首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to investigate the ultrastructure of the reticular thalamic nucleus (RTN) in rats of WAG/Rij strain, an established model for human absence epilepsy. Most RTN neurons are medium-to large-sized and have either dark or light appearance, depending on their functional state. Moreover, small-sized neurons with short axons are present, their characteristics being described for the first time.  相似文献   

2.
Responses of 98 neurons of the reticular (R) and 72 neurons of the ventral anterior (VA) thalamic nuclei to stimulation of various zones of the orbitofrontal cortex were investigated in acute experiments on cats immobilized with D-tubocurarine. Not all zones of this cortex were found to be connected equally closely with R and VA. Most of the R (82.7%) and VA (66.7%) neurons responded to stimulation of the proreal gyrus, and fewest (37.3 and 48.9%, respectively) to stimulation of the posterior orbital gyrus. Among the responding neurons, 85.2–86.3% of R cells and 78.2–81.2% of VA cells were excited by cortical stimulation and the rest were inhibited. Excitation was expressed as the appearance of a single spike or of discharges of varied duration in response to each stimulus. The latent period of the spike responses varied from 0.5 to 55.0 msec and the minimal latent period of the discharges was 0.8 msec and its maximal value over 500 msec. The spike frequency in the discharge was 120–250/sec. Unit responses consisting of spikes with a latent period of under 1.3 msec and, it is assumed, some of the responses with a latent period of under 4.0 msec were antidromic. The axons of some R and VA neurons were shown to form branches terminating in different zones of the orbitofrontal cortex.  相似文献   

3.
Spike response was investigated in 104 neurons of the nucleus reticularis thalami (R) and adjoining thalamic nuclei to acoustic, tactile, and visual stimuli during chronic experiments on cats. Of the test neurons, 29% responded to acoustic stimulation and 11% showed no preference in relation to different acoustic stimuli. Minimum latencies of response to sounds measured 12–37 msec in excitatory and 18–27 msec in inhibitory cells. Duration of excitation produced by acoustic stimuli reached 50–250 msec; inhibition lasted 27–190 msec. Most cells belonging to this nucleus were excited by different stimuli; the proportion of inhibitory neurons did not exceed 4–10%.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 451–461, July–August, 1989.  相似文献   

4.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

5.
The nucleus pontis oralis contains several populations of neurons showing distinct sleep-waking discharge patterns. PS-on, PS-off cells, and neurons that discharged in association with phasic movements during paradoxical sleep and/or waking, were found. The findings suggest that different populations of the nucleus pontis oralis neurons take a distinct part in paradoxical sleep control.  相似文献   

6.
Spike response was investigated in 156 units of the thalamic reticular nucleus (RN) during performance of the instrumental feeding reflex of lever-pressing. This response consisted of lead and lag phases. Latency of the lead phase of response varied between 10 and 100 msec and total duration of response between 50 and 250 msec; minimum latency of the lag phase: 100–300 msec. Initial response to a conditioning clicking sound was found in 27 units, of which 26 showed excitation and the remaining single unit an inhibitory-excitatory pattern. The lag stage of response associated with performance of conditioned lever-pressing was found in 134 neurons, of which 115 showed an excitatory pattern, 19 displayed inhibition and the remaining 22 units failed to respond. The lag phase of response preceded the onset of conditioned reflex movement (CRM) in 30 neurons. A total of 118 neurons responded between the onset of CRM and the point of lever-pressing. It was concluded that the RN plays a part in perception of the conditioned signal as well as producing and controlling performance of CRM.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 1, pp. 8–18, January–February, 1991.  相似文献   

7.
8.
Propofol is widely used for the induction and maintenance of anesthesia,which causes a rapid loss of consciousness.However,the mechanisms underlying the hypnosi...  相似文献   

9.
Burst-firing in thalamic neurons is known to play a key role in mediating thalamocortical (TC) oscillations that are associated with non-REM sleep and some types of epileptic seizure. Within the TC system the primary output of GABAergic neurons in the reticular thalamic nucleus (RTN) is thought to induce the de-inactivation of T-type calcium channels in thalamic relay (TR) neurons, promoting burst-firing drive to the cortex and the propagation of TC network activity. However, RTN neurons also project back onto other neurons within the RTN. The role of this putative negative feedback upon the RTN itself is less well understood, although is hypothesized to induce de-synchronization of RTN neuron firing leading to the suppression of TC oscillations. Here we tested two hypotheses concerning possible mechanisms underlying TC oscillation modulation. Firstly, we assessed the burst-firing behavior of RTN neurons in response to GABAB receptor activation using acute brain slices. The selective GABAB receptor agonist baclofen was found to induce suppression of burst-firing concurrent with effects on membrane input resistance. Secondly, RTN neurons express CaV3.2 and CaV3.3 T-type calcium channel isoforms known to contribute toward TC burst-firing and we examined the modulation of these channels by GABAB receptor activation. Utilizing exogenously expressed T-type channels we assessed whether GABAB receptor activation could directly alter T-type calcium channel properties. Overall, GABAB receptor activation had only modest effects on CaV3.2 and CaV3.3 isoforms. The only effect that could be predicted to suppress burst-firing was a hyperpolarized shift in the voltage-dependence of inactivation, potentially causing lower channel availability at membrane potentials critical for burst-firing. Conversely, other effects observed such as a hyperpolarized shift in the voltage-dependence of activation of both CaV3.2 and CaV3.3 as well as increased time constant of activation of the CaV3.3 isoform would be expected to enhance burst-firing. Together, we hypothesize that GABAB receptor activation mediates multiple downstream effectors that combined act to suppress burst-firing within the RTN. It appears unlikely that direct GABAB receptor-mediated modulation of T-type calcium channels is the major mechanistic contributor to this suppression.  相似文献   

10.
The effects of stimulation of the thalamic sensory relay nucleus (TSRN, nucleus ventralis posteromedialis) on the jaw-opening reflex (JOR) in response to tooth pulp stimulation were compared with the effects of stimulation of the periaqueductal gray (PAG) and nucleus raphe magnus (NRM) in the cat. After stimulation of the TSRN, PAG and NRM, the JOR was inhibited. However, while the inhibitory effects of PAG and NRM stimulation lasted for more than 500 ms and were antagonized by the opiate antagonist, naloxone, the inhibitory effects of TSRN stimulation lasted for approximately 100 ms and were resistant to naloxone. These findings suggest that although TSRN stimulation exerts descending inhibitory effects on segmental nociceptive activity, similarly to PAG or NRM stimulation, the descending inhibitory pathways mediating the effect of TSRN stimulation may be largely distinct physiologically as well as pharmacologically from those mediating the effect of PAG and NRM stimulation.  相似文献   

11.
Hanamori T 《Chemical senses》2003,28(8):717-728
Extracellular neuronal responses were recorded from the posterior insular cortex following electrical and chemical stimulation of the thalamic reticular nucleus (Rt) regions. In the present study, most neurons (29/32) were first characterized for their responses to electrical stimulation of the superior laryngeal (SL) nerve or glossopharyngeal (IXth) nerve. In the first experiment, 15 neurons in the posterior insular cortex were examined for their responses to electrical stimulation of the Rt regions. It was found that effective stimulation sites to evoke action potentials in the posterior insular cortex were the ventromedial portion of the Rt and its adjacent regions. In the second experiment, 17 neurons in the posterior insular cortex were examined for their responses by pressure injection of glutamate (Glu) into the Rt regions. Of the 17 neurons, 13 were inhibited in the spontaneous discharge rate following injection of Glu into the Rt, and the remaining four were unaffected. Histologically, it was demonstrated that Glu injection sites for the case of inhibition were located near or within the Rt. On the other hand, the injection sites for all four non-responsive neurons were located outside of the Rt. These data suggest that excitation of the Rt (GABAergic neurons) causes depression of the neuronal activity in the thalamic relay nucleus and then this may in turn induce depressed neuronal activity in the posterior insular cortex. The results here indicate that neuronal activity in the posterior insular cortex is controlled by the Rt, which has been reported in other sensory systems.  相似文献   

12.
13.
14.
Responses of 92 neurons of the reticular (R) and 105 neurons of the ventral anterior (VA) thalamic nuclei to stimulation of the ventrobasal complex (VB) and the lateral (GL) and medial (GM) geniculate bodies were investigated in cats immobilized with D-tobocurarine. Altogether 72.2% of R neurons and 76.2% of VA neurons responded to stimulation of VB whereas only 15.0% of R neurons and 27.1% of VA neurons responded to stimulation of GM and 10.2% of R neurons and 19.6% of VA neurons responded to stimulation of GL. The response of the R and VA neurons to stimulation of the relay nuclei as a rule was expressed as excitation. A primary inhibitory response was observed for only two R and three VA neurons. Two types of excitable neurons were distinguished: The first respond to afferent stimulation by a discharge consisting of 5–15 spikes with a frequency of 250–300/sec; the second respond by single action potentials. Neurons of the first type closely resemble inhibitory interneurons in the character of the response. Antidromic responses were recorded from 2.2% of R neurons and 7.8% of VA neurons during stimulation of the relay nuclei. Among the R and VA neurons there are some which respond to stimulation not only of one, but of two or even three relay nuclei. If stimulation of one relay nucleus is accompanied by a response of a R or VA neuron, preceding stimulation of another nucleus leads to inhibition of the response to the testing stimulus if the interval between conditioning and testing stimuli is less than 30–50 msec.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 597–605, November–December, 1976.  相似文献   

15.
16.
The response of caudate nucleus neurons to acoustic stimulation (a click at 0.5 Hz) was investigated during chronic experimentation in cats using intracellular techniques and reversible blockage of the thalamic centrum medianum produced by anode polarization. Having analyzed poststimulus histograms it was found that the response of phasic activation to an acoustic signal decreased, and disappeared in 52% of neurons. A reduction in the level of spontaneous activity was also observed in neurons of the caudate nucleus. The significance of a direct pathway from the thalamic centrum medianum to the caudate nucleus is discussed from the viewpoint of acoustic signal transmission to caudate nucleus neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 92–99, January–February, 1986.  相似文献   

17.
Synaptic processes in red nucleus neurons evoked by stimulation of different parts of the substantia nigra and nucleus interpositus of the cerebellum were investigated by an intracellular recording method in acute experiments on cats. Stimulation of this sort was shown to induce mono- and polysynaptic activation of rubrospinal neurons. Monosynaptic cerebellar and nigral excitatory influences were found to be very similar. These influences were shown to converge on the same rubrospinal neurons. The functional significance of inputs from the substantia nigra to the red nucleus for movement performance is discussed.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 149–158, March–April, 1981.  相似文献   

18.
Muñoz F  Fuentealba P 《PloS one》2012,7(1):e30154
Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.  相似文献   

19.
Responses of 141 neurons of the caudate nucleus to acoustic stimuli — tones (500 and 2000 Hz) and clicks of different frequency (0.2 and 0.8/sec) and intensity (75, 80, 95 dB) — were recorded extracellularly in chronic experiments on cats. The responses recorded showed great variability with respect to character (phasic, tonic), structure (one or two phases of excitation), latent periods (from 7.5 to 300.0 msec), and burst discharge frequency (from 90 to 800 spikes/sec). Analysis of averaged poststimulus histograms and graphs of the dynamics of the responses showed that responses of 74% of neurons were much better expressed if less frequent stimuli were used: The regularity of the responses and the number of spikes in each response increased. Responses of neurons also increased and acquired a more distinct temporal structure if the intensity of the clicks increased. The character of responses to clicks and tones differed qualitatively in 17% of neurons studied: Phasic excitation arose in response to clicks, tonic changes in spike activity to tones. The particular features of responses of caudate neurons to acoustic stimulation with different parameters are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 6, pp. 588–595, November–December, 1980.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号