首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, oxygen consumption and H(2)O(2) release rate by succinate or pyruvate/malate supplemented mitochondria isolated from skeletal muscle of trained and untrained rats were investigated. The overall mitochondrial antioxidant capacity and the effect of preincubation of mitochondria with GDP, an inhibitor of uncoupling proteins UCP1 and UCP2, on both succinate-supported H(2)O(2) release and membrane potential were also determined. The results indicate that training does not affect mitochondrial oxygen consumption with both complex-I- and complex II-linked substrates. Succinate-supported H(2)O(2) release was lower in trained than in untrained rats both in State 4 and State 3. Even the antimycin A-stimulated release was lower in trained rats. When pyruvate/malate were used as substrates, H(2)O(2) release rate was lower in trained rats only in the presence of antimycin A. The increase of mitochondrial protein content (determined by the ratio between cytochrome oxidase activities in homogenates and mitochondria) in trained muscle was such that the succinate-supported H(2)O(2) release per g of tissue was not significantly different in trained and untrained rats, while that supported by pyruvate/malate was higher in trained than in untrained animals. The lack of training-induced changes in overall antioxidant capacity of mitochondria indicates that the decrease in mitochondrial H(2)O(2) release cannot be attributed to a greater capacity of mitochondria to scavenge the reactive oxygen intermediates derived from univalent O(2) reduction by respiratory chain components. In contrast, the above decrease seems to depend on the drop induced by training in mitochondrial membrane potential. These training effects are not due to an increased level of mitochondrial uncoupling protein, because in the presence of GDP the increase in both membrane potential and H(2)O(2) release was greater in untrained than in trained rats.  相似文献   

3.
4.
Interruption of electron flow at the quinone-reducing center (Q(i)) of complex III of the mitochondrial respiratory chain results in superoxide production. Unstable semiquinone bound in quinol-oxidizing center (Q(o)) of complex III is thought to be the sole source of electrons for oxygen reduction; however, the unambiguous evidence is lacking. We investigated the effects of complex III inhibitors antimycin, myxothiazol, and stigmatellin on generation of H(2)O(2) in rat heart and brain mitochondria. In the absence of antimycin A, myxothiazol stimulated H(2)O(2) production by mitochondria oxidizing malate, succinate, or alpha-glycerophosphate. Stigmatellin inhibited H(2)O(2) production induced by myxothiazol. Myxothiazol-induced H(2)O(2) production was dependent on the succinate/fumarate ratio but in a manner different from H(2)O(2) generation induced by antimycin A. We conclude that myxothiazol-induced H(2)O(2) originates from a site located in the complex III Q(o) center but different from the site of H(2)O(2) production inducible by antimycin A.  相似文献   

5.
Removal of phenol, a major pollutant in aqueous effluents was studied using plant hairy root cultures. Among four different species of hairy roots tested, Brassica juncea showed the highest potential for phenol removal. The effect of phenol concentration and reuse in a batch system was studied using B. juncea hairy root cultures. Unlike most of the studies reported earlier, phenol removal by the hairy roots was seen to take place without the need for addition of external hydrogen peroxide (H(2)O(2)). To understand the mechanism of phenol removal, levels of peroxidase and phenol oxidase were monitored in the hairy roots. Peroxidase activity in the roots was enhanced when exposed to phenol, while phenol oxidase remained constant. Since peroxidase has a pre-requisite for H(2)O(2), the levels of H(2)O(2) were monitored for its in situ synthesis. H(2)O(2) levels were seen to increase in the presence of phenol. Thus, a mechanism wherein hairy roots also produce H(2)O(2) besides peroxidase, as a protection strategy of plant against xenobiotic stress is plausible.  相似文献   

6.
Eguchi M  Liu Y  Shin EJ  Sweeney G 《The FEBS journal》2008,275(12):3136-3144
Obesity is a known risk factor for induction of myocardial infarction, but, paradoxically, may also confer a protective effect against subsequent remodeling leading to heart failure. In this study, we investigated the effect of leptin, the product of the obese (ob) gene, on cardiomyocyte apoptosis, a well-characterized component of cardiac remodeling after myocardial infarction. Exposing H9c2 cells to H(2)O(2) decreased cell viability, and this was attenuated by pretreating cells with leptin for 1 h, but not 24 h. Leptin also attenuated the ability of H(2)O(2) to increase phosphatidylserine exposure and annexin V binding. Further investigation of underlying mechanisms of leptin's protective effect demonstrated that the H(2)O(2)-induced decrease in mitochondrial membrane potential (Psi) leading to cytochrome c release was attenuated by leptin pretreatment, and this was associated with reduced translocation of the pro-apoptotic Bax protein to the mitochondrial membrane. Finally, leptin prevented H(2)O(2)-induced increases in caspase-3 cleavage and activity, although again 24 h leptin pretreatment did not confer significant protection. In summary, we have demonstrated that acute leptin pretreatment mediates anti-apoptotic effects in H9c2 rat cardiomyocytes, which may be of significance in clarifying the direct impact of leptin on the heart.  相似文献   

7.
Non-phagocytic NAD(P)H oxidases have been implicated as major sources of reactive oxygen species in blood vessels. These oxidases can be activated by cytokines, thereby generating O(2), which is subsequently converted to H(2)O(2) and other oxidant species. The oxidants, in turn, act as important second messengers in cell signaling cascades. We hypothesized that reactive oxygen species, themselves, can activate the non-phagocytic NAD(P)H oxidases in vascular cells to induce oxidant production and, consequently, cellular injury. The current report demonstrates that exogenous exposure of non-phagocytic cell types of vascular origin (smooth muscle cells and fibroblasts) to H(2)O(2) activates these cell types to produce O(2) via an NAD(P)H oxidase. The ensuing endogenous production of O(2) contributes significantly to vascular cell injury following exposure to H(2)O(2). These results suggest the existence of a feed-forward mechanism, whereby reactive oxygen species such as H(2)O(2) can activate NAD(P)H oxidases in non-phagocytic cells to produce additional oxidant species, thereby amplifying the vascular injury process. Moreover, these findings implicate the non-phagocytic NAD(P)H oxidase as a novel therapeutic target for the amelioration of the biological effects of chronic oxidant stress.  相似文献   

8.
We are attempting to supply a new insight on interaction between Na(+)/K(+)-ATPase and H(2)O(2). We demonstrate that in vitro the Na(+)/K(+)-ATPase, a non heme-protein, is able to disproportionate H(2)O(2) catalatically into dioxygen and water, as well as C(40) catalase. By polarography, we quantify O(2) production and by Raman spectroscopy H(2)O(2) consumption. A comparative analysis of kinetics parameters relative to O(2) production shows that for Na(+)/K(+)-ATPase the affinity of the catalytic site able to transform H(2)O(2) into O(2) is twice weaker than that for C(40) catalase. It also shows that the molar activity for O(2) production is 300-fold weaker for ATPase than for catalase. Inhibitors, pH and GSH studies highlight the differences between the heme- and nonheme-proteins. Indeed, for C(40), NaN(3) is strongly inhibiting, but much less for ATPase. The pH range for the catalatic activity of ATPase is wide (6.5 to 8.5), while it is not for C(40) catalase (optimum at pH 8). The Na(+)/K(+)-ATPase catalatic activity is reduced in presence of glutathione, while it is not the case with C(40) catalase.  相似文献   

9.
《Inorganica chimica acta》1988,141(2):281-288
The crystal structures and 95Mo NMR spectra of two complexes formed between 2-α-hydroxybenzyl- benzimidazole (C6H5·CHOH·C7H5N2=HOBB), as its sodium salt, and MoO2Cl2 are reported. [MoO2- (OBB)2]·EtOH (OBB=deprotonated HOBB) crystallizes in space group P21/n, with a=12.8441(7), b=15.917(3), c=13.314(2) Å, β=97.163(8)° and Z =4. The structure was determined from 3096 observed reflections and refined to a final R value of 0.030. The complex is a six coordinate cis-dioxo species, the 95Mo spectrum of which shows a single sharp peak at 56 ppm in dimethylformamide (DMF). The second complex, [Mo2O5(OBB)2]·EtOH·H2O, crystallizes in space group Pbca, with a=22.482(4), b=16.442(3), c=18.407(3) Å and Z=8. The structure was determined from 2936 observed reflections and refined to a final R value of 0.061. The complex is a binuclear doubly bridged species in which one metal atom is six coordinate while the other is five coordinate. Its 95Mo NMR spectrum in DMF shows a sharp peak at 124 ppm and a second broader much weaker peak at 51 ppm.  相似文献   

10.
Increasing evidence suggests a role for apoptosis in the maintenance of the alveolar epithelium under normal and pathological conditions. However, the signaling pathways modulating alveolar type II (ATII) cell apoptosis remain poorly defined. Here we investigated the role of MAPKs as modulators of oxidant-mediated ATII cell apoptosis using in vitro models of H(2)O(2)-stress. H(2)O(2), delivered either as a bolus or as a flux, lead to time- and concentration-dependent increases in ATII cells apoptosis. Increased apoptosis in primary rat ATII cells was detected at H(2)O(2) concentrations and production rates in the physiological range (1 microM) and peaked at 100 microM H(2)O(2). Immortalized rat lung epithelial cells (RLE), in contrast, required millimolar concentration of H(2)O(2) for maximal responses. H(2)O(2)-induced apoptosis was preceded by rapid activation of all three classes of mitogen-activated protein kinases (MAPKs): ERK, JNK, and p38. Specific inhibition of JNK using antisense oligonucleotides and ERK and p38 using PD98059 or SB202190, respectively, indicated a pro-apoptotic role for JNK pathway and an anti-apoptotic role for ERK- and p38-initiated signaling events. Our data show that the balance between the activation of JNK, ERK, and p38 is a critical determinant of cell fate, suggesting that pharmacological interventions on the MAPK pathways may be useful in the treatment of oxidant-related lung injury.  相似文献   

11.
Bursts in reactive oxygen species productionare important mediators of contractile dysfunction duringischemia-reperfusion injury. Cellular mechanisms that mediatereactive oxygen species-induced changes in cardiac myocyte functionhave not been fully characterized. In the present study,H2O2 (50 µM) decreased contractility of adultrat ventricular myocytes. H2O2 caused aconcentration- and time-dependent activation of extracellularsignal-regulated kinases 1 and 2 (ERK1/2), p38, and c-JunNH2-terminal kinase (JNK) mitogen-activated protein (MAP)kinases in adult rat ventricular myocytes. H2O2 (50 µM) caused transient activation of ERK1/2 and p38 MAP kinase thatwas detected as early as 5 min, was maximal at 20 min (9.6 ± 1.2- and 9.0 ± 1.6-fold, respectively, vs. control), and returned tobaseline at 60 min. JNK activation occurred more slowly (1.6 ± 0.2-fold vs. control at 60 min) but was sustained at 3.5 h. Theprotein kinase C inhibitor chelerythrine completely blocked JNKactivation and reduced ERK1/2 and p38 activation. The tyrosine kinaseinhibitors genistein and PP-2 blocked JNK, but not ERK1/2 and p38,activation. H2O2-inducedNa+/H+ exchanger phosphorylation was blocked bythe MAP kinase kinase inhibitor U-0126 (5 µM). These resultsdemonstrate that H2O2-induced activation of MAPkinases may contribute to cardiac myocyte dysfunction duringischemia-reperfusion.

  相似文献   

12.
DNA repair is essential for maintaining the integrity of the genetic material, and a number of DNA repair mechanisms have been fairly well characterized for the nuclear DNA of eukaryotic cells as well as prokaryotes. However, little is known about DNA repair in mitochondria. Using highly sensitive immunoanalytical methods to detect specific DNA alkylation products, we found active removal of O6-ethyl-2'-deoxyguanosine (O6-EtdGuo) from rat liver mitochondrial DNA after pulse-exposure to N-ethyl-N-nitrosourea in vivo. In the kidney, O6-EtdGuo was removed from mitochondrial DNA with moderate efficiency, but nearly no removal was observed from the DNA of brain mitochondria. Among the rat tissues examined, the kinetics of O6-EtdGuo elimination from mitochondrial DNA was very similar to the kinetics of removal from nuclear DNA. O4-Ethyl-2'-deoxythymidine, another premutagenic DNA ethylation product, was stable in both mitochondrial and nuclear DNA of rat liver.  相似文献   

13.
Peroxisomes (PO) are essential and ubiquitous single-membrane-bound organelles whose ultrastructure is characterized by a matrix and often a crystalloid core. A unique feature is their capacity to generate and degrade H(2)O(2) via several oxidases and catalase, respectively. Handling of H(2)O(2) within PO is poorly understood and, in contrast to mitochondria, they are not regarded as a default H(2)O(2) source. Using an ultrasensitive luminometric H(2)O(2) assay, we show in real time that H(2)O(2) handling by matrix-localized catalase depends on the localization of H(2)O(2) generation in- and outside the PO. Thus, intact PO are inefficient at degrading external but also internal H(2)O(2) that is generated by the core-localized urate oxidase (UOX). Our findings suggest that, in addition to the PO membrane, the matrix forms a significant diffusion barrier for H(2)O(2). In contrast, matrix-generated H(2)O(2) is efficiently degraded. We further show that the tubular structures in crystalloid cores of UOX are associated with and perpendicularly oriented toward the PO membrane. Studies on metabolically active liver slices demonstrate that UOX directly releases H(2)O(2) into the cytoplasm, with the 5-nm primary tubules in crystalloid cores serving as exhaust conduits. Apparently, PO are inefficient detoxifiers of external H(2)O(2) but rather can become an obligatory source of H(2)O(2)--an important signaling molecule and a potential toxin.  相似文献   

14.
We compared the capacity of rat liver and heart mitochondria to remove exogenously produced H2O2, determining their ability to decrease fluorescence generated by H2O2 detector system. In the absence of substrates, liver and heart mitochondria removed H2O2 at similar rates. Respiratory substrate addition increased removal rates, indicating a respiration-dependent process. Moreover, the rates were higher with pyruvate/malate than with succinate and in heart than in liver mitochondria. Generally, the changes in H2O2 removal rates mirrored those of H2O2 release rates excluding the possibility that endogenous and exogenous H2O2 competed for the removing system. This idea was supported by the observation that the heaviest of three liver mitochondrial fractions exhibited the highest rates of both H2O2 release and removal. Pharmacological inhibition showed tissue-linked differences in antioxidant enzyme contribution to H2O2 removal which were consistent with the differences in antioxidant system activities. The enzymatic processes accounted only in part for net H2O2 removal and the non-enzymatic ones participated to H2O2 scavenging to a degree that was higher for heart than for liver mitochondria. The idea that non-enzymatic scavenging was due in great part to hemoproteins action was consistent with observation that the concentration of cytochromes, in particular cytochrome c, was higher in heart mitochondria. Indirect support was also obtained by a technique of enhanced luminescence, utilizing the capacity of cytochrome c/H2O2 to catalyze the luminol oxidation, which showed that luminescence response to an oxidative challenge was higher in heart mitochondria.  相似文献   

15.
16.
Nitric oxide (NO) has been shown to both enhance hydrogen peroxide (H(2)O(2)) toxicity and protect cells against H(2)O(2) toxicity. In order to resolve this apparent contradiction, we here studied the effects of NO on H(2)O(2) toxicity in cultured liver endothelial cells over a wide range of NO and H(2)O(2) concentrations. NO was generated by spermine NONOate (SpNO, 0.001-1 mM), H(2)O(2) was generated continuously by glucose/glucose oxidase (GOD, 20-300 U/l), or added as a bolus (200 microM). SpNO concentrations between 0.01 and 0.1 mM provided protection against H(2)O(2)-induced cell death. SpNO concentrations >0.1 mM were injurious with low H(2)O(2) concentrations, but protective at high H(2)O(2) concentrations. Protection appeared to be mainly due to inhibition of lipid peroxidation, for which SpNO concentrations as low as 0.01 mM were sufficient. SpNO in high concentration (1 mM) consistently raised H(2)O(2) steady-state levels in line with inhibition of H(2)O(2) degradation. Thus, the overall effect of NO on H(2)O(2) toxicity can be switched within the same cellular model, with protection being predominant at low NO and high H(2)O(2) levels and enhancement being predominant with high NO and low H(2)O(2) levels.  相似文献   

17.
L-Histidine (L-His) enhances the clastogenic effects of hydrogen peroxide (H(2)O(2)). We previously suggested the involvement of active transport in the efficient influx of an L-His--H(2)O(2) adduct into cells (Oya-Ohta et al. [1]). In this study, we detected intracellular H(2)O(2) by monitoring formation of 2',7'-dichlorofluorescein (DCF) from its precursor. More fluoroproduct accumulated dose-dependently in cells treated with a mixture of L-His and H(2)O(2) (mixture) than with H(2)O(2) alone. This observation supports our hypothesis that active transport is involved in the enhanced incorporation of H(2)O(2) into cells. Moreover, both mixture and the L-His--H(2)O(2) adduct were less active in the generation of hydroxyl radicals (*OH) upon addition of FeCl(2) than was H(2)O(2) alone in a cell-free system. This result suggests that the Fenton reaction might occur more effectively around the nucleus in cells. An immunohistochemical assay using 8-oxodG-specific monoclonal antibodies did not reveal whether the accumulation of H(2)O(2) generates 8-oxodeoxyguanosine (8-oxodG). No 8-oxodG was evident in cells treated with mixture or with H(2)O(2) alone, or even in cells treated with H(2)O(2) at high doses up to 20 mM and, in some cases, pre-treated with catalase inhibitors. It appears, therefore, that *OH and, specifically, *OH derived from intracellular Fenton reactions, might not play a role in the formation of 8-oxodG. However, exposure to UV-C of cells treated with H(2)O(2) yielded more 8-oxodG in the presence of L-His than in the absence of L-His. Thus, the previously observed enhancing effects of L-His were also noted during the induction of formation of 8-oxodG by UV-C plus H(2)O(2). The formation of 8-oxodG in response to UV-C alone was very limited and, hence, H(2)O(2) seemed to be an effective source of *OH only in the presence of UV-C. It is suggested that the *OH that induces formation of 8-oxodG is not *OH formed via intracellular Fenton reactions but is *OH formed via the dissociation of H(2)O(2) under UV-C.  相似文献   

18.
An overview of structurally characterized alpha-hydroxycarboxylatodioxo- and alpha-hydroxycarboxylatooxoperoxovanadates(V) is presented and the geometric parameters of the V2O2 bridging core are discussed. The first case of a stereospecific formation of oxoperoxovanadates(V) is reported: The crystal structures of the isomeric compounds (NBu4)2[V2O2(O2)2(L-lact)2] x 2H2O and (NBu4)2[V2O2(O2)2(D-lact)(L-lact)] x 2H2O (lact = C3H4O3(2-), the anion of the lactic acid) differ mainly in the arrangement of the V2O2 core and in mutual orientation of the V=O bonds. The complexes with achiral ligands adopt the same structural type as the complexes formed from a racemic mixture of a chiral ligand, while the structure obtained using an enantiopure L,L-hydroxycarboxylate is different.  相似文献   

19.
Brain mitochondria are not only major producers of reactive oxygen species but they also considerably contribute to the removal of toxic hydrogen peroxide by the glutathione (GSH) and thioredoxin-2 (Trx2) antioxidant systems. In this work we estimated the relative contribution of both systems and catalase to the removal of intrinsically produced hydrogen peroxide (H(2)O(2)) by rat brain mitochondria. By using the specific inhibitors auranofin and 1-chloro-2,4-dinitrobenzene (DNCB), the contribution of Trx2- and GSH-systems to reactive oxygen species (ROS) detoxification in rat brain mitochondria was determined to be 60±20% and 20±15%, respectively. Catalase contributed to a non-significant extent only, as revealed by aminotriazole inhibition. In digitonin-treated rat hippocampal homogenates inhibition of Trx2- and GSH-systems affected mitochondrial hydrogen peroxide production rates to a much higher extent than the endogenous extramitochondrial hydrogen peroxide production, pointing to a strong compartmentation of ROS metabolism. Imaging experiments of hippocampal slice cultures showed on single cell level substantial heterogeneity of hydrogen peroxide detoxification reactions. The strongest effects of inhibition of hydrogen peroxide removal by auranofin or DNCB were detected in putative interneurons and microglial cells, while pyramidal cells and astrocytes showed lower effects. Thus, our data underline the important contribution of the Trx2-system to hydrogen peroxide detoxification in rat hippocampus. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

20.
To assess whether allantoin levels in serum and urine are influenced by exhaustive and moderate exercise and whether allantoin is a useful indicator of exercise-induced oxidative stress in humans, we made subjects perform exhaustive and moderate (100% and 40% VO2max) cycling exercise and examined the levels of allantoin, thiobarbituric acid reactive substances (TBARS) and urate in serum and urine. Immediately after exercise at 100% VO2max, the serum allantoin/urate ratio was significantly elevated compared with the resting levels while the serum urate levels was significantly elevated 30 min after exercise. The serum TBARS levels did not increase significantly compared with the resting levels. Urinary allantoin excretion significantly increased during 60 min of recovery after exercise, however, urinary urate excretion decreased significantly during the same period. The urinary allantoin/urate ratio also rapidly increased during 60 min of recovery after exercise. Urinary TBARS excretion decreased during the first 60 min of the recovery period and thereafter significantly increased during the latter half of the recovery period. On the contrary, after 40% VO2max of exercise, no significant changes in the levels of urate, allantoin and TBARS in serum or urine were observed. These findings suggest that allantoin levels in serum and urine may reflect the extent of oxidative stress in vivo and that the allantoin which appeared following exercise may have originated not from urate formed as a result of exercise but from urate that previously existed in the body. Furthermore, these findings support the view that allantoin in serum and urine is a more sensitive and reliable indicator of in vivo oxidative stress than lipid peroxidation products measured as TBARS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号