首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of methyl (beta-D-glucopyranosyluronic acid)-(1-->3)-(2-acetamido-2-deoxy-6-O-sulfonato-beta-D-galactopyr anosyl)-(1-->4)-(beta-D-glucopyranosid)uronate trisodium salt, a chondroitin 6-sulfate trisaccharide derivative, is described. Loss of stereocontrol in glycosylation reactions involving activated 4,6-O-benzylidene derivatives of the 2-deoxy-2-trichloroacetamido-D-galacto series and D-glucuronic acid-derived acceptors was highlighted. This draw-back was overcome through the use of phenyl 3,4,6-tri-O-acetyl-2-deoxy-1-thio-2-trichloroacetamido-beta-D-gala ctopyranoside, which afforded the desired beta-linked disaccharide derivative in high yield with an excellent stereoselectivity. This later was submitted to acid-catalyzed methanolysis, followed by benzylidenation, and condensed with methyl 2,3,4-tri-O-benzoyl-1-O-trichloroacetimidoyl-alpha-D-glucopyran uronate to afford the expected trisaccharide derivative. Subsequent transformation of the N-trichloroacetyl group into N-acetyl, mild acid hydrolysis, selective O-sulfonation at C-6 of the amino sugar moiety, and saponification afforded the target molecule as its sodium salt in high yield.  相似文献   

2.
The syntheses are reported of beta-D-GlcpA-(1-->3)-beta-D-GalpNAc-(1-->4)-beta-D-GlcpA-(1- ->3)-beta-D-GalpNAc-(1-->4)-beta-D-GlcpA-(1-->OMe), O-sulfonated at C-4 or C-6 of the aminosugar moieties, which represent structural elements of chondroitin 4- and 6-sulfate proteoglycans. Starting from a synthetic disaccharide glycosyl acceptor, the stepwise or blockwise construction of the sugar backbone with appropriate synthons led to a pentasaccharide tetraol, which was used as a common intermediate. Selective 6-O-sulfonation of this tetraol, followed by saponification, gave the 6-sulfate derivative, whereas selective 6-O-benzoylation, followed by O-sulfonation and saponification, afforded the 4-sulfate derivative as their sodium salts.  相似文献   

3.
Sulfated sialyl-alpha-(2 --> 3)-neolactotetraose (IV3NeuAcnLcOse4) derivatives at C-6 of GlcNAc (6-O-sulfo), terminal Gal (6'-O-sulfo), and both GlcNAc and Gal (6,6'-di-O-sulfo) residues have systematically been synthesized. (Methyl 5-acetamido-4,7,8,9- tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosy lonate)-(2 --> 3)-2,4-di-O-benzoyl-6-O-levulinoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(trimethylsilyl)ethyl (2-acetamido-2-deoxy- 3-O-benzyl-6-O-p-methoxyphenyl-beta-D-glucopyranosyl)-(1 --> 3)-(2,4,6-tri-O-benzyl-beta-D-galactopyranosyl)-(1 --> 4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside to give the suitably protected pentasaccharide which, upon selective removal of the p-methoxyphenyl and/or levulinoyl groups at C-6 of the GlcNAc and the terminal Gal residues, successive O-sulfation(s) and deprotection, afforded the desired three sulfated IV3NeuAcnLcOse4 derivatives. Acceptor specificity of the synthetic IV3NeuAcnLcOse4 probes for a human alpha-(1 --> 3)-fucosyltransferase (Fuc-TVII) was examined to study the biosynthetic pathway of L-selectin ligand. Only the 6-sulfated derivative at C-6 of GlcNAc was recognized by Fuc-TVII to give 6-O-sulfo sialyl LeX.  相似文献   

4.
3,4,6-Tri-O-acetyl-D-galactal was transformed into methyl 6-O-acetyl-2-azido-4-O-benzyl-2-deoxy-beta-D-galactopyranoside and its 4-O-acetyl-6-O-benzyl analogue, each of which was glycosylated with activated, O-acetylated derivatives of methyl D-glucopyranosyluronate. The resulting beta-(1----3)-linked disaccharide derivatives were each reductively N-acetylated, hydrogenolysed, O-sulfated, and saponified to afford the disodium salts of methyl 2-acetamido-2-deoxy-3-O-(beta-D-glucopyranosyluronic acid)-4-O-sulfo-beta-D-galactopyranoside and the 6-O-sulfo analogue. D-Galactal was also transformed into activated derivatives of 2-azido-3,6-di-O-benzyl-2-deoxy-D-galactopyranose and their 3,4-di-O-benzyl analogues with various substituents at O-4 and O-6. These glycosyl donors were condensed with 6-O-protected derivatives of methyl 2,3-di-O-benzyl-beta-D-glucopyranoside to give the beta-(1----4)-linked disaccharide derivatives, which were selectively deprotected, then oxidised at C-6 of the gluco unit, reductively N-acetylated, selectively deprotected, O-sulfated at C-4 or C-6 of the galacto unit, and hydrogenolysed to give the disodium salts of methyl 4-O-(2-acetamido-2-deoxy-4-O-sulfo-beta-D-galactopyranosyl)-beta-D- glucopyranosiduronic acid and the 6-O-sulfo analogue.  相似文献   

5.
4'-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O- benzyl-6-O-benzoyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with a disaccharide donor, 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D-galactopyranoside, in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in a tetrasaccharide, 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)- (4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D-galactopyranosyl)- (1-->4)-(2,3-di-O-benzyl-6-O-benzoyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside, in 69% yield. The complete removal of O-protecting groups in the tetrasaccharide, the replacement of N-trichloroacetyl by N-acetyl group, and the reduction of the aglycone azide group to amine led to the target aminoethyl glycoside of beta-D-Gal- (1-->3)-beta-D-GalNAc-(1-->4)-beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of asialo-GM1 ganglioside in 72% overall yield. Selective 3'-O-glycosylation of 2-azidoethyl 2,3,6-tri-O- benzyl-4-O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with thioglycoside methyl (ethyl 5-acetamido-4,7,8,9-tetra-O- acetyl-3,5-dideoxy-2-thio-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and trifluoroacetic acid afforded 2-azidoethyl [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and tri-fluoracetic acid afforded 2-azidoethyl[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl) (2,6-di-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside, the selectively protected derivative of the oligosaccharide chain of GM3 ganglioside, in 79% yield. Its 4'-O-glycosylation with a disaccharide glycosyl donor, (4-trichloroacetophenyl-4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O- acetyl-beta-D-galactopyranosyl) 1-thio-2-trichloroacetamido-beta-D-galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoroacetic acid gave 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D- galactopyranosyl)-(1-->4)-[[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D- galacto-2-nonulopyranosyl)onate]-(2-->3)]-(2,6-di-O-benzyl-beta-D- galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside in 85% yield. The resulting pentasaccharide was O-deprotected, its N-trichloroacetyl group was replaced by N-acetyl group, and the aglycone azide group was reduced to afford in 85% overall yield aminoethyl glycoside of beta-D-Gal-(1-->3)-beta-D-GalNAc-(1-->4)-[alpha-D-Neu5Ac-(2-->3)]- beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of GM1 ganglioside. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 1; see also http://www.maik.ru.  相似文献   

6.
Methyl 2,4,6-tri-O-benzyl-beta-D-galactopyranoside (5) was obtained crystalline by way of its 3-O-allyl derivative, which was in turn obtained by ring-opening of a presumed 3,4-O-stannylene derivative of methyl beta-D-galactopyranoside, followed by benzylation. Condensation of 5 with 2-methyl-(2-acetamido-3,4,6-tri-O-acetyl-1,2-dideoxy-beta-D-glucopyra no)-[2,1-d]-2-oxazoline in 1,2-dichloroethane in the presence of p-toluenesulfonic acid afforded the disaccharide derivative methyl 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-2, 4,6-tri-O-benzyl-beta-D-galactopyranoside (6) Deacetylation of 6 in methanolic sodium methoxide afforded the disaccharide derivative 7, which was acetalated with alpha, alpha-dimethoxytoluene to afford the 4',6'-O-benzylidene acetal (10). Catalytic hydrogenolysis of the benzyl groups of 7 afforded the title disaccharide 8. Glycosylation of 10 with 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide in 1:1 benzene-nitromethane in the presence of mercuric cyanide gave the fully protected trisaccharide derivative 12. Systematic removal of the protecting groups of 12 then furnished the title trisaccharide 14. The structures of 5, 8, and 14 were all confirmed by 13C-n.m.r. spectroscopy. The 13C-n.m.r. chemical shifts for methyl alpha- and beta-D-galactopyranoside, and also those of their 3-O-allyl derivatives, are recorded, for the sake of comparison, in conjunction with those of compound 5.  相似文献   

7.
An acidic O-specific polysaccharide containing D-glucuronic acid (D-GlcA), 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (D-GlcNAc3NAcA), 2,3-diacetamido-2,3-dideoxy-D-mannuronoyl-L-alanine (D-ManNAc3NAcA6Ala), and 2-acetamido-2,4, 6-trideoxy-4-[(S)-3-hydroxybutyramido]-D-glucose (D-QuiNAc4NAcyl) was obtained by mild acid degradation of the lipopolysaccharide of the bacterium Pseudoalteromonas sp. KMM 634 followed by gel-permeation chromatography. The polysaccharide was cleaved selectively with a new solvolytic agent, trifluoromethanesulfonic acid, to give a disaccharide and a trisaccharide with D-GlcNAc3NAcA at the reducing end. The borohydride-reduced oligosaccharides and the initial polysaccharide were studied by GLC-MS and 1H- and 13C-NMR spectroscopy, and the following structure of the linear tetrasaccharide repeating unit of the polysaccharide was established: -->3)-alpha-D-QuipNAc4Ac4NAcyl-(1-->4)-beta-D-ManpNAc3NAcA6Ala+ ++-(1-->4)-b eta-D-GlcpNAc3NAc3NAcA-(1-->4)-beta-D-GlcpA-(1-->.  相似文献   

8.
Beta-D-Galp3-SO3-(1-->4)-3,6-anhydro-L-GalOH (agarobiitol 3(2)-sulfate, 4) was semi-synthetically prepared as follows: production of agarobiitol (1) from agarose by partial reductive hydrolysis, protection of the primary hydroxyl groups of 1 with trityl groups to produce the 1(1),6(2)-di-O-tritylated derivative (2), regioselective dibutylstannylene-mediated sulfation of 2 to give the 3(2)-O-sulfated-1(1),6(2)-di-O-tritylated compound (3), and detritylation of compound 3 to give the final product (4). This semi-synthetic route allowed the preparation of a red seaweed galactan-derived disaccharide alditol with sulfate group located at C-3 of the galactopyranosidic ring. Because red seaweed galactans are glycosidically linked at C-3 of the beta-D-Galp unit, a sulfated derivative with this structure could not be obtained by partial reductive hydrolysis of sulfated red seaweed galactans.  相似文献   

9.
4-Pentenyl (2,3,4,6-tetra-O-acetyl-beta-d-galactopyranosyl)-(1-->4)-(3,6-di-O-acetyl-2-deoxy-2-phthalimido-beta-d-glucopyranosyl)-(1-->3)-(2,6-di-O-benzoyl-beta-d-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzoyl-beta-d-glucopyranoside (4) was synthesized by regioselective glycosylation of 4-pentenyl (2,6,-di-O-benzoyl-beta-d-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzoyl-beta-d-glucopyranoside and (2,3,4,6-tetra-O-acetyl-beta-d-galactopyranosyl)-(1-->4)-3,6-di-O-acetyl-2-deoxy-2-phthalimido-beta-d-glucopyranosyl chloride. By conversion of the protecting groups followed by thioacetylation, 4 was transformed into the corresponding lacto-N-neotetraose derivative, 5-(acetylthio)pentenyl (2,3,4,6-tetra-O-acetyl-beta-d-galactopyranosyl)-(1-->4)-O-(3,6-di-O-acetyl-2-acetamido-2-deoxy-beta-d-glucopyranosyl)-(1-->3)-(2,4,6-di-O-acetyl-beta-d-galactopyranosyl)-(1-->4)-2,3,6-tri-O-acetyl-beta-d-glucopyranoside (6). The lacto-N-neotetraose derivative 6 was introduced into carbosilane dendrimer cores of three shapes, and three kinds of new carbosilane dendrimers peripherally functionalized by lacto-N-neotetraose were obtained.  相似文献   

10.
Deprotection of the fully blocked disacharide allyl O-(2-amino-4,6-O-benzylidene-3-O-[(R)-1-carboxyethyl]-2-deoxy-beta-D-glucopyranosyl-1',2-lactam)-(1-->4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside by selective de-O-allylation and parallel removal of the benzylidene and O-benzyl groups is described. The resulting beta-muramyl lactam-(1-->4)-GlcNAc disaccharide is characterised as the per-O-acetylated derivative by 1H and 13C NMR spectroscopy and X-ray structure analysis. Conformational analysis about glycosidic bond of repeating units of bacterial spore cortex is based on experimental data and molecular modelling.  相似文献   

11.
Periodate oxidation of LPG-1 established that N-acetylneuraminic acid residues are linked preponderantly α-(2→3) to D-galactose residues. The resistance of 2-acetamido-2-deoxyD-galactose residues to periodate oxidation suggests that they are linked at either O-3 or O-4 to D-galactose residues. After treatment of LPG-I with alkaline sulfite, ≈80% of 2-acetamido-2-deoxygalactose was recovered as the sulfonic acid derivative. The Gal→GalNAc disaccharide released from sialic-acid-free LPG-I by digestion with endo-2-acetamido-2-deoxy-α-D-galactosidase (which suggests an α-D-GalNAc→-L-Ser or -L-Thr linkage) gave a high color-yield in the Morgan—Elson reaction, indicating that 2-acetamido-2-deoxy-D-galactose residues are linked at C-3 to D-galactose residues. The migration of the released Gal-GalNAc disaccharide was the same as that of a standard sample of O-β-D-galactosyl-(1→3)-2-acetamido-2-deoxy-D-galactose. Treatment of sialic acid-free LPG-I with Streptococcus pneumoniae β-D-galactosidase, which hydrolyzes only galactosides linked β-D-(1→4) gave no free D-galactose, whereas treatment of LPG-I with bovine testes β-D-galactosidase released > 90% of D-galactose. These results provide evidence for β-D-Galp-(1→3)-α-D-GalNAcp-(1→3)-L-Ser or -L-Thr and α-NeuAc-(2→3)-β-D-Galp-(1→3)-α-D- GalNAcp-(1→3)-L-Ser or -L-Thr structures. The sensitivity of the methods used and the recovery of constituents following treatment of LPG-I do not rule out the occurrence of small amounts of other tri- or tetra-saccharide chains.  相似文献   

12.
The syntheses of sodium (sodium 2-acetamido-2-deoxy-4-O-sulfonato-beta-D-galactopyranosyl)-(1-->4)-(sodium 2-O-sulfonato-L-idopyran)uronate, a disaccharide fragment of dermatan sulfate, and of its methyl alpha-L-glycoside derivative are reported for the first time. The use of 4-O-acetyl-3,6-di-O-benzyl-2-deoxy-2-trichloroacetamido-1-O-trichloroacetimidoyl-alpha-D-galactopyranose, readily prepared from a D-gluco precursor, allowed the stereocontrolled and high yielding coupling with the low reactive 4-hydroxyl group of L-iduronic acid ester derivatives. Classical transformation of the disaccharide products into the target molecules was achieved in high yield.  相似文献   

13.
4-methoxyphenyl glycosides of 2,3'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl tetraose (16), 3',2'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl hexaose (27), and a twentyose (42) consisting of beta-(1-->6)-linked D-galactopyranosyl pentadecaoligosaccharide backbone with alpha-L-arabinofuranosyl side chains alternately attached at C-2 and C-3 of the middle galactose residue of each consecutive beta-(1-->6)-linked galactotriose unit of the backbone, were synthesized with isopropyl 3-O-allyl-2,4-di-O-benzoyl-1-thio-beta-D-galactopyranoside (6), 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (7), 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (12), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (17), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (19), and 2,6-di-O-acetyl-3,4-di-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (28) as the key synthons. Condensation of 6 with 7 gave the disaccharide donor 8, and subsequent condensation of 8 with 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->6)-2-O-acetyl-3,4-di-O-benzoyl-beta-D-galactopyranoside (9) followed by selective deacetylation afforded the tetrasaccharide acceptor 11. Coupling of 11 with 12 gave the pentasaccharide 13, its deallylation followed by coupling with 12, and debenzoylation gave the hexasaccharide 16 with beta-(1-->6)-linked galactopyranose backbone and 2- and 3'-linked alpha-L-arabinofuranose side chains. The octasaccharide 27 was similarly synthesized, while the twentyoside 42 was synthesized with tetrasaccharides 33 or 24 as the donors and 23, 36, 38, and 40 as the acceptors by consecutive couplings followed by deacylation.  相似文献   

14.
A new teichoic acid was identified in the cell walls of Streptomyces griseoviridis VKM Ac-622T, Streptomyces sp. VKM Ac-2091, and Actinoplanes campanulata VKM Ac-1319T. The polymer is poly(glycosylglycerol phosphate). The repeating units of the polymer, alpha-galactopyranosyl-(1-->3)-2-acetamido-2-deoxy-beta-galactopyran+ ++ osyl-(1-->1)-glycerols, are in phosphodiester linkage at C-3 of glycerol and C-6 of galactose. The structures of cell wall teichoic acids in the strains Streptomyces chryseus VKM Ac-200T and "Streptomyces subflavus" VKM Ac-484 similar in morphology and growth characteristics are also identical: 1,5-poly(ribitol phosphate) substituted at C-4(2) by 2-acetamido-2-deoxy-beta-glucopyranosyl residues and 1,3-poly(glycerol phosphate). The taxonomic aspects of these results are discussed.  相似文献   

15.
The syntheses are reported for the first time of alpha-L-IdopA2SO(3)-(1-->3)-beta-D-GalpNAc4SO(3)-(1-->4)-alpha-L-IdopA2SO(3)-(1-->OMe), its disulfated analogue alpha-L-IdopA2SO(3)-(1-->3)-beta-D-GalpNAc-(1-->4)-alpha-L-IdopA2SO(3)-(1-->OMe), and of beta-D-GalpNAc4SO(3)-(1-->4)-alpha-L-IdopA2SO(3)-(1-->3)-beta-D-GalpNAc4SO(3)-(1-->OMe), which represent structural fragments of dermatan sulfate, unavailable directly by chemical or enzymatic degradation of the glycosaminoglycan polymer. These molecules were readily obtained from a pair of key disaccharide intermediates, in which the relative difference of stability of the D-GalNAc 4-hydroxy protecting groups (acetate or pivalate) toward saponification conditions allowed access to various sulfoforms from a common precursor. For the preparation of these blocks, the 4-O-pivaloyl-D-galacto moiety was readily obtained through a one-pot stereospecific intramolecular nucleophilic displacement on an easily available 3-O-pivaloyl-D-gluco precursor, and the L-IdoA moiety through selective radical oxidation at C-6 of a L-ido 4,6-diol derivative with oxoammonium salts.  相似文献   

16.
Chen L  Kong F 《Carbohydrate research》2002,337(15):1373-1380
A practical synthesis of beta-D-GlcA-(1-->3)-beta-D-Gal-(1-->3)-beta-D-Gal-(1-->4)-beta-D-Xyl-(1-->OMe) was achieved by coupling of methyl 2,3,4-tri-O-acetyl-alpha-D-glucopyranosyluronate trichloroacetimidate with a trisaccharide acceptor. The trisaccharide acceptor was obtained by condensation of 3-O-allyl-2,4,6-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->3)-2,4,6-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate with methyl 2,3-di-O-benzoyl-beta-D-xylopyranoside, followed by deallylation. The beta-(1-->3)-linked disaccharide was prepared readily with p-methoxyphenyl 3-O-allyl-2,4,6-tri-O-benzoyl-beta-D-galactopyranoside as the key synthon. The alpha-(1-->3)-linkage was formed in considerable amount with galactose mono- and disaccharide trichloroacetimidate donors with C-2 neighboring group participation.  相似文献   

17.
As part of a continuing study aimed to achieve improved monoclonal antibodies against carcinoembryonic antigen (CEA) carbohydrate fragments, the synthesis of a sialyl-(2-->6)-lactosamine trisaccharide with a 5-amino-3-oxapentyl spacer group at C-1I has been developed. Two different routes to access this target are described. For this purpose 5-azido-3-oxapentyl 6-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranoside (4) was selectively beta-galactosylated in 81% yield using the crystalline 2,3-di-O-acetyl-4,6-O-benzylidene-alpha-D-galactopyranosyl trichloroacetimidate as the donor, taking advantage of the bulky phthalimido group at C-2 of 4. On the other hand, galactosylation of the suitable protected acceptor 5-azido-3-oxapentyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside with the crystalline 2,3-di-O-acetyl-4,6-O-benzylidene-alpha-D-galactosyl bromide renders the corresponding disaccharide in a moderate 58% yield. Despite the fact that the first strategy, unlike the second one, requires a hydrazinolysis-acetylation reaction at the disaccharide stage, it was found to be more convenient to access the disaccharide acceptor. Sialylation was performed using a thiophenyl donor under an NIS-TfOH activation procedure in acetonitrile to give a mixture of alpha and beta trisaccharides in 49 and 16% yields, respectively.  相似文献   

18.
Allyl O-(beta-D-galactopyranosyl)-(1-3)-2-acetamido-2-deoxy-alpha-D-galactopyranoside (8) was prepared in excellent yield from the corresponding galactosyl bromide (6, 7) and allyl 2-acetamido-4,6-benzylidene-2-deoxy-alpha-D-galactopyranoside (5) using Hg(CN)2 as a promoter. Compound 5 was obtained from N-acetylglucosamine 1 following sequential protecting group strategy and C-4 epimerization as a key step. Carboxylic acid functionalized T-antigen derivative 15, obtained by radical addition of 3-mercaptopropionic acid to allyl disaccharide 10, was conjugated to PAMAM dendritic cores 13-16 by an efficient amide coupling strategy using TBTU. GlycoPAMAM dendrimers having T-antigen residues with 4, 8, 16 and 32 valencies (17-20) were obtained in 73 to 99% yields. Their protein binding properties were demonstrated using peanut lectin from Arachis hypogaea and a mouse monoclonal IgG antibody. The higher valency conjugates generated stronger binding interactions indicating a cluster effect. The inhibitory potential of these glycoPAMAM conjugates toward antibody-coating antigen interactions was enhanced up to 3800 times over that of the monomeric T-antigen residue (10).  相似文献   

19.
Starting from D-mannose, D-glucose and L-fucose, the pentasaccharide derivative methyl 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl-(1-->3)-2-O-acetyl-4,6-O-benzylidene-alpha-D-mannopyranosyl-(1-->3)-2-O-acetyl-6-O-benzyl-4-O-(2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl)-alpha-D-mannopyranosyl-(1-->4)-[2-(trimethylsilyl)ethyl 2,3-di-O-benzyl-beta-D-glucopyranosid]uronate was synthesized. This compound with two alpha-mannopyranosyl units was transformed, via Walden inversion and subsequent deprotection, into the alpha-D-glucosamine-type target compound, namely methyl alpha-L-fucopyranosyl-(1-->3)-2-acetamido-2-deoxy-alpha-D-glucopyranosyl-(1-->3)-2-acetamido-2-deoxy-4-O-(alpha-L-fucopyranosyl)-alpha-D-glucopyranosyl-(1-->4)-[2-(trimethylsilyl)ethyl beta-D-glucopyranosid]uronate which is related to the repeating unit of the O-antigen from Shigella dysenteriae type 4.  相似文献   

20.
3-O-Mesyl-1,6-di-O-trityl-beta-D-fructofuranosyl-(2-->1)-6-O-trityl-alpha-D-glucopyranoside (3) was synthesized via stannylation of 6,1',6'-tri-O-tritylsucrose with dibutyltin oxide in benzene, followed by treatment of the crude product with methanesulfonyl chloride in the presence of triethylamine in dichloromethane at 0 degrees C. A similar treatment of the tri-tritylsucrose in toluene, instead of benzene, yielded 4-O-mesyl-1,6-di-O-trityl-beta-D-fructofuranosyl-(2-->1)-6-O-trityl-alpha-D-glucopyranoside (4) as the major product. The X-ray crystal structure of the corresponding acetyl derivative, 3-O-acetyl-4-O-mesyl-1,6-di-O-trityl-beta-D-fructofuranosyl-(2-->1)-2,3,4-tri-O-acetyl-6-O-trityl-alpha-D-glucopyranoside (5), confirms the position and stereochemistry of the methanesulfonyl group at C-4 of the fructofuranosyl ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号