首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
【目的】初步掌握全国矿泉水和山泉水生产过程中铜绿假单胞菌(Pseudomonas aeruginosa)的污染情况。分析矿泉水与山泉水中铜绿假单胞菌的致病性与耐药性。【方法】研究通过对广西、湖北、云南等全国9个省36家水厂进行采样,共采集108个样本,并根据《饮用天然矿泉水检测方法》国家标准(GB/T 8538-2008)检测其铜绿假单胞菌的污染率、污染水平。对分离出的铜绿假单胞菌菌株进行毒力基因与药敏实验。【结果】全国矿泉水水源水、活性碳过滤后水、成品水的污染率分别为16.7%、16.7%、0,污染水平分别为3.7、2.0、0 CFU/250 m L。全国山泉水水源水、活性碳过滤后水、成品水的污染率分别为66.7%、83.3%、5.6%,污染水平分别为5.1、7.3、2.0 CFU/250 m L。对所分离出的36株铜绿假单胞菌进行毒力基因检测和药敏试验显示:exo U、exo S、phz M、tox A、las B检出率分别为25.0%、75.0%、100%、88.8%、100%,但对美国国家临床实验室标准化委员会标准中14种抗生素均无耐药性。【结论】山泉水水源水、活性碳过滤后水、成品水污染率明显高于矿泉水,但污染水平均较低,无大于40.0 CFU/250 m L样品检出。山泉水活性碳过滤后污染率最高,表明大部分企业在活性碳过滤环节存在污染问题。毒力基因exo U、exo S、phz M、tox A、las B在分离到的36株铜绿假单胞菌检出率高,但分离到的菌株对所选取的14种抗生素均无耐药性。  相似文献   

2.
The combination of a large genome encoding metabolic versatility and conserved secreted virulence determinants makes Pseudomonas aeruginosa a model pathogen that can be used to study host-parasite interactions in many eukaryotic hosts. One of the virulence regulons that likely plays a role in the ability of P. aeruginosa to avoid innate immune clearance in mammals is a type III secretion system (TTSS). Upon cellular contact, the P. aeruginosa TTSS is capable of delivering a combination of at least four different effector proteins, exoenzyme S (ExoS), ExoT, ExoU, and ExoY. Two of the four translocated proteins, ExoS and ExoU, are cytotoxic to cells during infection and transfection. The mechanism of cytotoxicity of ExoS is unclear. ExoU, however, has recently been characterized as a member of the phospholipase A family of enzymes, possessing at least phospholipase A2 activity. Similar to ExoS, ExoT and ExoY, ExoU requires either a eukaryotic-specific modification or cofactor for its activity in vitro. The biologic effects of minimal expression of ExoU in yeast can be visualized by membrane damage to different organelles and fragmentation of the vacuole. In mammalian cells, the direct injection of ExoU causes irreversible damage to cellular membranes and rapid necrotic death. ExoU likely represents a unique enzyme and is the first identified phopholipase virulence factor that is translocated into the cytosol by TTSS.  相似文献   

3.
P. aeruginosa and S. pneumoniae are major bacterial causes of corneal ulcers in industrialized and in developing countries. The current study examined host innate immune responses at the site of infection, and also expression of bacterial virulence factors in clinical isolates from patients in south India. Corneal ulcer material was obtained from 49 patients with confirmed P. aeruginosa and 27 patients with S. pneumoniae, and gene expression of Toll Like Receptors (TLR), cytokines and inflammasome proteins was measured by quantitative PCR. Expression of P. aeruginosa type III secretion exotoxins and S. pneumoniae pneumolysin was detected by western blot analysis. We found that neutrophils comprised >90% cells in corneal ulcers, and that there was elevated expression of TLR2, TLR4, TLR5 and TLR9, the NLRP3 and NLRC4 inflammasomes and the ASC adaptor molecule. IL-1α IL-1β and IFN-γ expression was also elevated; however, there was no significant difference in expression of any of these genes between corneal ulcers from P. aeruginosa and S. pneumoniae infected patients. We also show that 41/49 (84%) of P. aeruginosa clinical isolates expressed ExoS and ExoT, whereas 5/49 (10%) of isolates expressed ExoS, ExoT and ExoU with only 2/49 isolates expressing ExoT and ExoU. In contrast, all 27 S. pneumoniae clinical isolates produced pneumolysin. Taken together, these findings demonstrate that ExoS/T expressing P. aeruginosa and pneumolysin expressing S. pneumoniae predominate in bacterial keratitis. While P. aeruginosa strains expressing both ExoU and ExoS are usually rare, these strains actually outnumbered strains expressing only ExoU in the current study. Further, as neutrophils are the predominant cell type in these corneal ulcers, they are the likely source of cytokines and of the increased TLR and inflammasome expression.  相似文献   

4.
The exoenzyme S regulon of Pseudomonas aeruginosa   总被引:13,自引:7,他引:6  
Pseudomonas aeruginosa can cause severe life-threatening infections in which the bacterium disseminates rapidly from epithelial colonization sites to the bloodstream. In experimental models, the ability of P . aeruginosa to disseminate is linked to epithelial injury, in vitro cytotoxicity and expression of the exoenzyme S regulon. Using the expression of ExoS as a model, a series of genes that are important for regulation, secretion and, perhaps, intoxication of eukaryotic cells have been identified. Proteins encoded by the exoenzyme S regulon and the Yersinia Yop virulon show a high level of amino acid homology, suggesting that P . aeruginosa may use a contact-mediated translocation mechanism to transfer anti-host factors directly into eukaryotic cells. Potential anti-host factors that may disrupt eukaryotic signal transduction through ADP-ribosylation include ExoS and ExoT. Expression of ExoU, another candidate anti-host factor, has been correlated with acute cytotoxicity and lung epithelial injury. Members of the exoenzyme S regulon represent only a portion of the virulence factor arsenal possessed by P . aeruginosa . It will be important to understand how the exoenzyme S regulon contributes to pathogenesis and whether these factors could serve as potential therapeutic targets.  相似文献   

5.
6.
Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium, which is also able to cause severe opportunistic infections in humans. The colonization of the host is importantly affected by the production of the high-affinity iron (III) scavenging peptidic siderophore pyoverdine. The species P. aeruginosa can be divided into three subgroups ('siderovars'), each characterized by the production of a specific pyoverdine and receptor (FpvA). We used a multiplex PCR to determine the FpvA siderovar on 345 P. aeruginosa strains from environmental or clinical origin. We found about the same proportion of each type in clinical strains, while FpvA type I was slightly over-represented (49%) in environmental strains. Our multiplex PCR also detected the presence or absence of an additional receptor for type I pyoverdine (FpvB). The fpvB gene was in fact present in the vast majority of P. aeruginosa strains (93%), regardless of their siderovar or their origin. Finally, molecular analyses of fpvA and fpvB genes highlighted a complex evolutionary history, probably linked to the central role of iron acquisition in the ecology and virulence of P. aeruginosa .  相似文献   

7.
8.
Expression of ExoU by Pseudomonas aeruginosa is correlated with acute cytotoxicity in a number of epithelial and macrophage cell lines. In vivo, ExoU is responsible for epithelial injury. The absence of a known motif or significant homology with other proteins suggests that ExoU may possess a new mechanism of toxicity. To study the intracellular effects of ExoU, we developed a transient-transfection system in Chinese hamster ovary cells. Transfection with full-length but not truncated forms of ExoU inhibited reporter gene expression. Inhibition of reporter activity after cotransfection with ExoU-encoding constructs was correlated with cellular permeability and death. The toxicity of truncated versions of ExoU could be restored by coexpression of the remainder of the molecule from separate plasmids in trans. This strategy was used to map N- and C-terminal regions of ExoU that are necessary but not sufficient for toxicity. Disruption of a middle region of the protein reduces toxicity. This portion of the molecule is postulated to allow the N- and C-terminal regions to functionally complement one another. In contrast to ExoS and ExoT, native and recombinant ExoU molecules do not oligomerize or form aggregates. The complex domain structure of ExoU suggests that, like other P. aeruginosa-encoded type III effectors (ExoS and ExoT), ExoU toxicity may result from a molecule that possesses more than one activity.  相似文献   

9.
10.
11.
12.
We describe here the development of a single-reaction multiplex PCR assay for the enterotoxin genes from Staphylococcus aureus that utilizes a universal toxin gene primer in combination with toxin-specific primers to amplify characteristic toxin gene products. In combination with a new DNA purification method, the assay can detect enterotoxin genes A to E from a pure culture within 3 to 4 h. The test was used to characterize a diverse set of environmental S. aureus isolates, and a 99% correlation with toxin typing using standard immunological tests was found. The design of the assay allows it to be extended to include both newly characterized and as-yet-unknown toxin genes.  相似文献   

13.
Reliability of the most widely used PCR screenings for the human opportunistic pathogen Pseudomonas aeruginosa was evaluated. Specificity analyses showed the gyrB, toxA, and 16S-23S rDNA internal transcribed spacer (ITS) but not the 16S rDNA, oprI, oprL, and fliC PCR screenings to discriminate P. aeruginosa cells from a collection of fifteen Pseudomonas species. Sensitivity analyses showed all these PCR except the toxA one to be reliable for 100% of the P. aeruginosa strains tested in this study. Specificity of the ITS and gyrB PCR screenings were further investigated on 9 soils and 29 freshwater DNA extracts of different origins, and on DNA extracted from 3 horse manures. The ITS PCR showed the highest efficacy on water and soil DNA extracts but only the gyrB one detected P. aeruginosa DNA in horse manure. DNA sequence analyses of ITS and gyrB PCR products revealed uncertainties and false positive results in these P. aeruginosa identification schemes. A novel PCR screening, targeting the ecfX gene, was thus developed. ecfX encodes an ECF (extracytoplasmic function) sigma factor which is restricted to P. aeruginosa, and might play a role in haem-uptake and virulence. Specificity and sensitivity analyses showed the ecfX PCR screening to be highly reliable, giving PCR products of the expected size for all P. aeruginosa strains tested and not amplifying DNA from any of the other Pseudomonas species tested. The ecfX PCR screening was validated on environmental DNA extracts. DNA sequence analyses of the ecfX PCR products confirmed their identity and allocation to P. aeruginosa. These investigations suggest a preferential colonization of water rather than soil environments by P. aeruginosa. Detection limits of P. aeruginosa in environmental samples were improved by the ecfX PCR screening.  相似文献   

14.
15.
Maresso AW  Riese MJ  Barbieri JT 《Biochemistry》2003,42(48):14249-14257
Pseudomonas aeruginosa ExoS is a bifunctional type III cytotoxin. The N-terminus (residues 1-232) is a Rho GTPase activating protein (GAP) domain, while the C-terminus (residues 233-453) is a FAS-dependent ADP-ribosyltransferase domain that targets Ras and Ras-like GTPases. A membrane localization domain (residues 51-72) localizes ExoS to a perinuclear region within eukaryotic cells. Recent studies observed that ExoS is auto-ADP-ribosylated upon delivery into eukaryotic cells. Auto-ADP-ribosylated ExoS analyzed from eukaryotic cells displayed pI heterogeneity and prompted an analysis of this heterogeneity. Bacterial-associated ExoS and ExoS that had been secreted by P. aeruginosa also showed pI heterogeneity with five charge forms ranging in pI from 5.1 to 5.9. The pI heterogeneity of ExoS was independent of a mass change and thus represented molecular charge conformers. Urea was not required to observe the pI conformers of ExoS; it enhanced the resolution and formation of pI conformers during the focusing component of the analysis. ExoS(E381D), a mutant deficient in ADP-ribosyltransferase activity, isolated from cultured cells showed charge forms that migrated to a more acidic pI than type III secreted ExoS but more basic than auto-ADP-ribosylated ExoS. Incubation of cell lysates with Mn(2+) shifted the pI of ExoS(E381D) to a pI identical to secreted ExoS. This indicates that within the mammalian cells ExoS undergoes a negatively charged modification, in addition to auto-ADP-ribosylation observed for wild-type ExoS. ExoT, ExoU, and YopE also focus into multiple pI forms, suggesting that this is a common property of type III cytotoxins.  相似文献   

16.
ExoU is a potent Pseudomonas aeruginosa cytotoxin translocated into host cells by the type III secretion system. A comparison of genomes of various P. aeruginosa strains showed that that the ExoU determinant is found in the same polymorphic region of the chromosome near a tRNA(Lys) gene, suggesting that exoU is a horizontally acquired virulence determinant. We used yeast recombinational cloning to characterize four distinct ExoU-encoding DNA segments. We then sequenced and annotated three of these four genomic regions. The sequence of the largest DNA segment, named ExoU island A, revealed many plasmid- and genomic island-associated genes, most of which have been conserved across a broad set of beta- and gamma-Proteobacteria. Comparison of the sequenced ExoU-encoding genomic islands to the corresponding PAO1 tRNA(Lys)-linked genomic island, the pathogenicity islands of strain PA14, and pKLC102 of clone C strains allowed us to propose a mechanism for the origin and transmission of the ExoU determinant. The evolutionary history very likely involved transposition of the ExoU determinant onto a transmissible plasmid, followed by transfer of the plasmid into different P. aeruginosa strains. The plasmid subsequently integrated into a tRNA(Lys) gene in the chromosome of each recipient, where it acquired insertion sequences and underwent deletions and rearrangements. We have also applied yeast recombinational cloning to facilitate a targeted mutagenesis of ExoU island A, further demonstrating the utility of the specific features of the yeast capture vector for functional analyses of genes on large horizontally acquired genetic elements.  相似文献   

17.
PER-1 type beta-lactamases were screened among ceftazidime-resistant clinical isolates of Acinetobacter spp. and Pseudomonas aeruginosa. A total of 176 non-repetitive isolates (84 Acinetobacter spp. and 92 P. aeruginosa) were collected during a three month surveillance period. Isolates were obtained from seven intensive care units of seven university hospitals. All strains were screened for bla(PER-1) alleles by PCR. Of the strains, 31% and 55.4% of Acinetobacter spp. and P. aeruginosa were positive for bla(PER-1) type genes, respectively.  相似文献   

18.
Pseudomonas aeruginosa causes life-threatening infections in compromised and cystic fibrosis patients. Pathogenesis stems from a number of virulence factors, including four type III translocated cytotoxins: ExoS, ExoT, ExoY and ExoU. ExoS is a bifunctional toxin: the N terminus (amino acids 96-219) encodes a Rho GTPase Activating Protein (GAP) domain. The C terminus (amino acids 234-453) encodes a 14-3-3-dependent ADP-ribosyltransferase domain which transfers ADP-ribose from NAD onto substrates such as the Ras GTPases and vimentin. Ezrin/radixin/moesin (ERM) proteins have recently been identified as high-affinity substrates for ADP-ribosylation by ExoS. Expression of ExoS in HeLa cells led to a loss of phosphorylation of ERM proteins that was dependent upon the expression of ADP-ribosyltransferase activity. MALDI-MS and site-directed mutagenesis studies determined that ExoS ADP-ribosylated moesin at three C-terminal arginines (Arg553, Arg560 and Arg563), which cluster Thr558, the site of phosphorylation by protein kinase C and Rho kinase. ADP-ribosylated-moesin was a poor target for phosphorylation by protein kinase C and Rho kinase, which showed that ADP-ribosylation directly inhibited ERM phosphorylation. Expression of dominant active-moesin inhibited cell rounding elicited by ExoS, indicating that moesin is a physiological target in cultured cells. This is the first demonstration that a bacterial toxin inhibits the phosphorylation of a mammalian protein through ADP-ribosylation. These data explain how the expression of the ADP-ribosylation of ExoS modifies the actin cytoskeleton and indicate that ExoS possesses redundant enzymatic activities to depolymerize the actin cytoskeleton.  相似文献   

19.
AIMS: The aim of the study was to determine the presence of genes coding for alpha (cpa), beta (cpb), epsilon (etx), iota (iA) and enterotoxin (cpe) from Clostridium perfringens broiler chicken isolates, using multiplex PCR assay established in the study. METHODS AND RESULTS: The multiplex PCR assay was shown to be specific when tested with 10 C. perfringens strains representing different toxin types, and 15 strains of other bacterial species. All 118 broiler chicken C. perfringens isolates were shown to carry the cpa gene but not cpb, etx, iap or cpe genes, signifying that all isolates represented type A and were cpe-negative. CONCLUSIONS: The assay established in the study enables the simultaneous detection of the major toxin genes and the cpe gene from C. perfringens isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study offers a new primer pair for detecting cpa, combined with a multiplex PCR assay. In addition, the study provides data of the presence of different toxin genes in C. perfringens isolates obtained from broiler chickens.  相似文献   

20.
AIMS: To compare the distribution of genes encoding classical and newly described enterotoxins among Staphylococcus aureus, associated with carriage and infection. METHODS AND RESULTS: Forty-five nasal isolates from carriers and 42 clinical isolates were included. The genes sea to see and seg to sei as well as sem, sen, seo and seu were tested using multiplex and conventional PCR. The most frequently found toxin genes were egc-related genes, in particular the combination seg and sei (n = 55, 63.1%), followed by sen and seu (n = 54, 62.1%), sem (n = 51, 58.6%) and seo (n = 48, 55.2%). Significant differences were found for seg and sei combination (33 of the nasal vs 22 of the infection isolates, P = 0.048) as well as for the genes sem (P = 0.004), sen (P = 0.029) and seo (P = 0.032). Regarding the classical toxin genes no significant differences between the two groups of isolates were found. CONCLUSIONS: Significant differences between infection and carriage strains were found only for the egc-related genes, which were more common in the nasal isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: The egc-related enterotoxin genes seem to be more prevalent in carriage- than in infection-associated S. aureus isolates. The possible contribution of egc-related genes in determining the potential for nasal carriage requires further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号