首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tcrb-V-specific positive and negative selection of T cells has been well documented. In contrast, nothing is known about Tcra-V-specific selection. Using Tcra-V8-specific KT50 antibody Tcra-V8-specific selection of T cells has been examined. The CD8+ T cell subpopulation bearing Tcra-V8 are shown to be negatively selected by major histocompatibility complex (MHC) class I H-2Kd and H-2Dd/Ld molecules. Furthermore, percentages of these T cells are also influenced by Tcra-V haplotypes. Involvement of non-H-2 self (super)antigens in this MHC class I restricted negative selection, however, remains to be determined.  相似文献   

2.
Due to their potent immunostimulatory capacity, dendritic cells (DC) have become the centerpiece of many vaccine regimens. Immature DC (DCimm) capture, process, and present Ags to CD4(+) lymphocytes, which reciprocally activate DCimm through CD40, and the resulting mature DC (DCmat) loose phagocytic capacity, but acquire the ability to efficiently stimulate CD8(+) lymphocytes. Recombinant vaccinia viruses (rVV) provide a rapid, easy, and efficient method to introduce Ags into DC, but we observed that rVV infection of DCimm results in blockade of DC maturation in response to all activation signals, including CD40L, monocyte-conditioned medium, LPS, TNF-alpha, and poly(I:C), and failure to induce a CD8(+) response. By contrast, DCmat can be infected with rVV and induce a CD8(+) response, but, having lost phagocytic activity, fail to process the Ag via the exogenous class II pathway. To overcome these limitations, we used the CMV protein pp65 as a model Ag and designed a gene containing the lysosomal-associated membrane protein 1 targeting sequence (Sig-pp65-LAMP1) to target pp65 to the class II compartment. DCmat infected with rVV-Sig-pp65-LAMP1 induced proliferation of pp65-specific CD4(+) clones and efficiently induced a pp65-specific CD4(+) response, suggesting that after DC maturation the intracellular processing machinery for class II remains intact for at least 16 h. Moreover, infection of DCmat with rVV-Sig-pp65-LAMP1 resulted in at least equivalent presentation to CD8(+) cells as infection with rVV-pp65. These results demonstrate that despite rVV interference with DCimm maturation, a single targeting vector can deliver Ags to DCmat for the effective simultaneous stimulation of both CD4(+) and CD8(+) cells.  相似文献   

3.
IL-10 producing T cells inhibit Ag-specific CD8+ T cell responses and may play a role in the immune dysregulation observed in HIV infection. We have previously observed the presence of HIV-specific IL-10-positive CD8+ T cells in advanced HIV disease. In this study, we examined the suppressive function of the Gag-specific IL-10-positive CD8+ T cells. Removal of these IL-10-positive CD8+ T cells resulted in increased cytolysis and IL-2, but not IFN-gamma, production by both HIV- and human CMV-specific CD8+ T cells. In addition, these IL-10-positive CD8+ T cells mediated suppression through direct cell-cell contact, and had a distinct immunophenotypic profile compared with other regulatory T cells. We describe a new suppressor CD8+ T cell population in advanced HIV infection that may contribute to the immune dysfunction observed in HIV infection.  相似文献   

4.
In the CT26 BALB/c murine model of colorectal carcinoma, depletion of regulatory T cells (Tregs) prior to tumor inoculation results in protective immunity to both CT26 and other BALB/c-derived tumors of diverse histological origin. In this paper, we show that cross-protection can be conferred by adoptively transferred CD8(+) CTLs. Other schedules for inducing immunity to CT26 have been described, but they do not lead to cross-protection. We show that Treg ablation facilitates the development of new CTL specificities that are normally cryptic, and have mapped the root epitope of one of these responses. This work has allowed us to demonstrate how the specificity of CTL responses to tumor Ags can be controlled via differential suppression of CTL specificities by Tregs, and how this can result in very different physiological outcomes.  相似文献   

5.
The long terminal repeat from a thymotropic mouse mammary tumor virus variant, DMBA-LV, was used to drive the expression of two reporter genes, murine c-myc and human CD4, in transgenic mice. Expression was observed specifically in thymic immature cells. Expression of c-myc in these cells induced oligoclonal CD4+ CD8+ T-cell thymomas. Expression of human CD4 was restricted to thymic progenitor CD4- CD8- and CD4+ CD8+ T cells and was shut off in mature CD4+ CD8- and CD4- CD8+ T cells, known to be derived from the progenitor double-positive T cells. These results suggest the existence of similar and common factors in CD4+ CD8- and CD4- CD8+ T cells and support a model of differentiation of CD4+ CD8+ T cells through common signal(s) involved in turning off the expression of the CD4 or CD8 gene.  相似文献   

6.
CD4+ T cells enhance tumor destruction by CD8+ T cells. One benefit that underlies CD4+ T cell help is enhanced clonal expansion of newly activated CD8+ cells. In addition, tumor-specific CD4+ help is also associated with the accumulation of greater numbers of CD8+ T cells within the tumor. Whether this too is attributable to the effects of help delivered to the CD8+ cells during priming within secondary lymphoid tissues, or alternatively is due to the action of CD4+ cells within the tumor environment has not been examined. In this study, we have evaluated separately the benefits of CD4+ T cell help accrued during priming of tumor-specific CD8+ T cells with a vaccine, as opposed to the benefits delivered by the presence of cognate CD4+ cells within the tumor. The presence of CD4+ T cell help during priming increased clonal expansion of tumor-specific CD8+ T cells in secondary lymphoid tissue; however, CD8+ T cells that have low avidity for tumor Ag were inefficient in tumor invasion. CD4+ T cells that recognized tumor Ag were required to facilitate accumulation of CD8+ T cells within the tumor and enhance tumor lysis during the acute phase of the response. These experiments highlight the ability of tumor-specific CD4+ T cells to render the tumor microenvironment receptive for CD8+ T cell immunotherapy, by facilitating the accumulation of all activated CD8+ T cells, including low-avidity tumor-specific and noncognate cells.  相似文献   

7.
The Tcrb-V10b+ T cell population has been examined with a newly established antibody, KT10b, specific for Tcrb-V10b but not Tcrb-V10a. H-2E+ mice have higher levels of Tcrb-V10b+ T cells (4.3%–11.%) than H-2E mice (2.2%–4.9%). This difference appears to be determined by levels of Tcrb-V10b+ T cells in the CD4 population. F1 mice between H-2E+ and H-2E mice dominantly express higher levels of Tcrb-V10b+ T cells. [NOD (E–) x (NOD x A (E+))F1] backcross mice show positive selection of Tcrb-V10b+ CD4+ T cells by H-2E. On the other hand other backcross analyses reveal positive selection of Tcrb-V10b+ CD8+ T cells by certain major histocompatibility class I molecules. Involvement of non-H-2 antigens in these positive selections remain to be determined.Address correspondence and offprint requests to: K. Tomonari.  相似文献   

8.
It is critical to identify the developmental stage of dendritic cells (DCs) that is most efficient at inducing CD8+ T cell responses. Immature DCs can be generated from monocytes with GM-CSF and IL-4, while maturation is accomplished by the addition of stimuli such as monocyte-conditioned medium, CD40 ligand, and LPS. We evaluated the ability of human monocytes and immature and mature DCs to induce CD8+ effector responses to influenza virus Ags from resting memory cells. We studied replicating virus, nonreplicating virus, and the HLA-A*0201-restricted influenza matrix protein peptide. Sensitive and quantitative assays were used to measure influenza A-specific immune responses, including MHC class I tetramer binding assays, enzyme-linked immunospot assays for IFN-gamma production, and generation of cytotoxic T cells. Mature DCs were demonstrated to be superior to immature DC in eliciting IFN-gamma production from CD8+ effector cells. Furthermore, only mature DCs, not immature DCs, could expand and differentiate CTL precursors into cytotoxic effector cells over 7 days. An exception to this was immature DCs infected with live influenza virus, because of the virus's known maturation effect. Finally, mature DCs pulsed with matrix peptide induced CTLs from highly purified CD8+ T cells without requiring CD4+ T cell help. These differences between DC stages were independent of Ag concentrations or the number of immature DCs. In contrast to DCs, monocytes were markedly inferior or completely ineffective stimulators of T cell immunity. Our data with several qualitatively different assays of the memory CD8+ T cell response suggest that mature cells should be considered as immunotherapeutic adjuvants for Ag delivery.  相似文献   

9.
10.
CD4+CD8+ double-positive (DP) T cells represent a minor subpopulation of T lymphocytes found in the periphery of adult rats. In this study, we show that peripheral DP T cells appear among the first T cells that colonize the peripheral lymphoid organs during fetal life, and represent approximately 40% of peripheral T cells during the perinatal period. Later their proportion decreases to reach the low values seen in adulthood. Most DP T cells are small size lymphocytes that do not exhibit an activated phenotype, and their proliferative rate is similar to that of the other peripheral T cell subpopulations. Only 30-40% of DP T cells expresses CD8beta chain, the remaining cells expressing CD8alphaalpha homodimers. However, both DP T cell subsets have an intrathymic origin since they appear in the recent thymic emigrant population after injection of FITC intrathymically. Functionally, although DP T cells are resistant to undergo apoptosis in response to glucocorticoids, they show poor proliferative responses upon CD3/TCR stimulation due to their inability to produce IL-2. A fraction of DP T cells are not actively synthesizing the CD8 coreceptor, and they gradually differentiate to the CD4 cell lineage in reaggregation cultures. Transfer of DP T lymphocytes into thymectomized SCID mice demonstrates that these cells undergo post-thymic maturation in the peripheral lymphoid organs and that their CD4 cell progeny is fully immunocompetent, as judged by its ability to survive and expand in peripheral lymphoid organs, to proliferate in response to CD3 ligation, and to produce IL-2 upon stimulation.  相似文献   

11.
The orphan steroid receptor, Nur77, is thought to be a central participant in events leading to TCR-mediated clonal deletion of immature thymocytes. Interestingly, although both immature and mature murine T cell populations rapidly up-regulate Nur77 after TCR stimulation, immature CD4+CD8+ thymocytes respond by undergoing apoptosis, whereas their mature descendants respond by dividing. To understand these developmental differences in susceptibility to the proapoptotic potential of Nur77, we compared its regulation and compartmentalization and show that mature, but not immature, T cells hyperphosphorylate Nur77 in response to TCR signals. Nur77 resides in the nucleus of immature CD4+CD8+ thymocytes throughout the course of its expression and is not found in either the organellar or cytoplasmic fractions. However, hyperphosphorylation of Nur77 in mature T cells, which is mediated by both the MAPK and PI3K/Akt pathways, shifts its localization from the nucleus to the cytoplasm. The failure of immature CD4+CD8+ thymocytes to hyperphosphorylate Nur77 in response to TCR stimulation may be due in part to decreased Akt activity at this developmental stage.  相似文献   

12.
CD8(+) T cells are a critical component of the adaptive immune response against infections and tumors. A current paradigm in immunology is that naive CD8(+) T cells require CD28 costimulation, whereas memory CD8(+) T cells do not. We show here, however, that during viral infections of mice, costimulation is required in vivo for the reactivation of memory CD8(+) T cells. In the absence of CD28 costimulation, secondary CD8(+) T cell responses are greatly reduced and this impairs viral clearance. The failure of CD8(+) T cells to expand in the absence of CD28 costimulation is CD4(+) T cell help independent and is accompanied by a failure to down-regulate Bcl-2 and by cell cycle arrest. This requirement for CD28 costimulation was shown in both influenza A and HSV infections. Thus, contrary to current dogma, memory CD8(+) T cells require CD28 costimulation to generate maximal secondary responses against pathogens. Importantly, this CD28 requirement was shown in the context of real infections were multiple other cytokines and costimulators may be up-regulated. Our findings have important implications for pathogens, such as HIV and measles virus, and tumors that evade the immune response by failing to provide CD28 costimulation. These findings also raise questions about the efficacy of CD8(+) T cell-based vaccines against such pathogens and tumors.  相似文献   

13.
Memory-phenotype (CD44(hi)) T cells are presumed to represent the long-lived progeny of T cells responding to various environmental antigens. For CD8+ T cells, the background rate of proliferation (turnover) of memory-phenotype cells is increased following exposure to infectious agents. This increase in turnover is controlled by interferons (IFN-I and IFN-gamma) and is mediated by IL-15. Unlike IFNs, IL-15 is directly stimulatory for CD44(hi) CD8+ cells. In addition to controlling proliferation of these cells, IL-15 may also play a vital role in keeping CD44(hi) CD8+ cells alive.  相似文献   

14.
This brief review focuses on the way that our understanding of virus-specific CD8(+) T-cell-mediated immunity evolved, giving particular attention to the early impact of the program at the Australian National University. The story developed through a sequence of distinct eras, each of which can be defined in the context of the technologies available at that time. The progress has been enormous, but there is a great deal still to be learned. A particular challenge is to use what we know for human benefit.  相似文献   

15.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

16.
Tcrb-V6+ T cells are deleted by an endogenous superantigen probably encoded by a mouse mammary tumor provirus (Mtv), Mtv-7, in association with major histocompatibility complex (MHC) class II molecules. In contrast, Tcrb-V6+CD4+ T cells are positively selected by MHC class II E molecules in Mtv-7 mice. We have examined the levels of Tcrb-V6+CD4+ and Tcrb-V6+CD8+ T cells from six combinations of backcross mice. In this paper we show that: 1) Tcrb-V6+CD8+ T cells can be positively selected by MHC class I molecules; 2) MHC class II A molecules can also influence the levels of Tcrb-V6+CD4+ T cells; 3) Mtv-7 NZW mice have a new Mtv, Mtv-44, which co-segregates with a gene encoding the partial deletion ligand for Tcrb-V6+ T cells; 4) the remaining Tcrb-V6+ T cells from mice with partial deletion of these T cells appear not to be anergized in the periphery. Address correspondence and offprint requests to: K. Tomonari.  相似文献   

17.
Mouse spleen contains three distinct mature dendritic cell (DC) populations (CD4(+)8(-), CD4(-)8(-), and CD4(-)8(+)) which retain a capacity to take up particulate and soluble AGS: Although the three splenic DC subtypes showed similar uptake of injected soluble OVA, they differed markedly in their capacity to present this Ag and activate proliferation in OVA-specific CD4 or CD8 T cells. For class II MHC-restricted presentation to CD4 T cells, the CD8(-) DC subtypes were more efficient, but for class I MHC-restricted presentation to CD8 T cells, the CD8(+) DC subtype was far more effective. This differential persisted when the DC were activated with LPS. The CD8(+) DC are therefore specialized for in vivo cross-presentation of exogenous soluble Ags into the class I MHC presentation pathway.  相似文献   

18.
Cytotoxic cells specific for Toxoplasma gondii-infected cells were detected in the peripheral blood leukocytes from a patient with acute toxoplasmosis. The cytotoxicity was mediated by CD5+, CD4-, CD8+ cells. The cytotoxic T cells lysed Toxoplasma-infected target cells with HLA class I restriction. Two types of T cell clones were established from peripheral blood leukocytes of a patient with chronic toxoplasmosis; one was a CD5+, CD4-, CD8+ cytotoxic cell specific for Toxoplasma-infected cells, and the other was a CD5+, CD4+, CD8- proliferative cell that responded to Toxoplasma antigen. Toxoplasma-infected cell-specific cytotoxic cloned T cells recognize the infected target cells in the context of the HLA class I molecules, and the CD8 molecule was involved in the cytotoxicity. Toxoplasma antigen-specific proliferative cloned T cells were stimulated by Toxoplasma antigen-pulsed or Toxoplasma-infected cells in conjunction with HLA-DR molecule on the target cells. Thus, antigen presentation by Toxoplasma-infected cells for activation of both cytotoxic and proliferative T cells has been demonstrated.  相似文献   

19.
Since 4-1BB plays a predominant role in CD8+ T cell responses, we investigated the effects of 4-1BB triggering on the primary and memory CD8+ T responses to HSV-1 infection. 4-1BB was detected on 10-15% of CD4+ and CD8+ T cells following the infection. 4-1BB-positive T cells were in the proliferative mode and showed the enhanced expression of anti-apoptotic proteins. Agonistic anti-4-1BB treatment exerted preferential expansion of CD8+ T cells and gB/H-2Kb-positive CD8+ T cells, and enhanced cytotoxicity against HSV-1 that was mainly mediated by CD11c+CD8+ T cells. CD11c+CD8+ T cells were re-expanded following re-challenge with HSV-1 at post-infection day 50, indicating that CD11c+CD8+ phenotype was maintained in memory CD8+ T cell pool. Our studies demonstrated that 4-1BB stimulation enhanced both primary and memory anti-HSV-1 CD8+ T cell responses, which was mediated by a massive expansion of antigen-specific CD11c+CD8+ T cells.  相似文献   

20.
Recent studies have demonstrated that activated peripheral alphabeta TCR+ CD3+ CD4- CD8- NK1.1- (double-negative, DN) regulatory T cells (Tregs) from both mice and humans are able to down-regulate immune responses in vitro and in vivo. However, the origin and developmental requirements of functional DN Tregs remain unclear. In this study, we investigated the requirement for CD8 expression as well as the presence of a thymus for the development of functional DN Tregs. We demonstrate that DN Tregs exist in CD8-deficient mice and that stimulation of CD8+ T cells in vivo with TCR-specific Ag does not convert CD8+ T cells into DN Tregs. In addition, we found that DN T cells are present in the spleens and lymph nodes of thymectomized mice that are irradiated and reconstituted with T cell-depleted bone marrow cells. Interestingly, DN Tregs that develop in thymectomized mice can suppress syngeneic CD8+ T cells more effectively than those that develop in sham-thymectomized mice. Taken together, our data suggest that DN Tregs are not derived from CD8+ T cell precursors and that functional DN Tregs may preferentially develop outside of the thymus. These data suggest that DN Tregs may represent a developmentally and functionally unique cell population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号