首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hu X  Ji J 《Biomacromolecules》2011,12(12):4264-4271
A convenient and simple route to multifunctional surface coatings via the alternating covalent layer-by-layer (LBL) assembly of p-nitrophenyloxycarbonyl group-terminated hyperbranched polyether (HBPO-NO(2)) and polyethylenimine (PEI) is described. The in situ chemical reaction between HBPO-NO(2) and PEI onto aminolyzed substrates was rapid and mild. Results from ellipsometry measurements, contact angle measurements, and ATR-FTIR spectra confirmed the successful LBL assembly of the building blocks, and the surface reactivity of the multilayer films with HBPO-NO(2) as the outmost layer was demonstrated by the immobilization of an amine-functionalized fluorophore. Furthermore, a biomimetic surface was achieved by surface functionalization of the multilayer films with extracellular matrix protein collagen to promote the adhesion and growth of cells. The studies on the drug loading and in vitro release behaviors of the multilayer films demonstrated their application potentials in local delivery of hydrophilic and hydrophobic therapeutic agents.  相似文献   

2.
Dense and uniform polymer brush coatings were developed to combat marine biofouling. Nonionic hydrophilic, nonionic hydrophobic, cationic, anionic and zwitterionic polymer brush coatings were synthesized via surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-hydroxyethyl methacrylate, 2,3,4,5,6-pentafluorostyrene, 2-(methacryloyloxy)ethyl trimethylammonium chloride, 4-styrenesulfonic acid sodium and N,N′-dimethyl-(methylmethacryloyl ethyl) ammonium propanesulfonate, respectively. The functionalized surfaces had different efficacies in preventing adsorption of bovine serum albumin (BSA), adhesion of the Gram-negative bacterium Pseudomonas sp. NCIMB 2021 and the Gram-positive Staphylococcus aureus, and settlement of cyprids of the barnacle Amphibalanus amphitrite (=Balanus amphitrite). The nonionic hydrophilic, anionic and zwitterionic polymer brushes resisted BSA adsorption during a 2 h exposure period. The nonionic hydrophilic, cationic and zwitterionic brushes exhibited resistance to bacterial fouling (24 h exposure) and cyprid settlement (24 and 48 h incubation). The hydrophobic brushes moderately reduced protein adsorption, and bacteria and cyprid settlement. The anionic brushes were least effective in preventing attachment of bacteria and barnacle cyprids. Thus, the best approach to combat biofouling involves a combination of nonionic hydrophilic and zwitterionic polymer brush coatings on material surfaces.  相似文献   

3.
WJ Yang  KG Neoh  ET Kang  SS Lee  SL Teo  D Rittschof 《Biofouling》2012,28(9):895-912
Dense and uniform polymer brush coatings were developed to combat marine biofouling. Nonionic hydrophilic, nonionic hydrophobic, cationic, anionic and zwitterionic polymer brush coatings were synthesized via surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-hydroxyethyl methacrylate, 2,3,4,5,6-pentafluorostyrene, 2-(methacryloyloxy)ethyl trimethylammonium chloride, 4-styrenesulfonic acid sodium and N,N'-dimethyl-(methylmethacryloyl ethyl) ammonium propanesulfonate, respectively. The functionalized surfaces had different efficacies in preventing adsorption of bovine serum albumin (BSA), adhesion of the Gram-negative bacterium Pseudomonas sp. NCIMB 2021 and the Gram-positive Staphylococcus aureus, and settlement of cyprids of the barnacle Amphibalanus amphitrite (=Balanus amphitrite). The nonionic hydrophilic, anionic and zwitterionic polymer brushes resisted BSA adsorption during a 2?h exposure period. The nonionic hydrophilic, cationic and zwitterionic brushes exhibited resistance to bacterial fouling (24?h exposure) and cyprid settlement (24 and 48?h incubation). The hydrophobic brushes moderately reduced protein adsorption, and bacteria and cyprid settlement. The anionic brushes were least effective in preventing attachment of bacteria and barnacle cyprids. Thus, the best approach to combat biofouling involves a combination of nonionic hydrophilic and zwitterionic polymer brush coatings on material surfaces.  相似文献   

4.
Fouling is a major concern for solid/liquid interfaces of materials used in different applications. One approach of fouling control is the use of hydrophilic polymer coatings made from poly-anions and poly-cations using the layer-by-layer (LBL) method. The authors hypothesized that the poly-anionic properties and the poly-phosphate backbone of DNA would provide anti-biofouling and anti-scaling properties. To this end, poly(ethyleneimine)/DNA LBL coatings against microbial and inorganic fouling were developed, characterized and evaluated. DNA LBL coatings reduced inorganic fouling from tap water by 90% when incubated statically or under flow conditions mimicking surfaces in heat exchangers. The coatings also impaired biofilm formation by 93% on stainless steel from tap water, and resulted in a 97% lower adhesion force and reduced initial attachment of the human pathogens Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa on glass. This study demonstrates a proof of concept that LBL coatings with poly-anions harboring phosphate groups can address fouling in several applications.  相似文献   

5.

Objectives

The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique.

Methods

In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates.

Results

The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration.

Conclusions

The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the early stage.  相似文献   

6.

Improving non-toxic coatings using immersion trials is time consuming and requires more rigorous data analysis than is necessary for toxic coatings. The aim of this study was to determine if the exploratory behaviour of barnacle cyprids on coatings deployed in the field can be used as a bioassay for coating efficacy. A standard tin-based coating, and a silicone and unknown non-toxic coatings were videoed remotely underwater using a high resolution camera. Exploratory behaviours of the coatings by cyprids were digitised. There was a significant difference in larval behaviour between coatings (MANOVA, p <0.001 ). Canonical discriminant analysis clearly separated the three coatings and enabled 100% prediction of group membership. Thus the behaviour of exploring cyprids can be used to discriminate between the coatings. This study has demonstrated how a simple field-based bioassay could be suitable for the testing of antifouling coatings and may therefore offer some scope for rapidly pre-screening coatings prior to full-scale immersion trials. However, several disadvantages with the bioassay are noted, including variable illumination in the field, the high cost of the equipment used, the long time required to manually analyse recorded video, and the need for a predictable larval supply.  相似文献   

7.
Cellulose nanocrystals are promising as a new class of reinforcing material for the preparation of nanostructured composites. We report here the preparation of cellulose nanocrystal multilayer composites with poly(diallyldimethylammonium chloride) using layer-by-layer assembly (LBL) technique. The LBL assembly was characterized with UV-Vis spectroscopy and ellipsometry. The average thickness of a single bilayer was found to be 11 nm. AFM and SEM characterization revealed uniform coverage and densely packed cellulose crystal surface.  相似文献   

8.
Bioassay-guided isolation of an acetone extract from a terrestrial plant Piper betle produced four known piperamides with potent antifouling (AF) activities, as evidenced by inhibition of settlement of barnacle cypris larvae. The AF activities of the four piperamides and 15 synthesized analogues were compared and their structure–activity relationships were probed. Among the compounds, piperoleine B and 1-[1-oxo-7-(3′,4′-methylenedioxyphenyl)-6E-heptenyl]-piperidine (MPHP) showed strong activity against settlement of cyprids of the barnacle Balanus amphitrite, having EC50 values of 1.1?±?0.3 and 0.5?±?0.2?μg?ml?1, respectively. No toxicity against zebra fish was observed following incubation with these two compounds. Besides being non-toxic, 91% of piperoleine B-treated cyprids and 84% of MPHP-treated cyprids at a concentration of 100?μM completed normal metamorphosis in recovery bioassays, indicating that the anti-settlement effect of these two compounds was reversible. Hydrolysis and photolysis experiments indicated that MPHP could be decomposed in the marine environment. It is concluded that piperamides are promising compounds for use in marine AF coatings.  相似文献   

9.
藤壶金星幼虫附着变态机制   总被引:1,自引:1,他引:0  
饶小珍  林岗  许友勤 《生态学报》2013,33(16):4846-4856
藤壶属节肢动物门(Arthropoda)甲壳亚门(Crustacea)蔓足下纲(Cirripedia)围胸总目(Thoracica), 具备特殊的形态结构、生活史和种群生态特征,是最主要的海洋污损生物。其幼虫阶段通常经历6期无节幼体和1期不摄食的金星幼虫,从浮游的金星幼虫附着变态成固着的稚体是藤壶生活史中的一个关键环节。外界化学和生物因子中成体提取物、水溶性信息素、足迹、神经递质、激素、生物膜等均影响藤壶金星幼虫的附着变态;内在因子即金星幼虫的生理状态(能量储量和年龄)决定了其对外界因子的反应程度。概括了近年来藤壶附着变态生理机制和分子机制研究的进展,可为深入了解藤壶金星幼虫附着变态机制提供参考,也为开发新型、高效、环保的防污剂提供理论指导。  相似文献   

10.
Aldred N  Clare AS 《Biofouling》2008,24(5):351-363
Over the last decade, approaches to the development of surfaces that perturb settlement and/or adhesion by barnacles have diversified substantially. Although, previously, coatings research focussed almost exclusively on biocidal technologies and low modulus, low surface-free-energy 'fouling-release' materials, novel strategies to control surface colonisation are now receiving significant attention. It is timely, therefore, to review the current 'state of knowledge' regarding fouling-resistant surface characteristics and their mechanisms of action against settling larvae of barnacles. The role of the barnacle in marine fouling is discussed here in the context of its life cycle and the behavioural ecology of its cypris larva. The temporary and permanent adhesion mechanisms of cyprids are covered in detail and an overview of adult barnacle adhesion is presented. Recent legislation has directed academic research firmly towards environmentally inert marine coatings, so the actions of traditional biocides on barnacles are not described here. Instead, the discussion is restricted to those surface modifications that interfere with settlement-site selection and adhesion of barnacle cypris larvae; specifically, textural engineering of surfaces, development of inert 'non-fouling' surfaces and the use of enzymes in antifouling.  相似文献   

11.
Effects of epibiotic bacteria associated with macroalgae on barnacle larval attachment were investigated. Eight bacterial isolates obtained from samples of three macroalga species were cultured as monospecies bacterial films and tested for their activity against barnacle (Amphibalanus improvisus) attachment in field experiments (Western Baltic Sea). Furthermore, natural biofilm communities associated with the surface of the local brown alga, Fucus vesiculosus, which were exposed to different temperatures (5, 15 and 20?°C), were harvested and subsequently tested. Generally, monospecies bacterial biofilms, as well as natural microbial assemblages, inhibited barnacle attachment by 20-67%. denaturing gradient gel electrophoresis fingerprints showed that temperature treatment shifted the bacterial community composition and weakened the repellent effects at 20?°C. Repellent effects were absent when settlement pressure of cyprids was high. Nonviable bacteria tended to repel cyprids when compared to the unfilmed surfaces. We conclude that biofilms can have a repellent effect benefiting the host by preventing heavy fouling on its surface. However, severe settlement pressure, as well as stressful temperature, may reduce the protective effects of the alga's biofilm. Our results add to the notion that the performance of F.?vesiculosus may be reduced by multiple stressors in the course of global warming.  相似文献   

12.
Over the last decade, approaches to the development of surfaces that perturb settlement and/or adhesion by barnacles have diversified substantially. Although, previously, coatings research focussed almost exclusively on biocidal technologies and low modulus, low surface-free-energy ‘fouling-release’ materials, novel strategies to control surface colonisation are now receiving significant attention. It is timely, therefore, to review the current ‘state of knowledge’ regarding fouling-resistant surface characteristics and their mechanisms of action against settling larvae of barnacles. The role of the barnacle in marine fouling is discussed here in the context of its life cycle and the behavioural ecology of its cypris larva. The temporary and permanent adhesion mechanisms of cyprids are covered in detail and an overview of adult barnacle adhesion is presented. Recent legislation has directed academic research firmly towards environmentally inert marine coatings, so the actions of traditional biocides on barnacles are not described here. Instead, the discussion is restricted to those surface modifications that interfere with settlement-site selection and adhesion of barnacle cypris larvae; specifically, textural engineering of surfaces, development of inert ‘non-fouling’ surfaces and the use of enzymes in antifouling.  相似文献   

13.
Gold nanoparticles (GNP) have been used in a variety of localized surface plasmon resonance (LSPR)-based optical sensor systems and in a variety of forms, such as colloidal suspensions, immobilized GNP on flat surfaces or optical fibres. A key parameter affecting the sensitivity of these systems is the effective depth of penetration of the surface plasmons. This study aims to determine the plasmon penetration depth in the case of an immobilized GNP-based LSPR optical biosensor. The optical biosensor used for experimentation is a U-bend fibre optic probe of 200-μm core diameter and 1.5-mm bend diameter on which GNP is immobilized. Formation of multilayered nanostructures on the immobilized GNP was used to investigate the field of the localized surface plasmons. Two multilayered nanostructures were explored in this study, viz. a polyelectrolyte multilayer formed by layer-by-layer (LBL) deposition of oppositely charged polyelectrolytes and an immunoglobulin G (IgG) multilayer formed through sequential immobilization of two mutually specific antibodies. Measurement of LSPR absorbance change with deposition of each analyte layer was used to determine the plasmon penetration depth (d P) of the LSPR biosensor. Probing the plasmon field with an IgG multilayer gave rise to at least twofold higher d P compared to d P obtained from the polyelectrolyte multilayer. The effect of GNP size was also studied, and GNP of three diameters, viz. 18, 36 and 45 nm, were used. The 36-nm-diameter GNP exhibited the highest d P. The outcomes of this study may provide leads for optimization of LSPR-based sensors for various biosensing applications.  相似文献   

14.
Previous investigations have shown that insect juvenile hormone (JH) and its analogues induce precocious metamorphosis of barnacle cypris larvae. In the present study, methyl farnesoate (MF; structurally identical to JH III, except for the absence of an epoxide group) has been shown to have a concentration-dependent effect on the development of cyprids of the barnacle Balanus amphitrite. Analysis of cypris extracts by gas chromatography-mass spectrometry with selected ion monitoring (GC-MS-SIM) confirmed the presence of endogenous MF. These data provide evidence that MF functions as a juvenilizing hormone in barnacle cyprids, an effect that hitherto has not been noted.  相似文献   

15.
Barnacles are a persistent fouling problem in the marine environment, although their effects (eg reduced fuel efficiency, increased corrosion) can be reduced through the application of antifouling or fouling-release coatings to marine structures. However, the developments of fouling-resistant coatings that are cost-effective and that are not deleterious to the marine environment are continually being sought. The incorporation of proteolytic enzymes into coatings has been suggested as one potential option. In this study, the efficacy of a commercially available serine endopeptidase, Alcalase as an antifoulant is assessed and its mode of action on barnacle cypris larvae investigated. In situ atomic force microscopy (AFM) of barnacle cyprid adhesives during exposure to Alcalase supported the hypothesis that Alcalase reduces the effectiveness of the cyprid adhesives, rather than deterring the organisms from settling. Quantitative behavioural tracking of cyprids, using Ethovision 3.1, further supported this observation. Alcalase removed cyprid 'footprint' deposits from glass surfaces within 26 min, but cyprid permanent cement became resistant to attack by Alcalase within 15 h of expression, acquiring a crystalline appearance in its cured state. It is concluded that Alcalase has antifouling potential on the basis of its effects on cyprid footprints, un-cured permanent cement and its non-toxic mode of action, providing that it can be successfully incorporated into a coating.  相似文献   

16.
Lee H  Jeong Y  Park TG 《Biomacromolecules》2007,8(12):3705-3711
Shell cross-linked hollow polyelectrolyte microcapsules composed of hyaluronic acid (HA) and poly- l-lysine (PLL) were prepared by layer-by-layer (LBL) adsorption and subsequent core removal by a reductive agent. Disulfide cross-linked HA microgels were used as template core materials for the LBL deposition on the surface and removed by treatment of dithiothreitol at neutral pH condition. HA/PLL polyelectrolyte multilayers on the shell were chemically cross-linked via carbodiimide chemistry, and their physicochemical properties and drug release behaviors were investigated. Shell cross-linked HA/PLL polyelectrolyte microcapsules exhibited far enhanced physical stability against freeze-thaw cycles and acidic pH conditions compared to the un-cross-linked ones. The cross-linked HA/PLL multilayer shell also demonstrated pH responsive permeability, which became more permeable at low pH than at neutral pH. When bovine serum albumin (BSA), as a model protein drug, was loaded inside using the pH-dependent permeability, BSA release profiles from the microcapsules could be readily modulated by varying medium pH values or adding an HA digesting enzyme (hyaluronidase) in the incubation medium.  相似文献   

17.
The layer-by-layer (LBL) construction of an enzyme electrode covered with a multilayer structure alternately composed of a polymeric electron transfer mediator and a polymer-modified enzyme was examined. Poly(2-methacryloyloxyethyl phosphorylcholine-co-p-vinylphenylboronic acid-co-vinylferrocene) (PMVF) was synthesized and used as a polymeric electron transfer mediator. Glucose oxidase (GOx) was selected as a model enzyme and poly(vinyl alcohol) (PVA) chains were bound to the GOx (GOx-PVA) under mild conditions. The PMVF and PVA formed a gel spontaneously through a selective reaction between phenylboronic acid units and hydroxyl groups in both polymers. Using the spin coating technique, a repeating PMVF/GOx-PVA multilayer was fabricated on the surface of an Au electrode. The thickness of each PMVF/GOx-PVA layer was around 5.8 nm, corresponding to the dimensions of GOx. The electrochemical performance of the electrode was evaluated in glucose concentration measurement. The oxidation current of glucose by GOx was measured at 0.38 V (vs. Ag/AgCl), verifying that ferrocene units in the PMVF of the hydrogel electrically wired the immobilized GOx. Moreover, the current increased with the number of PMVF/GOx-PVA layers. That is, both intermolecular electron transfer between each individual layer and the presence of a freely diffusing substrate in the hydrogel were achieved. We conclude that a LBL structure constructed from PMVF and a PVA-modified enzyme is effective for use in developing bioelectronic devices that employ enzyme molecules.  相似文献   

18.
In laboratory-based biofouling assays, the influence of physico-chemical surface characteristics on barnacle settlement has been tested most frequently using the model organism Balanus amphitrite (= Amphibalanus amphitrite). Very few studies have addressed the settlement preferences of other barnacle species, such as Balanus improvisus (= Amphibalanus improvisus). This study aimed to unravel the effects of surface physico-chemical cues, in particular surface-free energy (SFE) and surface charge, on the settlement of cyprids of B. improvisus. The use of well-defined surfaces under controlled conditions further facilitates comparison of the results with recent similar data for B. amphitrite. Zero-day-old cyprids of B. improvisus were exposed to a series of model surfaces, namely self-assembled monolayers (SAMs) of alkanethiols with varying end-groups, homogenously applied to gold-coated polystyrene (PS) Petri dishes. As with B. amphitrite, settlement of cyprids of B. improvisus was influenced by both SFE and charge, with higher settlement on low-energy (hydrophobic) surfaces and negatively charged SAMs. Positively charged SAMs resulted in low settlement, with intermediate settlement on neutral SAMs of similar SFE. In conclusion, it is demonstrated that despite previous suggestions to the contrary, these two species of barnacle show similar preferences in response to SFE; they also respond similarly to charge. These findings have positive implications for the development of novel antifouling (AF) coatings and support the importance of consistency in substratum choice for assays designed to compare surface preferences of fouling organisms.  相似文献   

19.
Barnacles are a persistent fouling problem in the marine environment, although their effects (eg reduced fuel efficiency, increased corrosion) can be reduced through the application of antifouling or fouling-release coatings to marine structures. However, the developments of fouling-resistant coatings that are cost-effective and that are not deleterious to the marine environment are continually being sought. The incorporation of proteolytic enzymes into coatings has been suggested as one potential option. In this study, the efficacy of a commercially available serine endopeptidase, Alcalase® as an antifoulant is assessed and its mode of action on barnacle cypris larvae investigated. In situ atomic force microscopy (AFM) of barnacle cyprid adhesives during exposure to Alcalase supported the hypothesis that Alcalase reduces the effectiveness of the cyprid adhesives, rather than deterring the organisms from settling. Quantitative behavioural tracking of cyprids, using Ethovision? 3.1, further supported this observation. Alcalase removed cyprid ‘footprint’ deposits from glass surfaces within 26 min, but cyprid permanent cement became resistant to attack by Alcalase within 15 h of expression, acquiring a crystalline appearance in its cured state. It is concluded that Alcalase has antifouling potential on the basis of its effects on cyprid footprints, un-cured permanent cement and its non-toxic mode of action, providing that it can be successfully incorporated into a coating.  相似文献   

20.
The distribution and orientation of Balanus crenatus on Carcinus maenas is described. Elminius modestus was also found on C. maenas but it was not common. Both species of barnacle were also found on Cancer pagurus, although neither species of barnacle appeared to be as common on Cancer as on Carcinus. Possible reasons for this are discussed.
Treating the carapaces of similar sized C. maenas as sampling units it is clear that the distribution of B. crenatus over these sampling units is not random but is aggregated. This probably arises because of the gregarious nature of the cyprids when they settle out but other possibilities are considered. B. crenatus on the carapace of C. maenas is found exclusively in the grooves and depressions on the carapace and this is because the cyprids preferentially settle in concavities.
The orientation of B. crenatus also shows a consistent pattern, with the cirral nets facing predominantly backwards. This pattern could arise because the barnacle cyprids orientate to water currents, generated by the exhalant respiratory currents, flowing forwards over the carapace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号