首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Anti-CD3 mAb are known to be both immunosuppressive and mitogenic to T cells in vitro. However, only immunosuppression has been observed after in vivo administration of these mAb. The present study demonstrates that T cell activation does occur after in vivo administration of anti-CD3 mAb to mice, evidenced by increased IL-2R expression on T cells, CSF secretion, and extra-medullary hematopoiesis in the spleen. These effects required multivalent cross-linking of the mAb, since F(ab')2 fragments failed to induce them. However, the F(ab')2 fragments did induce modulation of CD3/TCR from the surface of T cells, demonstrating that TCR modulation is not sufficient to induce activation. In addition, interaction of the TCR with either intact or F(ab')2 fragments of the mAb led to increased expression of CD8 in vivo, suggesting that the F(ab')2 fragments of anti-CD3 mAb might be capable of inducing a T cell to undergo some, but not all, of the changes involved in reaching a fully activated state. Further study of the activating effects of anti-CD3 mAb might increase the understanding of the mechanisms of in vivo T cell activation and might also be exploited clinically to stimulate T cell function in immunocompromised states and to enhance hematopoiesis in myelodysplastic disorders.  相似文献   

2.
CD43 (large sialoglycoprotein) is a heavily glycosylated protein expressed on virtually all thymus-derived lymphocytes, on a subpopulation of B cells and on granulocytes. Recently, an anti-CD43 mAb (L10) was shown to induce proliferation in T cells comparable to that induced by anti-CD3. The L10 antibody was reported to react with both sialylated and desialylated CD43. In order to further elucidate the role of CD43 in various T cell functions we have studied the biologic properties of two other mAb (B1B6 and E11B, IgG1) directed against sialic acid-dependent epitopes on CD43. Addition of low amounts of antibody (5 to 10 ng/ml) to freshly isolated T cells or to T cell lines resulted in a rapid clustering of the cells. Fab fragments were also active albeit at a 10-fold higher concentration. Aggregation was dependent on active cell metabolism (inhibited by azide and at low temperatures), on the presence of divalent cations (Mg2+) and was inhibited by antibodies to CD18 but not by antibodies to CD11a (leukocyte function-associated Ag-1 alpha). B1B6 and E11B were poorly mitogenic when added alone in soluble form to PBL or to T cells. However, supernatants from cultures of PBL treated with B1B6 for 2 days contained IL-2 activity. No increase in the number of CD25+ cells was seen during the same period. Exogenously added IL-2 did not synergize with B1B6 or E11B in activation of PBL, whereas proliferation was significantly increased by the addition of the antibodies to activation systems with low endogenous production of IL-2 (PMA or soluble anti-CD3). The anti-CD43 antibodies amplified T cell proliferative responses induced by Con A or leukoagglutinin from Phaseolus vulgaris. F(ab')2 fragments enhanced proliferation significantly better than Fab fragments suggesting that cross-linking of CD43 molecules was an essential features of the amplifying signal. Compared with cultures activated by Con A alone, an increased number of CD25+ cells and of blast cells as well as an increased IL-2 production was observed in cultures activated by B1B6-Con A. The results indicate that regulatory signals, which may function to modify homo- or heterotypic T cell adhesion as well as autocrine production of IL-2, can be transduced through CD43.  相似文献   

3.
CD38 signaling, either induced by ligation with specific agonistic monoclonal antibody (mAb) or after interaction with CD31, its cognate counter-receptor, is involved in release of IL-1beta, IL-6, and IL-10 cytokines in resting human monocytes. CD38 ligation by the F(ab')(2) IB4 mAb did not induce signals relevant for cytokine secretion and the block of the Fcgamma receptor I (FcgammaRI) by anti-CD64 or FcgammaRII by anti-CD32 mAb did not inhibit CD38-mediated IL-1beta release. Dimerization or multimerization of the CD38 molecule by: (i) cross-linking of the receptor ligated by F(ab')(2) or by (ii) increasing CD38 expression by treating monocytes with IFNgamma were able to restore the truncated CD38-mediated signals involved in cytokine secretion. These data indicate that CD38 receptor-mediated signals operate directly suggesting a Fcgamma receptorial surface molecule independent activation pathway. The key element for the receptor mediated signaling is represented by surface density of CD38 on resting monocytes.  相似文献   

4.
5.
We have studied the relationship of valency of CD3 stimulation and modulation of the CD3 receptor complex with biochemical and proliferative responses of T cells. Anti-CD3 Fab, as well as F(ab')2 and whole antibody caused rapid modulation of the CD3 antigen, whereas anti-CD3 conjugated to Sepharose did not. In the absence of monocytes, T cells stimulated with anti-CD3 Fab, F(ab')2, or F(ab')2-Sepharose showed differences in their ability to respond to second signals given by PMA, IL 1, IL 2, or antibodies to Tp67 and Tp44. None of the anti-CD3 signals alone caused resting T cells to produce IL 2, and only the Sepharose-bound anti-CD3 F(ab')2 caused T cells to express high levels of functional IL 2 receptors. Anti-CD3 F(ab')2-Sepharose-stimulated T cells produced IL 2 and proliferated in response to each of the second signals. Because anti-CD3-Sepharose did not cause modulation of the CD3 antigen, the ability of the Sepharose-bound antibody to induce T cells to express IL 2 receptors and to respond to individual second signals may be related to lack of modulation rather than valency of binding. Anti-CD3 Fab-stimulated T cells responded to PMA but required combinations of other second signals. T cells stimulated with unmodified anti-CD3 antibody or F(ab')2 fragments responded to PMA but did not respond to any other second signals alone or in combination. Stimulations that resulted in modulation (i.e., anti-CD3 whole antibody, anti-CD3 F(ab')2, or anti-CD3 Fab fragments) caused an increase in cytoplasmic calcium levels in resting T cells but blocked proliferation of T cells in response to mitogenic lectins or CD2 stimulation. Anti-CD3 F(ab')2 on Sepharose, however, did not block T cell proliferation. Whole bivalent anti-CD3 antibody or F(ab')2 fragments, but not monovalent Fab fragments, caused a rapid translation of protein kinase C activity from cytosol to membrane in the Jurkat T cell line. Because all of these modulate the receptor, these data indicate that the functional difference between monovalent and bivalent binding to CD3 is related to antibody valency and not to antigenic modulation. The use of Fab anti-CD3 stimulation that requires combinations of second signals for proliferation allowed an analysis of the functional relationships between IL 1, anti-Tp67, and anti-Tp44.  相似文献   

6.
7.
In the present study we provide the first evidence supporting the fact that the Kp43 NK-associated cell-surface dimer may be involved in regulating MHC-unrestricted cytotoxicity. Our results indicated that incubation of IL-2-activated NK cells in a 51Cr-release assay with either the Kp43-specific mAb or its F(ab')2 fragments induced a significant cytolytic activity directed against normal autologous and allogeneic T cell blasts, which are relatively resistant to NK cell-mediated lysis. The cytotoxic effect was not observed in fresh CD3- CD16+ CD56+ Kp43+ lymphocytes and was only substantiated in IL-2-preactivated NK cells. Although stimulation with the Kp43-specific mAb did not significantly change the intracellular Ca2+ concentration, both Ca2+ and Mg2+ were required for the induction of cytotoxicity. The anti-Kp43-mediated activation of cytolysis was inhibited by anti-CD18 and CD11a mAb, whereas it was not significantly altered by either CD11b, CD11c, CD2, or LFA-3-specific mAb, rendering unlikely the participation of the latter. In contrast to these results the Kp43-specific mAb did not enhance the high levels of spontaneous cytotoxicity mediated by IL-2-activated NK cells against a panel of different tumor cell lines. An inhibitory effect mediated by anti-Kp43 mAb on the IL-2-dependent proliferation of NK cells was previously reported and appears, at least partially, secondary to the induction of an autolytic mechanism that is synergistically enhanced by anti-CD16 mAb. Altogether our results point out that interaction of the Kp43 dimer with its specific mAb is capable of inducing cytolytic activity and suggest that the molecule may play an important functional role in lymphokine-activated NK cells.  相似文献   

8.
Induction of peripheral T cell anergy associated with stimulation through the TCR complex in vivo has been described in mice using chemically modified APC, staphylococcal enterotoxin B, and intact anti-CD3 mAb. In the latter two models, T cell proliferation, IL-2R expression, and lymphokine production have been demonstrated before subsequent induction of hyporesponsiveness, whereas in the former model, these events have not been observed. To further investigate the relationship between mitogenicity and induction of peripheral hyporesponsiveness, mice were treated with either mitogenic intact anti-CD3 mAb or nonmitogenic F(ab')2 fragments of anti-CD3 mAb. T cells from F(ab')2-treated mice demonstrated a selective decrease in helper functions, with minimal effect on CTL function. Specifically, a marked reduction in ability of Th cells to secrete IL-2 when challenged in vitro with mitogen or alloantigen was observed, which persisted for at least 2 mo after mAb administration and which was independent of T cell depletion. Proliferative function was decreased in CD4+ T cells and could not be fully restored with addition of exogenous IL-2. A helper defect was also evident in vivo, in that F(ab')2-treated mice were deficient in their ability to reject MHC-disparate skin grafts, and in vivo administration of IL-2 reconstituted their ability to reject skin grafts normally. In contrast, T cells from mice treated with intact mAb demonstrated a significant decrease in both CTL and helper functions. A long term reduction in TCR expression on CD4+ cells from F(ab')2-treated mice, and on both CD4+ and CD8+ cells from intact mAb-treated mice was observed. These findings demonstrate that peripheral T cell hyporesponsiveness can be induced in vivo by binding an identical epitope on the TCR complex in the presence or absence of initial proliferation, lymphokine secretion, or IL-2R expression, and that binding to the same epitope can result in varying long term effects on T cell function.  相似文献   

9.
To elucidate the Th cell activation mechanism through the TCR/CD3 complex, we examined the reactivity of T cell clones to soluble monovalent and divalent anti-CD3 without accessory cells or costimulatory factor. All T cell clones tested produced IL-2 in response to monovalent anti-CD3, although reactivity to divalent anti-CD3 was variable depending upon clones. IL-2 production of T cell clones induced by monovalent anti-CD3 was suppressed by cross-linking of the antibody with anti-hamster IgG. IL-2 mRNA expression and the increment of intracellular Ca2+ concentration were consistent with the IL-2 production. When T cell clones were stimulated with monovalent anti-CD3, they increased in size, although divalent anti-CD3 stimulation did not affect their size irrespective of their IL-2 production. These results indicate that monovalent anti-CD3 is more efficient than divalent anti-CD3 in induction of IL-2 production and that the cross-linkage of the TCR/CD3 complex is not necessarily required for the T cell clone activation.  相似文献   

10.
Down-regulation of IL-2 production by activation of T cells through Ly-6A/E   总被引:4,自引:0,他引:4  
Ly-6A/E molecules are expressed on the surface of T cells and have been shown to function in activation by the capacity of anti-Ly-6A/E mAb to induce T cell hybridomas or normal T cells to produce IL-2. Recent evidence suggests that activation through Ly-6A/E may be linked to the TCR signaling pathway. To further investigate the relationship between Ly-6- and TCR-induced T cell activation, we have examined whether an anti-Ly-6A/E mAb (D7) modulates TCR signaling in vitro. We now report that mAb D7 specifically inhibited IL-2 production by T cells also activated through TCR. Such inhibition was noted for normal T cells stimulated by soluble anti-CD3 or alloantigen and for T hybridomas stimulated by soluble anti-CD3. The ability of D7 to inhibit IL-2 production by T hybridomas was dependent on the nature of the TCR activating signal because IL-2 production was not inhibited when T hybridomas were stimulated with Ag or immobilized anti-CD3. Inhibition of IL-2 production by D7 apparently required cross-linking of the mAb because D7 F(ab')2 fragments were not effective for inhibition of IL-2 production. Similar to its ability to enhance anti-Ly-6A/E-induced activation of T and B cells, IFN-gamma enhanced the D7-induced inhibition of IL-2 production by alloantigen-activated normal T cells. These data further support the notion that Ly-6 and TCR signaling pathways are interrelated.  相似文献   

11.
The antigen receptor molecules on human T lymphocytes are noncovalently associated on the cell surface with the CD3 (T3) molecular complex. Perturbation of this complex with anti-CD3 monoclonal antibodies induces T cell activation. Previous studies have demonstrated that this process requires the participation of monocytes. In the present report, we demonstrate that purified, resting (G0 phase) T cells incubated with monoclonal anti-CD3 antibodies proliferate in response to purified interleukin 2 (IL 2), in a lymphokine dose-dependent fashion. Anti-CD3 antibody or IL 2 alone did not trigger cell division. The effect was specific for anti-CD3 antibodies because monoclonal antibodies reactive with other surface molecules (OKT4, OKT8, L368) were inactive. Furthermore, the same phenomenon was observed when anti-CD3 antibody Leu-4 (IgG1) was incubated with cells of individuals whose monocytes cannot process antibodies of the IgG1 subclass (Leu-4 nonresponders). In addition, both F(ab')2 and Fab fragments of anti-CD3 antibody OKT3 were also capable of rendering T cells receptive to the IL 2 growth signal. These data indicate that neither monocytes nor CD3 receptor cross-linking are required absolutely for resting T cell activation, provided that IL 2 is supplied exogenously. T lymphocytes treated with anti-CD3 antibodies proliferated in response to both purified mitogen-induced and recombinant IL 2. Antibodies to the IL 2 receptor (anti-Tac) inhibited the proliferation. Thus, the most likely mechanism for anti-CD3 antibody-mediated triggering is induction of IL 2 receptors.  相似文献   

12.
The membrane molecule CD4 (L3T4) is thought to facilitate activation of Class II H-2-restricted T cells by binding to Ia determinants on antigen-presenting cells. Recent reports suggest that CD4 can also contribute to antigen-independent activation by anti-T cell receptor (TCR) antibodies. An assay which measures the secretion of two lymphokines, granulocyte-macrophage colony-stimulating factor and interleukin 3 (IL-3), by single T cells activated with an anti-TCR antibody, F23.1, was used to analyze the effects of anti-CD4 antibodies on antigen-independent T cell activation. Single cells of a CD4+F23.1+ clone were micromanipulated into wells to which F23.1 had been immobilized, and their lymphokine secretion was measured 24 hr later. The frequency of lymphokine-secreting cells was consistently reduced up to 10-fold in the presence of soluble anti-CD4 antibody (GK1.5) but only up to 2.5-fold by an antibody to the cell adhesion molecule, LFA-1. In both bulk and single-cell cultures, responses to suboptimal concentrations of F23.1 were more susceptible to inhibition by GK1.5 than responses to optimal F23.1. The failure of GK1.5 to inhibit IL-2-stimulated lymphokine synthesis in bulk cultures suggested that CD4 ligation did not deliver a negative signal to the clone. By contrast, when either anti-CD4 or anti-LFA-1 was immobilized on the same surface as F23.1, the frequency of lymphokine-secreting cells could be increased up to 10-fold. It is concluded that anti-CD4 antibodies can act directly on the responding T cell to affect TCR-dependent activation, in the absence of interaction with antigen-presenting cells or any other cell type.  相似文献   

13.
To elucidate the role of CD4 molecule in T cell activation, the effect of anti-CD4 on T cell IL-2 production was examined by using an alloreactive Th clone. The alloreactive T cell used in the present experiments produced IL-2 in response to soluble anti-CD3 epsilon-chain (anti-CD3) without accessory cell or insoluble antibody carrier. The IL-2 production was suppressed by the addition of anti-CD4 in cultures. An intracellular free Ca2+ concentration ([Ca2+]i) of the T cell clone was elevated by anti-CD3 stimulation, but the elevation was suppressed in the presence of anti-CD4. When the clone was stimulated in Ca2(+)-free medium, the elevation of [Ca2+]i was not observed. When Ca2+ influx was induced by calcium ionophore A23187 or ionomycin, the clone produced IL-2 in response to anti-CD3 in the presence of anti-CD4. When polyclonal T cell line or several other alloreactive T cell clones were examined for their anti-CD3 response, essentially the same results as mentioned above were obtained. Taken together, these results suggest that the slow and sustained elevation of [Ca2+]i is an essential signal for IL-2 production of T cells, and that anti-CD4 suppresses the IL-2 production by interfering the [Ca2+]i elevation. The significance of CD4 molecules in murine T cell activation was discussed.  相似文献   

14.
Activation of T cells by specific antigens in the context of major histocompatibility complex encoded proteins is mediated by the T cell antigen receptor (TcR), consisting of a variable (Ti) and an invariant (CD3) subunits. Tyrosine phosphorylation is considered to be one of the earliest steps in TcR-mediated signal transduction. There are indications that the p60fyn protein tyrosine kinase is involved in signaling via TcR. However, enzymatic activation of the Src-related tyrosine kinases upon TcR triggering has not been shown yet, therefore the identity of TcR-activated tyrosine kinase(s) remains unclear. We demonstrate that cross-linking of CD3 activates p60fyn and induces tyrosine phosphorylation of cellular proteins in human T cells (resting peripheral T cells, a helper T cell clone, a helper T cell clone immortalized with Herpesvirus saimiri, and a leukemic T cell line). Activation of p60fyn was fast, and its maximum (2-4-fold activation as compared with the basal activity) was followed by a decline. The amount of p60fyn in the cells remained unchanged. None of the other T cell Src-related tyrosine kinases was activated after cross-linking of CD3. Activation of p60fyn was induced by anti-CD3, but not by anti-CD4, anti-CD2, or anti-CD28. The activation was correlated with an increase of the phosphotyrosine content of p60fyn. These studies provide direct proof for the functional association between p60fyn and the TcR.  相似文献   

15.
The role of host anti-donor cells in rejection of fully allogeneic donor T cell-depleted marrow was investigated by using mAb or immunotoxins directed against T cell or NK cell determinants. Immunotoxins consisting of mAb conjugated to a low oligosaccharide-containing fraction of purified ricin toxin A chain (RTA) facilitated in vivo-depletion of target cell populations. BALB/c and DBA/1 donors were selected based upon their expression (BALB/c) or lack of (DBA/1) hemopoietic histocompatibility (Hh1) Ag, which may serve as targets for donor rejection in C57BL/6 hosts. When studies directed toward eliminating CD3+ cells were performed in both systems, injections of intact anti-CD3 mAb or anti-CD3-RTA reproducibly produced the highest engraftment values. The fact that engraftment values obtained with anti-CD3 or anti-CD3-RTA therapy in allogeneic systems were substantially higher than in syngeneic controls suggested that engraftment stimulatory proteins were released upon TCR engagement. Elevated levels of cytokines and a high mortality rate in allogeneic recipients confirmed that this was the case. Nonstimulatory preparations of anti-CD3F(ab')2 fragments and anti-CD3F(ab')2-RTA promoted engraftment of both types of allogeneic marrow, as measured by short term 125I-IUdR assays, suggesting that stimulation was not a prerequisite for engraftment. Recipients of anti-CD3F(ab')2 or anti-CD3F(ab')2-RTA showed a marked reduction of host CD3+ cells as measured by immunofluorescence and flow cytometry. In long term chimerism studies, recipients of Hh1-disparate marrow and anti-CD3F(ab')2 had a dramatic increase in donor cell engraftment as compared to controls, indicating that positive effects on engraftment were long lived. Studies further showed that BALB/c donor cells exhibiting an Hh1 disparity were rejected by host cells expressing NK1.1 or Ly-1 (NK cells and T cells). In contrast, DBA/1 donor cells that were not Hh1-disparate were rejected by cells expressing Ly-1, but not NK1.1 (T cells only). These studies provide definitive data that CD3+ cells participate in the rejection of either Hh1+ or Hh1null T cell-depleted allografts and offer new strategies for alloengraftment using regimens containing nonmitogenic anti-CD3.  相似文献   

16.
17.
Antibodies directed against the human T cell receptor or the closely associated CD3 molecule stimulate polyclonal T cell proliferation via mechanisms that mimic a primary immune response. We have investigated the requirement for IL-1 production in anti-CD3 (OKT3)-mediated mitogenesis using a Hodgkin's disease cell line (L428) as the accessory cell. L428 cells did not produce detectable IL-1 following stimulation with lipopolysaccharide or phorbol ester (PMA), nor did they transcribe detectable levels of mRNA for IL-1 alpha or beta after such treatment. Despite their inability to produce IL-1, as few as 1 X 10(4) L428 cells reconstituted the proliferative response of accessory cell-depleted T cells to anti-CD3. Although larger numbers of non-rosette-forming (E-) cells were required for maximal responsiveness to anti-CD3, the maximal degree of proliferation was higher with E- cells than with L428 cells. L428-mediated T cell proliferation did not result from residual accessory cells in the responding population or an allogeneic effect since L428 cells were also capable of providing accessory cell activity for the anti-CD3-dependent generation of IL-2 by the Jurkat T cell line. Although the mechanism by which L428 cells provide accessory functions remains incompletely characterized, the ability of anti-HLA-DR F(ab')2 fragments to completely abrogate L428 and monocyte-mediated anti-CD3 mitogenesis, despite the addition of exogenous IL-1, provides evidence for the participation HLA-DR molecules in this response. These data indicate that anti-CD3-induced proliferation of unprimed human T lymphocytes can occur independently of IL-1 production by accessory cells and may involve the participation of HLA-DR molecules.  相似文献   

18.
In lymphoid follicles, CD4+ T lymphocytes provide contact-dependent stimuli to B cells that are critical for the generation of specific antibody responses in a process termed Th function. The CD4+ T cell-restricted surface activation protein, 5c8 Ag (T-BAM), has recently been shown to be a component of the contact-dependent helper signal to B cells. To further dissect this process, we utilized a Jurkat T cell lymphoma clone, termed D1.1, that constitutively expresses T-BAM and activates peripheral B cells to express surface CD23 in a contact-dependent mechanism that is inhibited by mAb anti-T-BAM (5c8). Similar to its effect on peripheral B cells, Jurkat D1.1 activates B cells from lymphoid organs, as well as a B cell lymphoma clone, RAMOS 266,4CN 3F10 (RAMOS 266), to up-regulate surface CD23. Interestingly, mAb to the B cell surface molecule, CD40 (mAb G28-5 and B-B20), inhibit D1.1 induced activation of RAMOS 266 and peripheral and lymphoid B cells. In contrast, mAb to CR2 or the adhesion molecules, LFA1, LFA3, or ICAM-1, have little effect. The inhibitory effect of anti-CD40 mAb on B cell activation induced by D1.1 is specific because anti-CD40 potentiates, rather than inhibits, the up-regulation of CD23 on B cells induced by rIL-4. Moreover, cross-linking CD40 molecules by anti-CD40 mAb bound to Fc gamma RII+ (CD32) L cells induces B cell CD23 expression. In vivo, T-BAM-expressing cells are CD4+ T cells that are restricted to lymphoid organs and are localized in the mantle and centrocytic zones of lymphoid follicles and the spleen periarteriolar lymphoid sheath in association with CD40+ B cells. Taken together, these data demonstrate that T-BAM on T cells and CD40 on B cells are involved in contact-dependent T-B help interactions that occur in lymphoid follicles.  相似文献   

19.
To investigate whether the retargeting of resting CTL can benefit from cooperative signaling between the TCR/CD3 complex and various accessory molecules, such as CD2, CD4, CD5, and CD8, we have constructed a series of trispecific F(ab')3 derivatives. Each derivative was designed to engage effector T lymphocytes with two Fab' arms, and tumor cells with a single Fab' arm. They were constructed by selective coupling of three mAb Fab' fragments, primarily via their hinge-region sulfhydryl groups, using the cross-linker o-phenylenedimaleimide. En route to the production of trispecific F(ab')3 antibodies a range of bispecific F(ab')2 derivatives was first prepared which could bind simultaneously to two different receptor molecules on T cells. Bispecific derivatives containing specificities for (CD2 (T11(1)) x CD3), (CD3 x CD4), (CD3 x CD8) or two epitopes on CD2, ((T11(1) x (T11(3)), all yielded two to three times the uptake of [3H]thymidine with fresh PBMC to that seen with intact IgG from anti-CD3 (OKT3). The exception to these findings was a bispecific F(ab')2 derivative with specificities for (CD3 x CD5) which caused slightly less proliferation than the control reagent, OKT3 IgG. When these bispecific antibodies were converted into trispecific antibodies (TsAb) by the addition of a Fab' from anti-CD37 they were then all able to retarget resting, unprimed, T cells from fresh PBMC for lysis of CD37+ tumor cells. However, the cytotoxic activity of these reagents fell into two distinct groups: group one, containing (anti-CD3 x anti-CD4 x anti-CD37), (anti-CD3 x anti-CD5 x anti-CD37), and (anti-CD3 x anti-CD8 x anti-CD37), gave minimal lysis and behaved in a similar way to the BsAb, (anti-CD3 x anti-CD37), i.e., no evidence of cooperative signaling for lysis; and group two, containing (anti-T11(1) x anti-CD3 x anti-CD37) and (anti-T11(1) x anti-T11(3) x anti-CD37), which were highly cytotoxic and gave up to 80% specific 51Cr-release. The failure of group one TsAb, in particular (anti-CD3 x anti-CD8 x anti-CD37) which should recruit CD8+ CTL, to give efficient lysis despite having anti-T cell arms that were mitogenic as a bispecific antibody, indicates that the cooperative signaling for proliferation is probably distinct from the signal(s) provided by group two TsAb that activate for both proliferation and lysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
In this paper, we examined in detail the ability of anti-1F7 to modulate 1F7 (CD26) surface expression as well as analyzed the functional relationship between the surface expression of CD3, CD2, and CD26 and human T cell activation. We showed that anti-1F7-induced modulation is an energy-dependent process that occurs via capping and internalization of the Ag-antibody complex. Although the recovery rate for Ag reexpression of 1F7 following optimal modulation is relatively delayed, reexpression of 1F7 is greatly accelerated following phorbol ester treatment. Most importantly, we demonstrated that modulation of the CD26 Ag leads to an enhancement in the proliferative activity of modulated human T cells treated with anti-CD3 or anti-CD2, which is preceded by an enhancement in Ca2+ mobilization. CD26 modulation also led to an increase in anti-CD3- or anti-CD2-mediated T cell clone proliferation. Finally, whereas modulation of the CD26 Ag has an effect on CD3- or CD2-induced T cell activation, modulation of the CD3/TCR complex inhibits the proliferative response of T cells incubated with anti-CD3 plus anti-1F7 or anti-CD2 plus anti-1F7. However, modulation of the CD2 structure does not affect anti-CD3- plus anti-1F7-induced human T cell activation. The above results thus provide additional evidence that the CD26 Ag plays an integral role in the regulation of human T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号