of coproporphyrinogen III oxidase activity, while the activity of 5-aminolevulinate synthase, the first enzyme of the pathway, was not changed. These results are discussed in terms of possible modes of regulation of heme synthesis pathway in yeast.  相似文献   

10.
Summary Mutants of Saccharomyces cerevisiae, described as catalase and cytochromes deficient (Pachecka et al., 1974), have been analyzed for heme biosynthesis ability. Some enzymatic activities involved in protoheme synthesis were measured in acellular extracts, whereas whole cells were analyzed for cytochrome spectra and for possible accumulation of porphyrin synthesis intermediates. A good correlation was found between these in vitro and in vivo studies. Results show that two mutants were impaired in 5-aminolevulinate synthesis, two mutants were devoid of uroporphyrinogen I synthetase activity and one mutant presented defects in coproporphyrinogen III oxidase activity.  相似文献   

11.
12.
Wild-type Saccharomyces cerevisiae do not accumulate exogenous sterols under aerobic conditions, and a mutant allele conferring sterol auxotrophy (erg7) could be isolated only in strains with a heme deficiency. delta-Aminolevulinic acid (ALA) fed to a hem1 (ALA synthetase-) erg7 (2,3-oxidosqualene cyclase-) sterol-auxotrophic strain of S. cerevisiae inhibited sterol uptake, and growth was negatively affected when intracellular sterol was depleted. The inhibition of sterol uptake (and growth of sterol auxotrophs) by ALA was dependent on the ability to synthesize heme from ALA. A procedure was developed which allowed selection of strains which would take up exogenous sterols but had no apparent defect in heme or ergosterol biosynthesis. One of these sterol uptake control mutants possessed an allele which allowed phenotypic expression of sterol auxotrophy in a heme-competent background.  相似文献   

13.
Cell-free extracts of various cytochrome-containing, heterotrophic microorganisms were examined for ability to convert coproporphyrinogen to protoporphyrin. Extracts of Escherichia coli and Pseudomonas denitrificans readily accumulated large amounts of protoporphyrin when assayed under aerobic conditions. However, protoporphyrin did not accumulate under either aerobic or anaerobic conditions of assay or in the presence of various supplements in extracts of the aerobe Micrococcus lysodeikticus, the facultative anaerobe Staphylococcus aureus, or the anaerobe Vibrio succinogenes. Protoporphyrin also accumulated when extracts of E. coli and P. denitrificans were incubated aerobically with the early heme precursor, delta-amino levulinic acid (ALA). This protoporphyrin accumulation was markedly stimulated by the iron chelator, o-phenanthroline. Extracts of S. aureus and M. lysodeikticus accumulated coproporphyrin, but not protoporphyrin when incubated with ALA. The enzyme system in extracts of E. coli which converts coproporphyrinogen to protoporphyrin under aerobic conditions of assay was also partially characterized. This conversion was stimulated by the iron chelator, o-phenanthroline, the respiratory inhibitor, cyanide, and the reducing agent, thioglycolate. Dialysis of the extract did not diminish enzyme activity. Certain alternate electron acceptors and nitrite caused a marked inhibition of the conversion. These results indicate that this late step in heme synthesis, the conversion of coproporphyrinogen to protoporphyrin, can be readily demonstrated in extracts of some, but not all, cytochrome-containing bacteria and that the aerobic conversion in E. coli exhibits many characteristics similar to those demonstrated for the aerobic conversion previously studied in liver mitochondria.  相似文献   

14.
15.
16.
17.
18.
To identify nuclear functions required for cytochrome c oxidase biogenesis in yeast, recessive nuclear mutants that are deficient in cytochrome c oxidase were characterized. In complementation studies, 55 independently isolated mutants were placed into 34 complementation groups. Analysis of the content of cytochrome c oxidase subunits in each mutant permitted the definition of three phenotypic classes. One class contains three complementation groups whose strains carry mutations in the COX4, COX5a, or COX9 genes. These genes encode subunits IV, Va, and VIIa of cytochrome c oxidase, respectively. Mutations in each of these structural genes appear to affect the levels of the other eight subunits, albeit in different ways. A second class contains nuclear mutants that are defective in synthesis of a specific mitochondrial-encoded cytochrome c oxidase subunit (I, II, or III) or in both cytochrome c oxidase subunit I and apocytochrome b. These mutants fall into 17 complementation groups. The third class is represented by mutants in 14 complementation groups. These strains contain near normal amounts of all cytochrome c oxidase subunits examined and therefore are likely to be defective at some step in holoenzyme assembly. The large number of complementation groups represented by the second and third phenotypic classes suggest that both the expression of the structural genes encoding the nine polypeptide subunits of cytochrome c oxidase and the assembly of these subunits into a functional holoenzyme require the products of many nuclear genes.  相似文献   

19.
The eight enzymes of the tricarboxylic acid (TCA) cycle are encoded by at least 15 different nuclear genes in Saccharomyces cerevisiae. We have constructed a set of yeast strains defective in these genes as part of a comprehensive analysis of the interactions among the TCA cycle proteins. The 15 major TCA cycle genes can be sorted into five phenotypic categories on the basis of their growth on nonfermentable carbon sources. We have previously reported a novel phenotype associated with mutants defective in the IDH2 gene encoding the Idh2p subunit of the NAD+-dependent isocitrate dehydrogenase (NAD-IDH). Null and nonsense idh2 mutants grow poorly on glycerol, but growth can be enhanced by extragenic mutations, termed glycerol suppressors, in the CIT1 gene encoding the TCA cycle citrate synthase and in other genes of oxidative metabolism. The TCA cycle mutant collection was utilized to search for other genes that can suppress idh2 mutants and to identify TCA cycle genes that display a similar suppressible growth phenotype on glycerol. Mutations in 7 TCA cycle genes were capable of functioning as suppressors for growth of idh2 mutants on glycerol. The only other TCA cycle gene to display the glycerol-suppressor-accumulation phenotype was IDH1, which encodes the companion Idh1p subunit of NAD-IDH. These results provide genetic evidence that NAD-IDH plays a unique role in TCA cycle function.  相似文献   

20.
The first step in heme biosynthesis is the formation of 5-aminolevulinic acid (ALA). Mutations in two genes, hemA and hemL, result in auxotrophy for ALA in Salmonella typhimurium, but the roles played by these genes and the mechanism of ALA synthesis are not understood. I have cloned and sequenced the S. typhimurium hemA gene. The predicted polypeptide sequence for the HemA protein shows no similarity to known ALA synthases, and no ALA synthase activity was detected in extracts prepared from strains carrying the cloned hemA gene. Genetic analysis, DNA sequencing of amber mutations, and maxicell studies proved that the open reading frame identified in the DNA sequence encodes HemA. Another surprising finding of this study is that hemA lies directly upstream of prfA, which encodes peptide chain release factor 1 (RF-1). A hemA::Kan insertion mutation, constructed in vitro, was transferred to the chromosome and used to show that these two genes form an operon. The hemA gene ends with an amber codon, recognized by RF-1. I suggest a model for autogenous control of prfA expression by translation reinitiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号