共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Bovine in vitro embryo production is an inefficient process; while maturation and fertilization proceed apparently normally, the proportion of embryos reaching the transferable (blastocyst) stage is rarely over 40% and those that do reach this stage are often compromised in quality and competence. There is considerable evidence of a significant influence of follicular origin on oocyte developmental potential and it appears that once the oocyte is removed from the follicle its developmental capacity is capped. Evidence suggests that while culture conditions during bovine in vitro embryo production can impact somewhat the developmental potential of the early embryo, the intrinsic quality of the oocyte is the key factor determining the proportion of oocytes developing to the blastocyst stage. This paper highlights some of the problems associated with in vitro production of embryos and discusses some of the ways of overcoming these problems. 相似文献
3.
Marguant-Le Guienne B Rémond M Cosquer R Humblot P Kaiser C Lebreton F Crucière C Guerin B Laporte J Thibier M 《Theriogenology》1998,50(1):109-116
The aim of this study was to investigate whether foot and mouth disease virus (FMDV) interacts with in vitro produced (IVP) bovine embryos. One milliliter of a suspension of FMDV (2 x 10(7) TCID50/mL) was added to several batches of these embryos 7 d after in vitro fertilization, by which time they had either developed to the morula/blastocyst stage (n = 256) or degenerated (n = 260). Six experiments were performed in which developed or degenerated batches of embryos were incubated with FMDV for periods of 1 h (3), 2 h (2) or 4h (1). After this, the embryos were washed 10 times according to the International Embryo Transfer Society (IETS), then pooled and ground up to form a suspension, and assayed on cell cultures for FMDV. The cell cultures were observed daily for cytopathic effects for 3 d post exposure. In addition to the cell culture method, the polymerase chain reaction (PCR) technique was used to assay for the presence of the virus in the washing fluids. Assays for FMDV were also conducted on the first and second wash and on the pooled sample constituting the eight, ninth and tenth wash. With the exception of the second wash from a batch of embryos exposed to FMDV for 2 h, all samples of the first and second wash produced FMDV cytopathic effects, but none occurred with the pooled samples of the 8th, 9th and 10th wash. FMDV was also isolated from all but 1 of the batches of embryos after 1 h of incubation, from 1 of 4 batches after 2 h of incubation and from all batches after 4 h incubation. By contrast, the presence of virus could not be demonstrated by PCR based on the technique used here. These results show that 7 d old IVP bovine embryos can retain FMDV after washing, unlike in vivo-derived embryos, which do not appear to carry risks of FMDV transmission when washed according to IETS recommendations. Stricter controls are, therefore, necessary when using IVP embryos from cattle in a non-FMD-free zone in domestic or international trade. 相似文献
4.
This study evaluates a new synthetic substitute (CRYO3, Ref. 5617, Stem Alpha, France) for animal-based products in bovine embryo cryopreservation solutions. During the experiment, fetal calf serum (FCS) and bovine serum albumin (BSA) were used as references. A combination of a thermodynamic approach using differential scanning calorimetry and a biological approach using in vitro-produced bovine embryo slow-freezing was used to characterize cryopreservation solutions containing CRYO3, FCS and BSA. The CRYO3 and fetal calf serum (FCS) slow-freezing solutions were made from Dulbecco's phosphate-buffered saline containing 1.5 m ethylene glycol, 0.1 m sucrose and 20% (v.v−1) of CRYO3 or FCS. The bovine serum albumin (BSA) solution was made by adding 0.1 m sucrose to a commercial solution containing 1.5 m ethylene glycol and 4 g L−1 BSA. These solutions were evaluated using three characteristics: the end of melting temperature, the enthalpy of crystallization (thermodynamic approach) and the embryo survival and hatching rates after in vitro culture (biological approach). The CRYO3 and FCS solutions had similar thermodynamic properties. In contrast, the thermodynamic characteristics of the BSA solution were different from those of the FCS and CRYO3 solutions. Nevertheless, the embryo survival and hatching rates obtained with the BSA and FCS solutions were not different. Similar biological properties can thus be obtained with slow freezing solutions that have different physical properties within a defined range. The embryo survival rate after 48 h of in vitro culture obtained with the CRYO3 solution (81.5%) was higher than that obtained with the BSA (42.2%, P = 0.000 12) and FCS solutions (58%, P = 0.016). Similarly, the embryo hatching rate after 72 h of in vitro culture was higher with the CRYO3 solution (61.1%) than with the BSA (31.1%, P = 0.0055) and FCS solutions (36%, P = 0.018). We conclude that CRYO3 can be used as a chemically defined substitute for animal-based products in in vitro-produced bovine embryo cryopreservation solutions. 相似文献
5.
In vivo bovine embryos were obtained by nonsurgical flushing of uterine horns of cows submitted to superovulatory treatment, while in vitro embryos were generated from oocytes collected from slaughtered donors. Lucifer Yellow injected into single blastomeres did not diffuse into neighboring cells until the morula stage in in vivo embryos and the blastocyst stage in in vitro embryos. In both cases diffusion was limited to a few cells. In contrast, diffusion was extensive in microsurgically isolated inner cell mass (ICM) but absent in the trophectoderm (TE). At the blastocyst stage, diffusion was always more extensive in in vivo than in in vitro embryos. Ultrastructural analyses confirmed these functional observations, and gap junction-like structures were observed at the blastocyst stage. These structures were diffuse in the ICM of in vivo embryos, scarce in the ICM of in vitro embryos and in the TE of in vivo embryos, and not observed in the TE of in vitro embryos. Blastomeres at all stages of development from the 2-cell stage to the blastocyst stage in in vitro embryos and at the morula and blastocyst stage in in vivo embryos were electrically coupled, and the junctional conductance (Gj) decreased in in vitro embryos from 4.18 +/- 1.70 nS (2-cell stage) to 0.37 +/- 0.12 nS (blastocyst stage). At each developmental stage, in vivo embryos showed a significantly (P < 0. 05) higher Gj than in vitro-produced embryos. Moreover, a significantly (P < 0.01) higher Gj was found in isolated ICM than in the respective blastocyst in both in vivo- and in vitro-produced embryos (3.5 +/- 1.4 vs. 0.7 +/- 0.3 and 2.6 +/- 1.6 vs. 0.37 +/- 0. 12 nS, respectively). The electrical coupling in absence of dye coupling in the early bovine embryo agrees with observations for embryos from other phyla. The late and reduced expression of intercellular communicative devices in in vitro-produced embryos may be one of the factors explaining their developmental low efficiency. 相似文献
6.
Sudano MJ Paschoal DM Rascado Tda S Magalhães LC Crocomo LF de Lima-Neto JF Landim-Alvarenga Fda C 《Theriogenology》2011,75(7):1211-1220
The objective was to evaluate supplementation of fetal calf serum (FCS) and phenazine ethosulfate (PES), a metabolic regulator that inhibits fatty acid synthesis, in culture media during in vitro production (IVP) of bovine embryos. Taking oocyte fertilization (n = 4,320) as Day 0, four concentrations of FCS (0, 2.5, 5, and 10%) and three periods of exposure to PES (without addition—Control; after 60 h—PES Day 2.5 of embryo culture; and after 96 h—PES Day 4) were evaluated. Increasing FCS concentration in the culture media enhanced lipid accumulation (P < 0.05), increased apoptosis in fresh (2.5%: 19.1 ± 1.8 vs 10%: 28.4 ± 2.3, P < 0.05; mean ± SEM) and vitrified (2.5%: 42.8 ± 2.7 vs 10%: 69.2 ± 3.4, P < 0.05) blastocysts, and reduced blastocoele re-expansion after vitrification (2.5%: 81.6 ± 2.5 vs 10%: 67.3 ± 3.5, P < 0.05). The addition of PES in culture media, either from Days 2.5 or 4, reduced lipid accumulation (P < 0.05) and increased blastocoele re-expansion after vitrification (Control: 72.0 ± 3.0 vs PES Day 2.5: 79.9 ± 2.8 or PES Day 4: 86.2 ± 2.4, P < 0.05). However, just the use of PES from D4 reduced apoptosis in vitrified blastocysts (Control: 52.0 ± 3.0 vs PES Day 4: 39.2 ± 2.4, P < 0.05). Independent of FCS withdrawal or PES addition to culture media, the in vivo control group had lesser lipid accumulation, a lower apoptosis rate, and greater cryotolerance (P < 0.05). The increased lipid content was moderately correlated with apoptosis in vitrified blastocysts (r = 0.64, P = 0.01). In contrast, the increased apoptosis in fresh blastocysts was strongly correlated with apoptosis in vitrified blastocysts (r = 0.94, P < 0.0001). Therefore, using only 2.5% FCS and the addition of PES from Day 4, increased the survival of IVP embryos after vitrification. Moreover, embryo quality, represented by the fresh apoptosis rate, was better than lipid content for predicting embryo survival after vitrification. 相似文献
7.
《Reproductive biology》2023,23(2):100750
This article addresses morphokinetic changes and the extent of apoptosis in vitrified and non-vitrified in vitro-derived ovine blastocysts. Cumulus-oocyte complexes were collected after ovarian scarification obtain after slaughter and in vitro maturation was performed in TCM 199 medium supplemented with Earle’s Salt, 10 % of FBS, and 5 µg/mL of LH/FSH at 38 °C for 24 h. After maturation, the oocytes were co-incubated with thawed ram semen (IVF) for 19 h.Embryo development was monitored with the aid of the Primo Vision Time-Lapse (TL) system. Twenty-five out of thirty-one ovine blastocysts that were vitrified using the Cryotop system at the early blastulation stage of development subsequently re-expanded. Both the vitrified (n = 25) and non-vitrified (control group: n = 28) blastocysts were examined for detection of apoptosis (TUNEL assay) and total blastomere counts at the time they attained the expanded blastocyst stage. Blastocyst formation occurred earlier in non-vitrified than in vitrified ovine embryos (147:49 ± 20:23 compared with 156:46 ± 19:24; hours:minutes post-insemination; mean ± SD; P < 0.05). The average number of blastocyst collapses was greater (2.45 ± 1.64 compared with 1.45 ± 1.64), but the number of weak contractions was less for vitrified than non-vitrified ovine blastocysts (P < 0.05). The mean number of blastomeres was greater (131.8 ± 38.6 compared with 91.5 ± 18.3; P < 0.05) while the number of TUNEL-positive cells (4.4 ± 1.6 compared with 6.3 ± 2.3) and apoptotic index (3.4 ± 1.2 % compared with 6.9 ± 2.6 %) were less (P < 0.05) in non-vitrified compared with vitrified blastocysts. Vitrification of ovine embryos was associated with a delayed blastocyst formation, greater numbers of apoptotic cells, significant reduction in the number of blastomeres, and higher/lower incidence of blastocyst collapse/weak contractions. 相似文献
8.
Closed pulled straw vitrification of in vitro-produced and in vivo-produced bovine embryos 总被引:1,自引:0,他引:1
The objective of this study was to evaluate the efficiency of the closed pulled straw (CPS) method for cryopreserving in vitro-produced and in vivo-produced bovine (Bos taurus) embryos. Based on the open pulled straw (OPS) protocol, the top end of a CPS was closed by tweezers (heated in a flame) to prevent the cryoprotectant medium containing embryos from contacting the liquid nitrogen. Bovine in vitro or in vivo morulae and early blastocyst embryos were frozen by slow cryopreservation, OPS vitrification, or CPS vitrification. Morphology of postthawed embryos was evaluated, and normal embryos were used for successive culture for 72 h. There were no significant differences between OPS and CPS freezing groups in postthawed in vitro-produced embryos with respect to rates of morphologically normal embryos (mean ± SD, 87.9 ± 5.2% vs. 85.4 ± 4.9%), survival at 24 h (58.0 ± 6.8% vs. 56.3 ± 4.4%), and survival at 72 h (35.2 ± 6.0% vs. 34.9 ± 6.7%). However, both OPS and CPS vitrification resulted in higher postthaw rates of morphologically normal embryo and survival at 24 and 72 h than those of the slow-freezing method (P < 0.05). Similar results were obtained for in vivo-derived embryos. We concluded that CPS vitrification was a feasible method to cryopreserve both in vitro-derived and in vivo-derived bovine embryos. This method not only eliminated the risk of embryo contamination by preventing contact with liquid nitrogen but also retained the advantages of the OPS vitrification method. 相似文献
9.
In vitro systems for oocyte maturation, fertilization and embryo culture [in vitro production (IVP)] have the potential for more wide-spread use in creative breeding programs for dairy and beef cattle. However, one negative consequence of both IVP and somatic cell nuclear transfer (SCNT) in cattle and other species is that embryos, fetuses, placentas, and offspring can differ significantly in morphology and developmental competence compared with those from embryos produced in vivo. Fetuses and placentas derived from IVP and SCNT embryos may fall within the normal range of development, may have obvious abnormalities such as increased fetal and placental weights, or may have subtle abnormalities such as aberrant development of fetal skeletal muscle, placental blood vessels, and altered metabolism. Failures in physiologic and/or genetic mechanisms essential for proper fetal growth and survival outside of the uterus contribute significantly to pregnancy and neonatal losses. Oversized fetuses are at increased risk of death during parturition and the adverse consequences of severe dystocia may compromise the dam. Collectively, these abnormalities have been referred to as 'large offspring syndrome' or 'large calf syndrome'. Abnormal phenotypes resulting from IVP and SCNT embryos are stochastic in occurrence and they have not been consistently linked to aberrant expression of single genes or specific pathophysiology. Thus, reliable methods of early diagnosis of the condition are not yet available. The objective of this paper is to examine abnormal development of fetuses and placentas resulting from embryos produced using in vitro systems. The term 'abnormal offspring syndrome (AOS)' is introduced and a classification system of developmental outcomes is proposed to facilitate research efforts on the mechanisms of the various abnormal phenotypes. We also discuss potential genetic and physiologic mechanisms that may contribute to abnormal phenotypes following transfer of IVP and SCNT embryos. 相似文献
10.
Bovine (Bos indicus) herpesviruses have been associated with reproductive disease. Type 1, the most studied species, is best known for its reproductive and respiratory effects. Type 5 (BoHV-5) has been detected in bull semen and aborted fetuses but not in oocytes and embryos. This study consisted of three experiments that evaluated (1) BoHV-5-infected oocytes matured in medium with fetal bovine serum (BoHV-FBS) or polyvinyl alcohol (BoHV-PVA) and fertilized by noninfected sperm; (2) noninfected oocytes fertilized by BoHV-5-infected sperm; and (3) infection of presumptive zygotes by BoHV-5. Each treatment involved nine drops of 15 to 20 oocytes. Infection with BoHV-5 was detected by polymerase chain reaction and in situ hybridization assay, and fertilization capacity and embryonic development were assessed using in vitro culture. Experimentally induced infection was obtained in all experiments, and vertical transmission of BoHV-5 by gametes was confirmed. The cleavage rate was reduced (P = 0.0201) in BoHV-FBS (80.4 ± 8.9%; mean ± SD) compared with that of noninfected oocytes (89.9 ± 6.5%); neither differed from BoHV-PVA (87.3 ± 7.1%), and the resulting embryo production rate was not significantly different among groups. Rates of cleavage (87.5 ± 7.5% vs. 92.2 ± 5.5%, control vs. infected) and development of embryos (41.7 ± 9.9% vs. 44.3 ± 7.7% to morula/blastocyst/expanded blastocyst [M/B/EB] and 39.6 ± 10.3% vs. 40.8 ± 9.2% to blastocyst/expanded blastocyst/hatching blastocyst [B/EB/HB] stages) were not compromised by infected sperm (P = 0.1462, P = 0.5402, and P = 0.8074, respectively). However, presumptive zygotes directly infected 1 d after fertilization produced a lower number (P = 0.0140 to M/B/EB and P = 0.002 to B/EB/HB stages) of in vitro-produced embryos (31.6 ± 4.6 vs. 25.0 ± 5.5 and 31.6 ± 4.6 vs. 20.2 ± 5.4; control vs. infected). In conclusion, BoHV-5 infected gametes and was transmissible to the embryo during in vitro development. As zygotes infected 1 d after fertilization had compromised development, BoHV-5 has the potential to be a pathogen with economic consequences. 相似文献
11.
Viuff D Greve T Avery B Hyttel P Brockhoff PB Thomsen PD 《Biology of reproduction》2000,63(4):1143-1148
Availability of embryos of high quality is required to obtain satisfactory embryonic developmental rates and normal calves following transfer of in vitro-produced (IVP) bovine embryos. One relevant quality parameter is the frequency of chromosome aberrations, which can be evaluated using multicolor fluorescent in situ hybridization (FISH) with chromosome 6- and chromosome 7-specific probes in cattle. In this study, interphase nuclei (n = 3805) were analyzed from 426 bovine IVP embryos. We found that 73%, 72%, 81%, and 58% of the embryos from Days 2, 3, 4, and 5 post-insemination (pi), respectively, displayed a normal diploid chromosome number in all cells. When looking at the types of chromosome aberrations, the percentages of mixoploidy at Days 2, 3, 4, and 5 pi were 22%, 15%, 16%, and 42%, respectively, whereas the percentages of polyploidy (i.e., all nuclei in an embryo were analyzed and were polyploid) were 5%, 13%, 3%, and 0%, respectively. In conclusion, numerical chromosome aberrations were detected as early as Day 2 pi. The development of polyploid embryos is slow and is apparently arrested during the third cell cycle, whereas the mixoploid embryos seem to continue development. 相似文献
12.
Murakami M Ferguson CE Perez O Boediono A Paccamonti D Bondioli KR Godke RA 《Cloning and stem cells》2006,8(1):51-60
Presence of placental tissues from more normal noncloned embryos could reduce the pregnancy failure of somatic cloning in cattle. In this study, inner cell mass (ICM) cells of in vitro-produced (IVP) embryos was replaced with those of nuclear transfer (NT) embryos to reconstruct bovine blastocysts with ICM and trophoblast cells from NT and IVP embryos, respectively. A total of 65 of these reconstructed embryos were nonsurgically transferred to 20 recipient beef females. Of those, two females were diagnosed pregnant by ultrasonography on day 30 of gestation. One pregnancy was lost at 60-90 days of gestation, and the other recipient cow remained pregnant at day 240 of gestation; however, this female died on day 252 of gestation. Gross pathology of the internal organs of the recipient female, a large fetus, and a large placental tissue mass suggested the massive size of the fetus and placental tissue were likely involved in terminating the life of the recipient female. Biopsy samples were harvested from the skin of the dead recipient cow, the fetus and from cotyledonary tissue. Microsatellite DNA analysis of these samples revealed that the genotype of the fetus was the same as that of the NT donor cells and different from that of the recipient cow. Correspondingly, neither the fetus nor recipient cow had the same genotype with that of the fetal cotyledonary tissue. These results present the first known documented case of a bovine somatic NT pregnancy with nonclone placental tissues after transfer of a blastocyst reconstructed by a microsurgical method to exchange of ICM cells and trophoblast tissue between NT and IVP blastocysts. 相似文献
13.
G Vanroose H Nauwynck A Van Soom E Vanopdenbosch A De Kruif 《Molecular reproduction and development》1999,54(3):255-263
In previous experiments, zona pellucida (ZP)-intact in vitro-produced (IVP) embryos incubated for 1 hr with 10(6.3) TCID(50)/ml bovine herpes virus-1 (BHV-1), 10(5.3) TCID(50)/ml cytopathic (CP) bovine viral diarrhea virus (BVDV) or 10(5.3) TCID(50)/ml noncytopathic (NCP) BVDV showed no signs of virus replication or embryonic degeneration. The aims of the present study were to investigate whether a prolonged presence (24 hr or 8 days) of 10(6.3) TCID(50)/ml BHV-1 or 10(5.3) TCID(50)/ml BVDV in an in vitro embryo production system affected the rate of cleavage and embryonic development of ZP-intact embryos, and to point out eventual causes of adverse effects. When virus was present in each step of an IVP system, significantly lower rates of cleavage and blastocyst formation of virus-exposed embryos were observed, in comparison with control embryos (P < 0.01). When embryos were only exposed to virus during the in vitro fertilization (IVF), the rates of cleavage and blastocyst formation were significantly affected. The introduction of BHV-1 or BVDV during in vitro maturation (IVM) or in vitro culture (IVC) resulted only in significantly lower rates of blastocyst (P < 0.01). In all experiments, virus replication was not detected in the embryonic cells. On the other hand, virus replication was clearly demonstrated in oviductal cells in the co-culture system, resulting in a degeneration of these cells. In an additional experiment, synthetic oviduct fluid (SOF) without somatic cells was used as an alternative culture system. Even when SOF-embryos were exposed to 10(6.3) TCID(50)/ml BHV-1 or 10(5.3) TCID(50)/ml CP, and NCP BVDV, the rates of blastocyst formation of the BHV-1-, CP-, and NCP BVDV-exposed embryos were not different from the unexposed control embryos, 23%, 24%, and 24%, respectively, vs. 27%. Taken together, it can be concluded that the virus-induced adverse effects on embryonic development in conventional co-cultures were due to changes in the embryonic environment caused by infection of oviductal cells. 相似文献
14.
15.
Marley MS Givens MD Galik PK Riddell KP Stringfellow DA 《Animal reproduction science》2009,112(3-4):423-429
Bovine herpesvirus 1 (BoHV-1) is widely distributed among cattle populations and has been associated with cells, fluids, and tissues collected from donor animals for use in reproductive technologies. The purpose of this study was to determine if lactoferrin would inhibit BoHV-1 in cell culture and to evaluate if embryos could develop normally when cultured in vitro with lactoferrin. In Experiment 1, lactoferrin (10 mg/mL) inhibited up to 25,000 plaque forming units (PFU)/mL of BoHV-1 in Madin Darby bovine kidney (MDBK) cell culture. In Experiment 2, lactoferrin (10 mg/mL) combined with cidofovir (62.5 microg/mL) inhibited up to 100,200 PFU/mL of virus in cell culture. In Experiment 3, following fertilization, presumptive zygotes were cultured in media containing lactoferrin (10, 5, and 2.5 mg/mL). Embryonic development and quality were assessed, and embryonic viability was determined by counting the nucleated cells of developed blastocysts. While lactoferrin did not affect the nucleated cell count of the treated embryos, it did significantly decrease blastocyst development. In conclusion, lactoferrin from bovine milk can inhibit BoHV-1 in cell culture. However, supplementation of in vitro culture medium with lactoferrin inhibits blastocyst development of in vitro-produced embryos. 相似文献
16.
Embryo quality of in vitro-produced bovine blastocysts was assessed at several steps of a vitrification procedure in which glycerol and ethylene glycol were used as cryoprotectants (3-step equilibration with cryoprotectants followed by vitrification, dilution of the cryoprotectants in 0.85 M galactose then in embryo transfer freezing medium [ETF], and finally co-culture for periods). To visualize cell membrane alterations, double staining was performed using a cell permeant fluorochrome (bisbenzimide--BIS) and a nonpermeant one (propidium iodide--PI). In Experiment 1, the effect of the vitrification procedure on the hatching rate and total cell number was assessed 72 h after treatment. Hatching rate and the number of stained nuclei were decreased in comparison with untreated embryos when blastocysts were exposed to the whole procedure with or without vitrification (respectively 42 and 53% vs 76% for hatching and 128 +/- 17 and 141 +/- 17 vs 226 +/- 13 for stained nuclei). In Experiment 2, the effect of cryoprotectants and their dilution was evaluated on membrane permeability and total cell numbers at various steps of the vitrification procedure. Blastocysts exposed only to cryoprotectant solutions and stained immediately after dilution in galactose showed no modification. After dilution in ETF, the total number of stained nuclei decreased, and the number of blastomeres showing membrane permeabilization (PI-stained) increased (respectively, 74 +/- 5 vs 110 +/- 5 and 32 +/- 2% vs 0.1 +/- 1.8%). In Experiment 3, we demonstrated that the total number of stained nuclei after ethanol fixation (membrane permeabilization) was higher when embryos treated up to dilution in ETF were stained with PI than when the same embryos were stained with BIS. This suggests that, for unknown reasons, some nuclei of the treated embryos were not stained with BIS. Membrane permeabilization and inability of BIS to stain some nuclei were the most obvious alterations probably induced by osmotic shock at dilution. This hypothesis is supported by the fact that the introduction of a further dilution step in 0.42 M galactose (Experiment 4) before dilution in ETF decreased the proportion of cells permeant to PI and increased the hatching rate after 72 h of co-culture. In conclusion, double staining with BIS and PI allowed for discrimination between different types of cellular injuries after the various steps of our vitrification protocol. It represents a useful tool for adjusting equilibration and dilution conditions during a cryopreservation procedure. 相似文献
17.
Niemann H Wrenzycki C Lucas-Hahn A Brambrink T Kues WA Carnwath JW 《Cloning and stem cells》2002,4(1):29-38
Bovine in vitro-produced (IVP) and nuclear transfer (NT)-derived embryos differ from their in vivo-developed counterparts in a number of characteristics. A preeminent observation is the occurrence of the large offspring syndrome, which is correlated with considerable embryonic fetal and postnatal losses. We summarize here results from our studies in which we compared gene expression patterns from IVP and NT-derived embryos with those from their IVP counterparts. Numerous aberrations were found in IVP and NT-derived embryos, including a complete lack of expression, an induced expression, or a significant up- or downregulation of a specific gene. These alterations may affect a number of physiological functions and are considered as a kind of stress response of the embryos to deficient environmental conditions. We hypothesize that the alterations are caused by epigenetic modifications, primarily by changes in the methylation patterns. Unravelling these epigenetic modifications is promising to reveal the underlying mechanisms of the large offspring syndrome. 相似文献
18.
19.
The effect of cooling and warming rates during cryopreservation on subsequent embryo survival was studied in 607 bovine morulae and 595 blastocysts produced by in vitro maturation, fertilization and culture (IVM/IVF/IVC). Morulae and blastocysts were prepared by co-culturing presumptive zygotes with bovine oviductal epithelial cells (BOEC) in serum-free TCM199 medium for 6 and 7 d, respectively. The embryos in 1.5 M ethylene glycol in plastic straws were seeded at -7 degrees C, cooled to -35 degrees C at each of 5 rates (0.3 degrees, 0.6 degrees , 0.9 degrees, 1.2 degrees, or 1.5 degrees C/min) and then immediately plunged into liquid nitrogen. The frozen embryos were warmed either rapidly in a 35 degrees C water bath (warming rate > 1,000 degrees C/min) or slowly in 25 degrees to 28 degrees C air (< 250 degrees C/mm). With rapid warming, 42.1% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts. The proportions of rapidly wanned morulae that hatched decreased with increasing cooling rates (30.4, 19.0, 15.8 and 8.9% at 0.6 degrees , 0.9 degrees, 1.2 degrees and 1.5 degrees C/min, respectively). With slow warming 25.9% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts, while <10% of the morulae that had been cooled faster developed. The hatching rate of blastocysts cooled at 0.3 degrees C/min and warmed rapidly (96.3%) was higher than those cooled at 06 degrees and 0.9 degrees C/min (82.7 and 84.6%, respectively), and was also significantly higher than those warmed slowly after cooling at 0.3 degrees, 0.6 degrees or 0.9 degrees C/min (69.1, 56.6 and 51.8%, respectively). Cooling blastocysts at 1.2 degrees or 1.5 degrees C/min resulted in lowered hatching rates either with rapid (71.2 or 66 0%) or slow warming (38.2 or 38.9%). These results indicate that the survival of in vitro-produced bovine morulae and blastocysts is improved by very slow cooling during 2-step freezing, nevertheless, slow warming appears to cause injuries to morulae and blastocysts even after very slow cooling. 相似文献