首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selection and inbreeding of soybean cyst nematodes increased populations' ability to produce cysts on some soybean lines with concurrent decreases in numbers of cysts on other soybean lines: evidence that some alleles for incompatibility were either linked or at the same loci. Some responses could be explained only by linkage of nematode genes for avirulence. Linkage of nematode alleles for incompatibility could be involved when selection increased numbers of cysts on several lines even though the usual interpretation has been that the lines had some of the same genes for resistance. Most of the lines used in this study may have fewer alleles for incompatibility than most "resistant" lines. Use of these lines with fewer genes for resistance should help in the identification of individual alleles for incompatibility necessary for resolving the allelism and/or linkage of these nematode genes.  相似文献   

2.
The objective of this research was to characterise the degree of dominance of a soybean cyst nematode (Heterodera glycines) allele for incompatibility which interacts with a recessive soybean (Glycine max) allele for incompatibility to prevent the formation of cysts. Crosses of inbred nematode populations were made and the F, and F, populations evaluated for the numbers of cysts they could produce on several soybean lines. The nematode gene for avirulence interacts with the one recessive gene for resistance in soybean line PI 88287 and also appears to be recessive. This is the first example of a recessive-recessive gene-for-gene interaction; genes for avirulence and resistance are usually dominant. The difficulties of doing definitive genetic studies with cyst nematodes are discussed.  相似文献   

3.
Few soybean cyst nematodes (SCN), Heterodera glycines, of a diverse gene pool developed into females on soybeans PI 89772 or PI 209332. Nematodes surviving the selection pressure were then inbred for nine generations by single cyst transfers on the same selecting soybean line. These nematodes appeared to tolerate concurrent selection and inbreeding. Effects of selection-inbreeding, selection only, and secondary selection were evaluated by relative ability to produce cysts on 11 soybean lines. The genetic differences of PI 89772 (also Peking and Pickett 71) and PI 209332 were reaffirmed. The random effects of inbreeding indicated that Ilsoy and Williams may have genes for resistance different from those in PI 89772 or PI 209332. Egg inoculum obtained from soil resulted in very few cysts in some tests. Fresh egg inoculum (from cysts on 27-30-day-old plants) generally resulted in more cysts and more consistent results. Concurrent with the change in inoculum, there was a large increase in relative numbers of cysts on several soybean lines but no change on other lines; the true cause of this large interaction is unknown. Secondary selection of two inbreds was effective and suppressed cyst numbers on the line on which one inbred was selected initially. These results are consistent with the allelism linkage of some SCN genes reported previously.  相似文献   

4.
A method of selecting soybean cyst nematode (Heterodera glycines Ichinohe) on segregating soybean progeny was evaluated for developing a population capable of reproducing on PI 437654. Direct selection on PI 437654 was not possible, since no cysts developed on it. Cysts were selected for 12 nematode generations on F₃ and F₄ plants of Forrest x PI 437654. No cysts of the selected population were produced on PI 437654, but more males were produced on it by the selected population than by the base population. The number of cysts on Forrest and other soybean lines considered to have some of the same genes for resistance increased with selection as expected. The increase in number of males on these other lines with some of the same genes for resistance as Forrest was greater than anticipated, indicating that these lines may have some of the same genes as PI 437654.  相似文献   

5.
During pathogen attack, the host plant induces genes to ward off the pathogen while the pathogen often produces effector proteins to increase susceptibility of the host. Gene expression studies of syncytia formed in soybean root by soybean cyst nematode (Heterodera glycines) identified many genes altered in expression in resistant and susceptible roots. However, it is difficult to assess the role and impact of these genes on resistance using gene expression patterns alone. We selected 100 soybean genes from published microarray studies and individually overexpressed them in soybean roots to determine their impact on cyst nematode development. Nine genes reduced the number of mature females by more than 50 % when overexpressed, including genes encoding ascorbate peroxidase, β-1,4-endoglucanase, short chain dehydrogenase, lipase, DREPP membrane protein, calmodulin, and three proteins of unknown function. One gene encoding a serine hydroxymethyltransferase decreased the number of mature cyst nematode females by 45 % and is located at the Rhg4 locus. Four genes increased the number of mature cyst nematode females by more than 200 %, while thirteen others increased the number of mature cyst nematode females by more than 150 %. Our data support a role for auxin and ethylene in susceptibility of soybean to cyst nematodes. These studies highlight the contrasting gene sets induced by host and nematode during infection and provide new insights into the interactions between host and pathogen at the molecular level. Overexpression of some of these genes result in a greater decrease in the number of cysts formed than recognized soybean cyst nematode resistance loci.  相似文献   

6.
Plant parasitic nematodes are a serious threat for crop production worldwide. This review summarizes our understanding of plant nematode interactions and presents new alternatives for nematode control in the field. Breeding for resistance has been a major goal for many important crop species like soybean, potato, tomato and sugar-beet. As a result numerous nematode-resistance genes have been identified, two of which have been cloned recently, Hs1 pro-1 from sugar-beet, giving resistance to the beet cyst nematode Heterodera schachtii, and Mi from tomato, giving resistance to the root-knot nematode Meloidogyne incognita. Also artificial resistance genes, coding for nematotoxic proteins or causing rapid death of feeding cells, have been elucidated. In the future, genetic engineering of nematode resistance will become more and more important for plant breeding. Transformation techniques will allow genes to be quickly introduced into susceptible breeding lines and then combined with each other to produce plant varieties with durable resistance. Received: 26 August 1998 / Received revision: 16 December 1998 / Accepted: 21 December 1998  相似文献   

7.
The soybean cyst nematode Heterodera glycines is the most destructive pathogen of soybean in the Unites States. Diversity in the parasitic ability of the nematode allows it to reproduce on nematode-resistant soybean. H. glycines chorismate mutase-1 (Hg-CM-1) is a nematode enzyme with the potential to suppress host plant defense compounds; therefore, it has the potential to enhance the parasitic ability of nematodes expressing the gene. Hg-cm-1 is a member of a gene family where two alleles, Hg-cm-1A and Hg-cm-1B, have been identified. Analysis of the Hg-cm-1 gene copy number revealed that there are multiple copies of Hg-cm-1 alleles in the H. glycines genome. H. glycines inbred lines were crossed to ultimately generate three F2 populations of second-stage juveniles (J2s) segregating for Hg-cm-1A and Hg-cm-1B. Segregation of Hg-cm-1A and 1B approximated a 1:2:1 ratio, which suggested that Hg-cm-1 is organized in a cluster of genes that segregate roughly as a single locus. The F2 H. glycines J2 populations were used to infect nematode-resistant (Hartwig, PI88788, and PI90763) and susceptible (Lee 74) soybean plants. H. glycines grown on Hartwig, Lee 74, and PI90763 showed allelic frequencies similar to Hg-cm-1A/B, but nematodes grown on PI88788 contained predominately Hg-cm-1A allele as a result of a statistically significant drop of Hg-cm-1B in the population. This result suggests that specific Hg-cm-1 alleles, or a closely linked gene, may aid H. glycines in adapting to particular soybean hosts.  相似文献   

8.
Soybean aphids, Aphis glycines Matsumura, and soybean cyst nematodes, Heterodera glycines Ichinohe, are economic pests of soybean, Glycine max (L.) Merr., in the north‐central United States. Combined, these pests may account for 20–50% of yield reductions in a soybean crop. Only limited information is available concerning the interaction of these two pests on soybean production. During the summers of 2006 and 2007, we conducted a field‐experiment near Urbana, IL, to evaluate the effect of resistant and susceptible soybean lines on the development and reproduction of both pests in combination with each other. We also examined how each pest, as well as their interaction, affected the yield of susceptible and resistant soybean lines. Soybean plants grown within caged plots were infested with soybean aphids and soybean cyst nematodes; cumulative aphid days and soybean cyst nematode egg densities were determined at the end of each growing season. Soybean aphids were able to survive on all four soybean lines in both years of this study; however, aphid‐resistant lines generally had fewer cumulative aphid days than aphid‐susceptible lines. Likewise, nematode‐resistant lines typically had fewer eggs than nematode‐susceptible lines. During both years, we failed to observe a significant interaction between these two pests on the reproduction of one another. Yield data from 2006 was inconclusive; however, results from 2007 suggest that yield‐loss when soybean aphids and soybean cyst nematodes occur jointly is not significantly greater than when these two pests occur independently. The relationship between these two pests, and our inability to observe an interaction, are discussed.  相似文献   

9.
To gain new insights into the mechanism of soybean (Glycine max) resistance to the soybean cyst nematode (Heterodera glycines), we compared gene expression profiles of developing syncytia in soybean near-isogenic lines differing at Rhg1 (for resistance to Heterodera glycines), a major quantitative trait locus for resistance, by coupling laser capture microdissection with microarray analysis. Gene expression profiling revealed that 1,447 genes were differentially expressed between the two lines. Of these, 241 (16.8%) were stress- and defense-related genes. Several stress-related genes were up-regulated in the resistant line, including those encoding homologs of enzymes that lead to increased levels of reactive oxygen species and proteins associated with the unfolded protein response. These results indicate that syncytia induced in the resistant line are undergoing severe oxidative stress and imbalanced endoplasmic reticulum homeostasis, both of which likely contribute to the resistance reaction. Defense-related genes up-regulated within syncytia of the resistant line included those predominantly involved in apoptotic cell death, the plant hypersensitive response, and salicylic acid-mediated defense signaling; many of these genes were either partially suppressed or not induced to the same level by a virulent soybean cyst nematode population for successful nematode reproduction and development on the resistant line. Our study demonstrates that a network of molecular events take place during Rhg1-mediated resistance, leading to a highly complex defense response against a root pathogen.  相似文献   

10.
The rhg1 gene or genes lie at a recessive or co-dominant locus, necessary for resistance to all Hg types of the soybean (Glycine max (L.) Merr.) cyst nematode (Heterodera glycines I.). The aim here was to identify nucleotide changes within a candidate gene found at the rhg1 locus that were capable of altering resistance to Hg types 0 (race 3). A 1.5 ± 0.25 cM region of chromosome 18 (linkage group G) was shown to encompass rhg1 using recombination events from four near isogenic line populations and nine DNA markers. The DNA markers anchored two bacterial artificial chromosome (BAC) clones 21d9 and 73p6. A single receptor like kinase (RLK; leucine rich repeat-transmembrane-protein kinase) candidate resistance gene was amplified from both BACs using redundant primers. The DNA sequence showed nine alleles of the RLK at Rhg1 in the soybean germplasm. Markers designed to detect alleles showed perfect association between allele 1 and resistance to soybean cyst nematode Hg types 0 in three segregating populations, fifteen additional selected recombination events and twenty-two Plant Introductions. A quantitative trait nucleotide in the RLK at rhg1 was inferred that alters A47 to V47 in the context of H297 rather than N297. Contiguous DNA sequence of 315 kbp of chromosome 18 (about 2 cM) contained additional gene candidates that may modulate resistance to other Hg-types including a variant laccase, a hydrogen-sodium ion antiport and two proteins of unknown function. A molecular basis for recessive and co-dominant resistance that involves interactions among paralagous disease-resistance genes was inferred that would improve methods for developing new nematode-resistant soybean cultivars.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

11.
Soybeans with genes for resistance select against Heterodera glycines with the corresponding genes for avirulence. There may be a differential effect of sex with some specific gene interactions, which would influence the magnitude of gene frequency changes. No effect on H. glycines males was detected with one selected nematode population and the resistant soybean line PI88788. The selective effect of PI89772 against male nematodes was greater with two inbred nematode populations than with one selected (on PI88788) population, presumably due to differences in H. glycines gene frequencies. ''Peking'' also had few males with the one inbred nematode population, whereas Forrest and ''Pickett 71'' had intermediate numbers. Apparently Forrest and Pickett 71 did not get all the Peking genes for resistance that affect male as well as female nematode development. Other H. glycines-soybean genes stop only females, since there were few or no cysts, except on the susceptible soybean Williams. The number of males'' phenotype will help identify specific genes in both organisms.  相似文献   

12.
Over the past decade, we have seen an increasing market for biopesticides and an increase in number of microbial control studies directed towards plant‐parasitic nematodes. This literature survey provides an overview of research on biological control of two economically important plant‐parasitic nematodes, Meloidogyne incognita (Kofoid & White) Chitwood (southern root‐knot nematode) and Heterodera glycines Ichinohe (soybean cyst nematode) using spore‐forming plant growth‐promoting rhizobacteria (PGPR). In this review, the current biological control strategies for the management of those cotton and soybean nematodes, the mechanism of using BacillusPGPR for biological control of plant‐parasitic nematode including induced systemic resistance and antagonism and the future of biological control agents on management of plant‐parasitic nematodes are covered.  相似文献   

13.
Selection for ability of soybean cyst nematode (SCN), Heterodera glycines, to reproduce on soybeans with different sources of resistance divides some SCN race 4 field populations into two distinct subpopulations. These subpopulations reproduce well on ''Bedford'' and plant introduction (PI) 88788 or PI 89772 and PI 90763 but not on both pairs of soybean lines. The ability of these subpopulations to reproduce on the four soybean lines was reversed by changing the soybean line used as a host during a second cycle of selection. When SCN populations previously selected for reproduction on Bedford and PI 88788 were selected for their ability to reproduce on D72-8927 and J74-88, the ability of these populations to reproduce on Bedford and PI 88788 decreased significantly and their ability to reproduce on PI 89772 and PI 90763 increased significantly. Conversely, when SCN populations, previously selected for reproduction on P189772 and P190763, were selected for their ability to reproduce on Bedford, the reproduction of these populations on Bedford increased significantly and reproduction on PI 89772 and PI 90763 decreased significantly. Selection for ability of a SCN race 4 field population to reproduce on soybean lines derived from SCN race 4 resistant PIs resulted in the same division of the field population into two distinct subpopulations. These data substantiate earlier proposals to rotate cultivars with different genes for SCN resistance as a means of managing SCN populations.  相似文献   

14.
Cyst nematodes are highly evolved sedentary plant endoparasitesthat use parasitism proteins injected through the stylet intohost tissues to successfully parasitize plants. These secretoryproteins likely are essential for parasitism as they are involvedin a variety of parasitic events leading to the establishmentof specialized feeding cells required by the nematode to obtainnourishment. With the advent of RNA interference (RNAi) technologyand the demonstration of host-induced gene silencing in parasites,a new strategy to control pests and pathogens has become available,particularly in root-knot nematodes. Plant host-induced silencingof cyst nematode genes so far has had only limited success butsimilarly should disrupt the parasitic cycle and render thehost plant resistant. Additional in planta RNAi data for cystnematodes are being provided by targeting four parasitism genesthrough host-induced RNAi gene silencing in transgenic Arabidopsisthaliana, which is a host for the sugar beet cyst nematode Heteroderaschachtii. Here it is reported that mRNA abundances of targetednematode genes were specifically reduced in nematodes feedingon plants expressing corresponding RNAi constructs. Furthermore,this host-induced RNAi of all four nematode parasitism genesled to a reduction in the number of mature nematode females.Although no complete resistance was observed, the reductionof developing females ranged from 23% to 64% in different RNAilines. These observations demonstrate the relevance of the targetedparasitism genes during the nematode life cycle and, potentiallymore importantly, suggest that a viable level of resistancein crop plants may be accomplished in the future using thistechnology against cyst nematodes. Key words: beet cyst nematode (BCN), soybean cyst nematode (SCN), host induced, in planta RNAi, resistance, RNAi, transgenic Received 19 August 2008; Revised 25 October 2008 Accepted 27 October 2008  相似文献   

15.
Two bulk populations of spring barley lines differing in respect of a single dominant gene for cereal cyst nematode (Heterodera avenae) resistance were used in trials over 4 years to assess the effect of the nematode on grain yield. On an infested site the resistant lines consistently and significantly out-yielded the susceptible lines by an average of 9 % over the 4 years. On non-infested sites, there was no difference in yield between the resistant and susceptible lines. To measure changes in the cereal cyst nematode population under continuous barley cultivation, the resistant and susceptible lines were each sown at the infested site on the same plots for 4 consecutive years. The cereal cyst nematode population declined under both susceptible and resistant barley, but more rapidly under the latter. Migratory nematodes, mostly Pratylenchus minyus, were latterly prevalent on all plots. There was no detectable change in the pathogenicity of the cereal cyst nematode population after 3 years of growing resistant barley.  相似文献   

16.
CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE‐receptor kinase‐WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant‐parasitic cyst nematodes secrete CLE‐like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR‐LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode‐induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock‐down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants.  相似文献   

17.
Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is the most important pathogen in soybean production worldwide and causes substantial yield losses. An apparent narrow genetic base of SCN resistance was observed in current elite soybean cultivars, and searching for novel SCN resistance genes as well as novel resistance sources rather than focusing on the two important genes rhg1 and Rhg4 has become another major objective in soybean research. In the present paper we report a 1,477 bp Hs1 pro-1 homolog, named GmHs1 pro-1 . This gene was cloned from soybean variety Wenfeng 7 based on information for Hs1 pro-1 , a beet cyst nematode resistance gene in sugar beet. It has two domains, Hs1pro-1_N and Hs1pro-1_C, both of which are believed to confer resistance to nematodes. Of the 1,477 bp sequence in GmHs1 pro-1 , an open reading frame of 1,314 bp, encoding a protein with 437 amino acids, was flanked by a 5′-untranslated region of 27 bp and a 3′-untranslated region of 135 bp. Fourteen single-nucleotide polymorphisms (SNPs) were observed in 44 soybean accessions including 23 wild soybeans, 8 landraces, and 13 soybean varieties (or lines), among which 5 in wild soybeans and 3 in landrace accessions were unique. Sequence diversity analysis on the 44 soybean accessions showed π = 0.00168 and θ = 0.00218 for GmHs1 pro-1 ; landraces had the highest diversity, followed by wild soybeans, with varieties (or lines) having the lowest. Although we did not detect a significant effect of selection on GmHs1 pro-1 in the three populations, sequence diversity, unique SNPs, and phylogenetic analysis indicated a slight domestication bottleneck and an intensive selection bottleneck. High sequence diversity, more unique SNPs, and broader representation across the phylogenetic tree in wild soybeans and landraces indicated that wild collections and landrace accessions are invaluable germplasm for broadening the genetic base of elite soybean varieties resistant to SCN. C. Yuan and G. Zhou contributed to this paper equally.  相似文献   

18.
In rape (Brassica napus), no resistance to the beet cyst nematode (BCN) Heterodera schachtii is available. This study was carried out to determine the specific chromosome(s) of resistant radish (Raphanus sativus) carrying the gene(s) for nematode resistance as a prequisite to convert rape from a host into a trap crop for this pest. A Raphanobrassica progeny of 25 plants was analyzed which segregated for all nine chromosomes of the Raphanus genome in a genetic background of synthetic rape. The number of radish chromosomes was determined by fluorescence in situ hybridization, using the Raphanus-specific DNA probe pURsN; and their type was identified by chromosome-specific randomly amplified polymorphic DNA markers. Five different multiple rape–radish chromosome additions (comprising the whole set of nine radish chromosomes, a–i) were selected and crossed to rape. For each cross-progeny, the number of cysts on plant roots was counted 42 days after inoculation with a L2 larvae suspension. Simultaneously, the plants were characterized for the presence or absence of individual radish chromosomes, using sets of chromosome-specific markers. Thus, the effect of each radish chromosome on cyst number was tested. Chromosome d had a major resistance effect, whereas the presence/absence of the other radish chromosomes had nearly no influence on cyst number. Plants with added chromosome d showed a resistance level comparable with that of the radish donor parent. The analysis in the cross to rape of a plant monosomic only for chromosome d confirmed the strong effect of this chromosome on nematode resistance. A further experiment comprising seven crosses using winter rape breeding lines and monosomic addition line d as pollen parent provided the same results on a broader genetic basis. In each case, the added chromosome d in a single dosage caused nearly the full resistance of the radish donor. Resistance was independent of the glucosinolate content in the roots. The possibilities for stabilizing BCN resistance in rape and its use for other crops and nematodes are discussed.Communicated by C. Möllers  相似文献   

19.
Host resistance to “yellow dwarf” or “moonlight” disease cause by any population (Hg type) of Heterodera glycines I., the soybean cyst nematode (SCN), requires a functional allele at rhg1. The host resistance encoded appears to mimic an apoptotic response in the giant cells formed at the nematode feeding site about 24–48 h after nematode feeding commences. Little is known about how the host response to infection is mediated but a linked set of 3 genes has been identified within the rhg1 locus. This study aimed to identify the role of the genes within the locus that includes a receptor-like kinase (RLK), a laccase and an ion antiporter. Used were near isogeneic lines (NILs) that contrasted at their rhg1 alleles, gene-based markers, and a new Hg type 0 and new recombination events. A syntenic gene cluster on Lg B1 was found. The effectiveness of SNP probes from the RLK for distinguishing homolog sequence variants on LgB1 from alleles at the rhg1 locus on LgG was shown. The resistant allele of the rhg1 locus was shown to be dominant in NILs. None of the recombination events were within the cluster of the three candidate genes. Finally, rhg1 was shown to reduce the plant root development. A model for rhg1 as a dominant multi-gene resistance locus based on the developmental control was inferred.  相似文献   

20.
Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here, we report the functional characterization of one member of the soybean TPS gene family, which was designated GmAFS. Recombinant GmAFS produced in Escherichia coli catalysed the formation of a sesquiterpene (E,E)‐α‐farnesene. GmAFS is closely related to (E,E)‐α‐farnesene synthase gene from apple, both phylogenetically and structurally. GmAFS was further investigated for its biological role in defence against nematodes and insects. Soybean cyst nematode (SCN) is the most important pathogen of soybean. The expression of GmAFS in a SCN‐resistant soybean was significantly induced by SCN infection compared with the control, whereas its expression in a SCN‐susceptible soybean was not changed by SCN infection. Transgenic hairy roots overexpressing GmAFS under the control of the CaMV 35S promoter were generated in an SCN‐susceptible soybean line. The transgenic lines showed significantly higher resistance to SCN, which indicates that GmAFS contributes to the resistance of soybean to SCN. In soybean leaves, the expression of GmAFS was found to be induced by Tetranychus urticae (two‐spotted spider mites). Exogenous application of methyl jasmonate to soybean plants also induced the expression of GmAFS in leaves. Using headspace collection combined with gas chromatography–mass spectrometry analysis, soybean plants that were infested with T. urticae were shown to emit a mixture of volatiles with (E,E)‐α‐farnesene as one of the most abundant constituents. In summary, this study showed that GmAFS has defence roles in both below‐ground and above‐ground organs of soybean against nematodes and insects, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号