首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular cloning and primary structure of rat alpha 1-antitrypsin   总被引:1,自引:0,他引:1  
S Chao  K X Chai  L Chao  J Chao 《Biochemistry》1990,29(2):323-329
A cDNA clone encoding rat alpha 1-antitrypsin has been isolated from a lambda gt-11 rat liver cDNA library using an antigen-overlay immunoscreening method. The nucleotide sequence of this cDNA clone is 1306 base pairs in length and has a coding region of 1224 base pairs which can be translated into an alpha 1-antitrypsin precursor protein consisting of 408 amino acid residues. The cDNA sequence contains a termination codon, TAA, at position 1162 and a polyadenylation signal sequence, AATAAT, at position 1212. The calculated molecular weight of the translated mature protein is 43,700 with 387 amino acid residues; this differs from purified rat alpha 1-antitrypsin's apparent molecular weight of 54,000 because of glycosylation. Five potential glycosylation sites were identified on the basis of the cDNA sequence. The translated mature protein sequence from the cDNA clone matches completely with the N-terminal 33 amino acids of purified rat alpha 1-antitrypsin, which has an N-terminal Glu. The cDNA encoding rat alpha 1-antitrypsin shares 70% and 80% sequence identity with its human and mouse counterparts, respectively. The reactive center sequence of rat alpha 1-antitrypsin is highly conserved with respect to human alpha 1-antitrypsin, both having Met-Ser at the P1 and P1' residues. Genomic Southern blot analysis yielded a simple banding pattern, suggesting that the rat alpha 1-antitrypsin gene is single-copy. Northern blot analysis using the cDNA probe showed that rat alpha 1-antitrypsin is expressed at high levels in the liver and at low levels in the submandibular gland and the lung.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Physiologic inhibition of human activated protein C by alpha 1-antitrypsin   总被引:5,自引:0,他引:5  
The plasma antithrombotic enzyme activated protein C (APC) has two major plasma inhibitors. One is heparin-dependent, has been characterized, and is known as protein C inhibitor. The second inhibitor was isolated based on its heparin-independent ability to inhibit and complex with APC. The purified inhibitor had the amino acid composition and NH2 terminus of alpha 1-antitrypsin and reacted with monoclonal antibodies to alpha 1-antitrypsin. The inhibitor was greater than 95% pure alpha 1-antitrypsin as judged by electroimmunoassay, inactivation of trypsin, and electrophoresis in two gel systems. To identify the second major plasma inhibitor of APC, immunoblot studies of enzyme-inhibitor complexes were made to compare APC addition to normal plasma and to plasma deficient in protein C inhibitor or alpha 1-antitrypsin. The results showed that alpha 1-antitrypsin is the second major plasma APC inhibitor. Given the association rate constant of alpha 1-antitrypsin for APC of 10 M-1 s-1 and its plasma concentration of approximately 40 microM, it accounts for approximately half of the heparin-independent APC inhibitory activity of plasma. Based on immunoblot analysis plasmas of 15 patients with intravascular coagulation contained APC-alpha 1-antitrypsin complexes suggesting that this inhibition reaction occurs in vivo. Thus, alpha 1-antitrypsin is a major physiologic inhibitor of APC.  相似文献   

3.
A cDNA clone coding for the entire bovine alpha 1-antitrypsin molecule has been isolated from a lambda gt11 bovine liver cDNA library using a human alpha 1-antitrypsin cDNA as a probe. The bovine cDNA was sequenced by the dideoxynucleotide chain termination method. Comparison of the translated amino acid sequence of the bovine alpha 1-antitrypsin with those of the human, baboon, sheep, rat and mouse demonstrates the preservation of most of the critical structural determinants. The bovine and the sheep molecules have a sequence homology of 94% and both the molecules contain four cysteine residues; there is only one cysteine in the others.  相似文献   

4.
Elastase is a constituent product of T cells   总被引:2,自引:0,他引:2  
Proteases produced by immune cells have been found to be important components of the immune response to antigen. A protease previously unrecognized as a specific T cell product has been identified which has the gene sequence, serologic crossreactivity, and enzymatic specificity of elastase. T cell elastase, found in combination with the natural elastase inhibitor alpha 1-antitrypsin (alpha 1-protease inhibitor, alpha 1-PI), is produced by both CD4+ and CD8+ T lymphocytes, and is found both in a membrane-bound and in a soluble form in murine T cell lines.  相似文献   

5.
The alpha1-protease inhibitor proteins of laboratory mice are homologous in sequence and function to human alpha1-antitrypsin and are encoded by a highly conserved multigene family comprised of five members. In humans, the inhibitor is expressed in liver and in macrophages and decreased expression or inhibitory activity is associated with a deficiency syndrome which can result in emphysema and liver disease in affected individuals. It has been proposed that macrophage expression may be an important component of the function of human alpha1-antitrypsin. Clearly, it is desirable to develop a mouse model of this deficiency syndrome, however, efforts to do this have been largely unsuccessful. In this paper, we report that aside from the issues of potentially redundant gene function, the mouse may not be a suitable animal for such studies, because there is no significant expression of murine alpha1-protease inhibitor in the macrophages of mice. This difference between the species appears to result from an absence of a functional macrophage-specific promoter in mice.  相似文献   

6.
The mutation in the Z deficiency variant of alpha1-antitrypsin perturbs the structure of the protein to allow a unique intermolecular linkage. These loop-sheet polymers are retained within the endoplasmic reticulum of hepatocytes to form inclusions that are associated with neonatal hepatitis, juvenile cirrhosis, and hepatocellular carcinoma. The process of polymer formation has been investigated here by intrinsic tryptophan fluorescence, fluorescence polarization, circular dichroic spectra and extrinsic fluorescence with 8-anilino-1-naphthalenesulfonic acid and tetramethylrhodamine-5-iodoacetamide. These biophysical techniques have demonstrated that alpha1-antitrypsin polymerization is a two-stage process and have allowed the calculation of rates for both of these steps. The initial fast phase is unimolecular and likely to represent temperature-induced protein unfolding, while the slow phase is bimolecular and associated with loop-sheet interaction and polymer formation. The naturally occurring Z, S, and I variants and recombinant site-directed reactive loop and shutter domain mutants of alpha1-antitrypsin were used to demonstrate the close association between protein stability and rate of alpha1-antitrypsin polymerization. Taken together, these data allow us to propose a kinetic mechanism for alpha1-antitrypsin polymer formation that involves the generation of an unstable intermediate, which can form polymers or generate latent protein.  相似文献   

7.
The alpha 1-antitrypsin from the liver of a subject with alpha i-antitrypsin deficiency was purified and subjected to automated Edman degradation. The N-terminal amino acid sequence from position 1 to 12 was identical to that in plasma alpha 1-antitrypsin, type Z. This result precludes that the intrahepatic accumulation of Z alpha 1-antitrypsin is due to a defective removal of a signal peptide.  相似文献   

8.
Rhesus monkey alpha 1-antitrypsin (n = 144) was examined for heterogeneity by acid starch gel electrophoresis, isoelectric focusing in agarose and agarose gel electrophoresis. In contrast to other studies, no heterogeneity of Rhesus monkey alpha 1-antitrypsin could be documented using specific antisera. Rhesus monkey alpha 1-antitrypsin contained a reactive thiol. The pIs of the major isoforms of Rhesus monkey alpha 1-antitrypsin were 4.63, 4.69, 4.84 and 4.86 at 4 degrees C. No deficiency state of Rhesus monkey alpha 1-antitrypsin was detected. The six protease inhibitors in Rhesus monkey sera cross-reacted with antisera to the six human protease inhibitors.  相似文献   

9.
Human alpha(1)-antitrypsin was produced by genetically engineered rice cells using promoter and signal peptide of a rice alpha-amylase isozyme. Batch and continuous cultures were employed to investigate the effects of alternative carbon sources on the alpha(1)-antitrypsin production. While this expression system is inducible by sugar depletion, we have found that the productivity of alpha(1)-antitrypsin increased 2.4- to 3.4-fold, compared with the control medium without carbon source, in medium containing an alternative carbon source, such as pyruvic acid and glyoxylic acid. The accumulated alpha(1)-antitrypsin in the medium containing pyruvic acid reached 18.2-24.2 mg/g-dry cell in 50-70 h by batch culture.  相似文献   

10.
Expression of human alpha 1-antitrypsin in Escherichia coli   总被引:2,自引:0,他引:2  
  相似文献   

11.
Cleaved antitrypsin polymers at atomic resolution   总被引:3,自引:0,他引:3       下载免费PDF全文
Alpha1-antitrypsin deficiency, which can lead to both emphysema and liver disease, is a result of the accumulation of alpha1-antitrypsin polymers within the hepatocyte. A wealth of biochemical and biophysical data suggests that alpha1-antitrypsin polymers form via insertion of residues from the reactive center loop of one molecule into the beta-sheet of another. However, this long-standing hypothesis has not been confirmed by direct structural evidence. Here, we describe the first crystallographic evidence of a beta-strand linked polymer form of alpha1-antitrypsin: the crystal structure of a cleaved alpha1-antitrypsin polymer.  相似文献   

12.
The rate of synthesis of alpha 1-antitrypsin has been studied in organ cultures of fetal human liver. By de novo synthesis, alpha 1-antitrypsin of the same electrophoretic mobility and molecular size as plasma alpha 1-antitrypsin was produced. Synthetic rate was comparable to in vivo conditions and was suppressed by cycloheximide, colchicine and neuraminidase. By increasing alpha 1-antitrypsin levels in cultre medium, suppression of alpha 1-antitrypsin release from the intra-to the extracellular site was achieved, i.e., synthesis does not proceed autonomously. This suppression was preceded by a temporary enhancement of synthesis. Both effects were found to be independent of degree of sialylation of add-d alpha 1-antitrypsin. In contrast to alpha 1-antitrypsin released in tissue culture, the intracellular protein, as analyzed by crossed immunoelectrophoresis of Triton X-100 extracts from fetal liver, was found to occur partly as slowly moving peaks. Whether these peaks represent proforms or incompletely glycosylated precursors of export alpha 1-antitrypsin or complexes with proteases remains unsettled. A variety of other plasma proteins are released in organ cultures making the system suitable for study of factors regulating plasma protein synthesis.  相似文献   

13.
Y Wu  R C Foreman 《FEBS letters》1990,268(1):21-23
A glutamic acid to lysine change in the Z variant of human alpha 1-antitrypsin is associated with a failure to secrete the protein from synthesising cells. The block in export of the protein may be caused either by the loss of an acidic residue or the introduction of a basic one at this point in the polypeptide chain. Site-directed mutagenesis has been used to construct novel alpha 1-antitrypsin mutants which show that the side chain interactions from Glu-342 are not obligatory for protein export and it is rather the introduction of a basic residue at this point which produces the intracellular accumulation of the protein.  相似文献   

14.
The PiZ mutation of the gene coding for alpha 1-antitrypsin results in a serum deficiency of this protein leading to early onset emphysema and liver disease. The PiZ gene has a Z-specific point mutation in exon V together with a point mutation in exon III which is also present in some normal (PiM) individuals. There has thus far been no system to study the effects of PiZ point mutations in tissue culture. We constructed plasmids containing alpha 1-antitrypsin cDNA synthetically altered at either exon III or exon V mutation sites and linked to simian virus 40 promoter sequences. Such constructs with the exon V mutation were transfected into monkey COS1 cells followed by analysis of expression of alpha 1-antitrypsin gene products. COS1 cells normally synthesize virtually no alpha 1-antitrypsin mRNA or protein. alpha 1-Antitrypsin mRNA is transcribed at high levels in cells transfected with either M or Z plasmids. Immunologic staining of COS1 cells within 48 h of transfection localizes alpha 1-antitrypsin protein to specific regions of the cytoplasm. This extranuclear localization is also observed with human HepG2 hepatoma cells, which synthesize alpha 1-antitrypsin at high levels, and with human SK-Hep1 hepatoma cells transfected with an M plasmid. The cloned synthetically altered alpha 1-antitrypsin genes provide a system for dissecting contributions of distinct point mutations to the pathological effects of the PiZ protein.  相似文献   

15.
Crystallographic studies have previously suggested that Lys290 forms a salt bridge with Glu342 in the serine protease inhibitor alpha 1-antitrypsin. Disruption of the formation of this structural feature by a Glu to Lys substitution at residue 342 in the PiZ variant has been implicated in causing the defective secretion of this mutant protein from hepatocytes (10-15% of normal). To test the validity of this hypothesis, mutant human alpha 1-antitrypsin cDNA constructs coding for specific amino acid substitutions at residues 290 and 342 were generated and the corresponding mutant proteins were expressed in mouse hepatoma cells. When the potential to form the salt bridge was reestablished by a Lys290 to Glu290 substitution in the PiZ variant, its secretion was increased to only 38% of normal. Furthermore, disruption of this structural feature by a Lys290 to Glu290 substitution in the normal inhibitor failed to reduce the secretion of alpha 1-antitrypsin to the extent observed for the PiZ variant (73% of normal). Finally, substitution of the neutral amino acid Gln at residue 342 only reduced the secretion of alpha 1-antitrypsin to 55% of normal. Of all mutant proteins tested, those bearing Lys at position 342 were secreted at the lowest levels. These findings demonstrate that although disruption of the 290-342 salt bridge does affect the secretion of alpha 1-antitrypsin, it is the substitution of Lys at residue 342 that causes the dramatic secretory defect of the PiZ variant.  相似文献   

16.
The biosynthesis of the proteinase inhibitor alpha 1-antitrypsin has been studied in rat hepatocyte primary cultures. Newly synthesized alpha 1-antitrypsin was found in hepatocytes as a glycoprotein of an apparent molecular weight of 49,000 carrying oligosaccharide side chains of the high mannose type. In the hepatocyte medium a secreted alpha 1-antitrypsin of an apparent molecular weight of 54,000 could be identified as a glycoprotein with carbohydrate chains of the complex type. Pulse-chase experiments revealed a precursor-product relationship for the two forms of alpha 1-antitrypsin. When the hepatocytes were treated with swainsonine, an intracellular form of alpha 1-antitrypsin with an apparent molecular weight of 49,000 indistinguishable from that of control cells was found. However, the alpha 1-antitrypsin secreted from swainsonine-treated hepatocytes was different from that present in control media. It was characterized by a lower apparent molecular weight (51,000), a higher amount of [3H]mannose incorporation, half as much incorporation of [3H]galactose, and the same amount of [3H]fucose incorporation compared to alpha 1-antitrypsin of control media. In contrast to the 54,000 complex type alpha 1-antitrypsin from control media the 51,000 alpha 1-antitrypsin from the medium of swainsonine-treated cells was found to be susceptible to the action of endoglucosaminidase H, even when fucose was attached to the proximal GlcNAc residue. alpha 1-Antitrypsin secreted from swainsonine-treated cells combines features usually associated with either high mannose or complex type oligosaccharides and therefore represents a hybrid structure. In spite of its effect on the carbohydrate part of alpha 1-antitrypsin swainsonine did not impair the secretion of the incompletely processed glycoprotein.  相似文献   

17.
采用RACE技术获得α1-抗胰蛋白酶基因cDNA全长序列为1 469 bp,开放阅读框为1 329 bp,可编码442个氨基酸。5′非编码区长19 bp,3′非编码区长121 bp。核苷酸序列分析表明,在N端可能存在一个由1~21位氨基酸残基组成的信号肽;与斑马鱼的同源性最好,其次是虹鳟;在系统进化上,与在斑马鱼、虹鳟共聚为一个大支。用半定量RT-PCR分析正常及细菌诱导下草鱼α1-抗胰蛋白酶基因在不同组织中的表达分布。结果显示:正常情况下,草鱼α1-抗胰蛋白酶在肝脏表达最丰富,在脾脏、前肾、前肠、中肠、后肠和也有少量表达;细菌诱导下,肝脏中表达最强,前肾、脾脏、肠道中表达均明显提高,心脏和后肾中也出现较高表达。提示α1-抗胰蛋白酶可能参与了机体对嗜水气单胞菌感染的免疫应答。  相似文献   

18.
alpha 1-Antitrypsin is a major plasma protease inhibitor synthesized in the liver. Genetic deficiency of this protein predisposes the affected individuals to development of infantile liver cirrhosis or chronic obstructive pulmonary emphysema. The human chromosomal alpha 1-antitrypsin gene has been cloned and shown to contain three introns in the peptide-coding region. When the cloned alpha 1-antitrypsin gene was used as a hybridization probe to analyze Eco RI-digested genomic DNA from different individuals, two distinct bands of 9.6 kilobases (kb) and 8.5 kb in length were observed in every case. Further analysis using only labeled intronic DNA as the hybridization probe has indicated that the authentic alpha 1-antitrypsin gene resides within the 9.6-kb fragment. Thus the 8.5-kb fragment must contain another gene that is closely related in sequence to the alpha 1-antitrypsin gene. Using a series of human-Chinese hamster somatic cell hybrids containing unique combinations of human chromosomes, the alpha 1-antitrypsin gene as well as the sequence-related gene have been assigned to human chromosome 14 by Southern hybridization and synteny analysis.  相似文献   

19.
Chemical modifications of human plasma alpha1-antitrypsin with reagents which modify lysyl residues (citraconic anhydride, acetic anhydride, formaldehyde and 2,4,6-trinitrobenzenesulfonic acid) and arginyl residued (1,2-cyclohexanedione) were examined with regard to their effect upon the elastase inhibitory capacity of the glycoprotein. 2,4,6-Trinitrobenzenesulfonic acid was employed to quantitate the remaining free amino groups (epsilon-NH2 groups of lysine) and the extent of modifications. Amino acid analysis was utilized in the same capacity for the guanidino groups of arginyl residues. The elastase inhibitory capacity of alpha1-antitrypsin was destroyed following trinitrophenylation, citraconylation and acetylation. Circular dichroism of the native and modified derivatives revealed major changes in conformation following trinitrophenylation and citraconylation while CD profiles of acetylated and reductively methylated derivatives differed from that of the native profile considerably less. Reductively methylated alpha1-antitrypsin retained its elastatse inhibitory capacity. The reaction of 1,2-cyclohexanedione with alpha1-antitrypsin did not effect in a loss in inhibitory capacity. Gel filtration studies of native and modified alpha1-antitrypsin on Sephadex G-100 demonstrated an increased molecular weight presumably through molecular aggregation, in the citraconylated and trinitrophenylated derivatives, but not in the cases of the other derivatives. Based upon these studies and previous investigations of our laboratory, it was concluded that (1) alpha1-antitrypsin is a lysyl inhibitor type (i.e., the reactive site is a Lys-X bond), (2) its interaction with elastase follows a pattern similar to trypsin and chymotrypsin, and (3) the positively charged epsilon-NH2 group of lysine is essential for the maintenance of elastase inhibitory capacity.  相似文献   

20.
Molecular abnormality of PI S variant of human alpha1-antitrypsin.   总被引:1,自引:0,他引:1       下载免费PDF全文
Alpha1-antitrypsin variant protein was purified to homogeneity from a PI S-S subject with a mild deficiency of plasma trypsin inhibiting capacity. Molecular weight, specific trypsin inhibitory activity, and composition of amino acids and carbohydrates were similar to the proteins purified from Pi M-M individuals with normal alpha1-antitrypsin activity. The structural difference between the normal and the variant alpha1-antitrypsin was elucidated by peptide mapping of their tryptic digests. An amino acid substitution of glutamic acid in the normal protein to valine in the variant protein was found. The result is consistent with the previously reported amino acid substitution in Pi S-Christchurch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号