首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amount of between‐individual variation in the unobservable developmental instability (DI) has been the subject of intense recent debates. The unexpectedly high estimates of between‐individual variation in DI based on distributional characteristics of observable asymmetry values (of on average bilaterally symmetric traits) rely on statistical models that assume an underlying normal distribution of developmental errors. This prompted doubts on the assumption of the Gaussian nature of developmental errors. However, when applying other candidate distributions [log‐normal and gamma (γ)], recent analyses of empirical datasets have indicated that estimates remain generally high. Yet, all estimates were based on bilaterally symmetric traits, which did not allow for a formal comparison of the alternative distributions. In the present study, we extend a recent statistical model to allow statistical comparison of the different distributions based on traits that developed repeatedly under the same conditions, such as flower traits and regrown feathers. We analyse simulated and empirical data and show that: (1) it is statistically difficult to differentiate among the three alternatives when variances are small relative to the mean, as is often the case with DI; (2) the normal distribution fits the log‐normal or γ relatively well under those circumstances; (3) the deviance information criterion (DIC) is able to pick up differences in model fit among the three alternative distributions, yet more strongly so when levels of DI were high; (4) empirical datasets show a better fit of the normal over the log‐normal and γ‐distributions as judged by the DIC; and (5) estimates of between‐individual variation in DI in the three empirical datasets were relatively high (> 50%) under each distributional assumption. In conclusion, and based on our three datasets, the normal approximation appears to be a reasonable choice for statistical models of DI and the remarkably high estimates of variation in DI cannot be attributed to non‐normal developmental noise. Nevertheless, our method should be applied to a broad range of traits and organisms to evaluate the generality of this result. We argue that there is an urgent need for studies that reveal the underlying mechanisms of developmental noise and stability, as well as the role of developmental selection, in order to be able to determine the biological importance of the highly skewed distributions of developmental instability often observed. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92 , 197–210.  相似文献   

2.
Many species are undergoing distributional shifts in response to climate change. However, wide variability in range shifting rates has been observed across taxa, and even among closely‐related species. Attempts to link climate‐mediated range shifts to traits has often produced weak or conflicting results. Here we investigate interactive effects of developmental processes and environmental stress on the expression of traits relevant to range shifts. We use an individual‐based modelling approach to assess how different developmental strategies affect range shift rates under a range of environmental conditions. We find that under stressful conditions, such as at the margins of the species’ fundamental niche, investment in prolonged development leads to the greatest rates of range shifting, especially when longer time in development leads to improved fecundity and dispersal‐related traits. However, under benign conditions, and when traits are less developmentally plastic, shorter development times are preferred for rapid range shifts, because higher generational frequency increases the number of individual dispersal events occurring over time. Our results suggest that the ability of a species to range shift depends not only on their dispersal and colonisation characteristics but also how these characteristics interact with developmental strategies. Benefits of any trait always depended on the environmental and developmental sensitivity of life history trait combinations, and the environmental conditions under which the range shift takes place. Without considering environmental and developmental sources of variation in the expression of traits relevant to range shifts, there is little hope of developing a general understanding of intrinsic drivers of range shift potential.  相似文献   

3.
Extreme environmental change during growth often results in an increase in developmental abnormalities in the morphology of an organism. The evolutionary significance of such stress-induced variation depends on the recurrence of a stressor and on the degree to which developmental errors can be accommodated by an organism's ontogeny without significant loss of function. We subjected populations of four species of soricid shrews to an extreme environment during growth and measured changes in the patterns of integration and accommodation of stress-induced developmental errors in a complex of mandibular traits. Adults that grew under an extreme environment had lower integration of morphological variation among mandibular traits and highly elevated fluctuating asymmetry in these traits, compared to individuals that grew under the control conditions. However, traits differed strongly in the magnitude of response to a stressor--traits within attachments of the same muscle (functionally integrated traits) had lower response and changed their integration less than other traits. Cohesiveness in functionally integrated complexes of traits under stress was maintained by close covariation of their developmental variation. Such developmental accommodation of stress-induced variation might enable the individual's functioning and persistence under extreme environmental conditions and thus provides a link between individual adaptation to stress and the evolution of stress resistance.  相似文献   

4.
General intelligence has been a topic of high interest for over a century. Traditionally, research on general intelligence was based on principal component analyses and other dimensionality reduction approaches. The advent of high-speed computing has provided alternative statistical tools that have been used to test predictions of human general intelligence. In comparison, research on general intelligence in non-human animals is in its infancy and still relies mostly on factor-analytical procedures. Here, we argue that dimensionality reduction, when incorrectly applied, can lead to spurious results and limit our understanding of ecological and evolutionary causes of variation in animal cognition. Using a meta-analytical approach, we show, based on 555 bivariate correlations, that the average correlation among cognitive abilities is low (r = 0.185; 95% CI: 0.087–0.287), suggesting relatively weak support for general intelligence in animals. We then use a case study with relatedness (genetic) data to demonstrate how analysing traits using mixed models, without dimensionality reduction, provides new insights into the structure of phenotypic variance among cognitive traits, and uncovers genetic associations that would be hidden otherwise. We hope this article will stimulate the use of alternative tools in the study of cognition and its evolution in animals.  相似文献   

5.
Adaptive phenotypic plasticity, the ability of a genotype to develop a phenotype appropriate to the local environment, allows organisms to cope with environmental variation and has implications for predicting how organisms will respond to rapid, human-induced environmental change. This review focuses on the importance of developmental selection, broadly defined as a developmental process that involves the sampling of a range of phenotypes and feedback from the environment reinforcing high-performing phenotypes. I hypothesize that understanding the degree to which developmental selection underlies plasticity is key to predicting the costs, benefits, and consequences of plasticity. First, I review examples that illustrate that elements of developmental selection are common across the development of many different traits, from physiology and immunity to circulation and behavior. Second, I argue that developmental selection, relative to a fixed strategy or determinate (switch) mechanisms of plasticity, increases the probability that an individual will develop a phenotype best matched to the local environment. However, the exploration and environmental feedback associated with developmental selection is costly in terms of time, energy, and predation risk, resulting in major changes in life history such as increased duration of development and greater investment in individual offspring. Third, I discuss implications of developmental selection as a mechanism of plasticity, from predicting adaptive responses to novel environments to understanding conditions under which genetic assimilation may fuel diversification. Finally, I outline exciting areas of future research, in particular exploring costs of selective processes in the development of traits outside of behavior and modeling developmental selection and evolution in novel environments.  相似文献   

6.

Background and Aims

Soil flooding leads to low soil oxygen concentrations and thereby negatively affects plant growth. Differences in flooding tolerance have been explained by the variation among species in the extent to which traits related to acclimation were expressed. However, our knowledge of variation within natural species (i.e. among individual genotypes) in traits related to flooding tolerance is very limited. Such data could tell us on which traits selection might have taken place, and will take place in future. The aim of the present study was to show that variation in flooding-tolerance-related traits is present among genotypes of the same species, and that both the constitutive variation and the plastic variation in flooding-induced changes in trait expression affect the performance of genotypes during soil flooding.

Methods

Clones of Trifolium repens originating from a river foreland were subjected to either drained, control conditions or to soil flooding. Constitutive expression of morphological traits was recorded on control plants, and flooding-induced changes in expression were compared with these constitutive expression levels. Moreover, the effect of both constitutive and flooding-induced trait expression on plant performance was determined.

Key Results

Constitutive and plastic variation of several morphological traits significantly affected plant performance. Even relatively small increases in root porosity and petiole length contributed to better performance during soil flooding. High specific leaf area, by contrast, was negatively correlated with performance during flooding.

Conclusions

The data show that different genotypes responded differently to soil flooding, which could be linked to variation in morphological trait expression. As flooded and drained conditions exerted different selection pressures on trait expression, the optimal value for constitutive and plastic traits will depend on the frequency and duration of flooding. These data will help us understanding the mechanisms affecting short- and long-term dynamics in flooding-prone ecosystems.Key words: Secondary roots, aerenchyma, genotypic variation, petiole length, plant performance, root porosity, selection, soil flooding, specific leaf area (SLA), Trifolium repens, white clover  相似文献   

7.
In many studies, fluctuating asymmetry (FA) has been used as a measure of individual differences in developmental imprecision. A model of how variation in developmental imprecision is associated with variation in asymmetry is described and applied to important issues about FA. If individual differences in developmental imprecision exist, asymmetry due to developmental error should be leptokurtically distributed. Moreover, the greater the magnitude of individual differences, the greater the leptokurtosis. Asymmetry purportedly due to developmental error in a variety of species is indeed leptokurtically distributed. The level of leptokurtosis suggests that the CV in individual differences in underlying developmental imprecision is generally 20–25, consistent with it being a fitness trait. In addition, data suggest that: (1) the individual differences that underlie the developmental imprecision of different traits are largely shared across traits and not trait-specific; (2) the heritability of these individual differences may average between 35 and 55%, despite small heritabilities of individual trait FAs; and (3) correlations between FA and fitness traits or components suggest high correlations between underlying variation in developmental precision and fitness in many species. Theoretical implications are discussed.  相似文献   

8.
Ecosystem service‐based management requires an accurate understanding of how human modification influences ecosystem processes and these relationships are most accurate when based on functional traits. Although trait variation is typically sampled at local scales, remote sensing methods can facilitate scaling up trait variation to regional scales needed for ecosystem service management. We review concepts and methods for scaling up plant and animal functional traits from local to regional spatial scales with the goal of assessing impacts of human modification on ecosystem processes and services. We focus our objectives on considerations and approaches for (1) conducting local plot‐level sampling of trait variation and (2) scaling up trait variation to regional spatial scales using remotely sensed data. We show that sampling methods for scaling up traits need to account for the modification of trait variation due to land cover change and species introductions. Sampling intraspecific variation, stratification by land cover type or landscape context, or inference of traits from published sources may be necessary depending on the traits of interest. Passive and active remote sensing are useful for mapping plant phenological, chemical, and structural traits. Combining these methods can significantly improve their capacity for mapping plant trait variation. These methods can also be used to map landscape and vegetation structure in order to infer animal trait variation. Due to high context dependency, relationships between trait variation and remotely sensed data are not directly transferable across regions. We end our review with a brief synthesis of issues to consider and outlook for the development of these approaches. Research that relates typical functional trait metrics, such as the community‐weighted mean, with remote sensing data and that relates variation in traits that cannot be remotely sensed to other proxies is needed. Our review narrows the gap between functional trait and remote sensing methods for ecosystem service management.  相似文献   

9.
Comparative approaches to the evolution of primate social behavior have typically involved two distinct lines of inquiry. One has focused on phylogenetic analyses that treat social traits as static, species-specific characteristics; the other has focused on understanding the behavioral flexibility of particular populations or species in response to local ecological or demographic variables. Here, we combine these approaches by distinguishing between constraining traits such as dispersal regimes (male, female, or bi-sexual), which are relatively invariant, and responding traits such as grouping patterns (stable, fission-fusion, sometimes fission-fusion), which can reflect rapid adjustments to current conditions. Using long-term and cross-sectional data from 29 studies of 22 species of wild primates, we confirm that dispersal regime exhibits a strong phylogenetic signal in our sample. We then show that primate species with high variation in group size and adult sex ratios exhibit variability in grouping pattern (i.e., sometimes fission-fusion) with dispersal regime constraining the grouping response. When assessing demographic variation, we found a strong positive relationship between the variability in group size over time and the number of observation years, which further illustrates the importance of long-term demographic data to interpretations of social behavior. Our approach complements other comparative efforts to understand the role of behavioral flexibility by distinguishing between constraining and responding traits, and incorporating these distinctions into analyses of social states over evolutionary and ecological time.  相似文献   

10.
Developmental interactions and the constituents of quantitative variation   总被引:2,自引:0,他引:2  
Development is the process by which genotypes are transformed into phenotypes. Consequently, development determines the relationship between allelic and phenotypic variation in a population and, therefore, the patterns of quantitative genetic variation and covariation of traits. Understanding the developmental basis of quantitative traits may lead to insights into the origin and evolution of quantitative genetic variation, the evolutionary fate of populations, and, more generally, the relationship between development and evolution. Herein, we assume a hierarchical, modular structure of trait development and consider how epigenetic interactions among modules during ontogeny affect patterns of phenotypic and genetic variation. We explore two developmental models, one in which the epigenetic interactions between modules result in additive effects on character expression and a second model in which these epigenetic interactions produce nonadditive effects. Using a phenotype landscape approach, we show how changes in the developmental processes underlying phenotypic expression can alter the magnitude and pattern of quantitative genetic variation. Additive epigenetic effects influence genetic variances and covariances, but allow trait means to evolve independently of the genetic variances and covariances, so that phenotypic evolution can proceed without changing the genetic covariance structure that determines future evolutionary response. Nonadditive epigenetic effects, however, can lead to evolution of genetic variances and covariances as the mean phenotype evolves. Our model suggests that an understanding of multivariate evolution can be considerably enriched by knowledge of the mechanistic basis of character development.  相似文献   

11.
Annual variation in the environment is expected to influence individual performance, e.g. measured as body condition, such as body mass or fat deposition, through its direct or indirect effects on food abundance and availability. Such environmental variation is traditionally measured by climatic observation, but recently, measures of environmental phenology obtained from satellite images have been successfully used. We examined the performance of climatic and plant phenology variables in explaining body condition of an invasive omnivore species: the raccoon dog Nyctereutes procyonoides. We collected data on fat deposition of juveniles in southern Finland from the end of June to the beginning of November. A four-parametric logistic model was fitted separately for each province to the data by non-linear regression procedure and the residuals were compared to the expected average as measure of individual performance. These values were then analysed with respect to the environmental variables. Climatic variables describing spring conditions performed better than plant phenology variables in explaining the variation in fat deposition. Harsh spring conditions negatively affected the amount of fat deposed during the growing season. Plant phenology variables, effective in explaining life history traits in herbivores, might not reflect variation in food abundance and quality for omnivore species. We propose that in Europe raccoon dogs will benefit from climate warming, because of a longer growing season, but increased spring precipitation in the form of snow at higher latitudes might compensate for the effect of greater primary productivity and outline the border of their expansion towards harsher environments.  相似文献   

12.
Documenting the causes and consequences of intraspecific variation forms the foundation of much of evolutionary ecology. In this Perspectives piece, we review the importance of individual variation in ecology and evolution, argue that contemporary phycology often overlooks this foundational biological unit, and highlight how this lack of attention has potentially constrained our understanding of seaweeds. We then provide some suggestions of promising but underrepresented approaches, for instance: conducting more studies and analyses at the level of the individual; designing studies to evaluate heritability and genetic regulation of traits; and measuring associations between individual variation in functional traits and ecological outcomes. We close by highlighting areas of phycological research (e.g., population biology, ecology, aquaculture, climate change management) that could benefit immediately from including a focus on individual variation. Algae, for their part, provide us with a powerful and diverse set of ecological and evolutionary traits to explore these topics. There is much to be discovered.  相似文献   

13.
We call for renewed emphasis on the tasks confronting animals as they develop and learn. We are extending the use of the term ‘developmental ecology’ employed by plant biologists who have studied how fitness can be influenced by the ecological context present during development (Watson et al. 2001, Evolutionary Ecology,15, 425-442). We seek an expanded venue for the term, arguing that for animal behaviourists to understand some of the traits so familiar in behavioural ecology, they must consider the fundamental phenomena of development. Not doing so runs the risk of misidentifying both the proximal and functional causes of traits. For example, without a developmental view, macrogeographical variation in species-typical behaviour may be viewed as evidence of genotypic differences when, in fact, the variation is being produced by developmental contexts. Detailed below are some general issues about how development can be studied if it is to contribute to our knowledge of the adaptive value of behavioural systems. We argue for a prospective and longitudinal orientation, with an emphasis on relatively continuous observation and measurement. Both behaviours and contexts that may only occur during ontogeny are examined, as well as the reproductive outcome of the traits of interest. We present examples from our work on courtship and communication in brown-headed cowbirds, Molothrus ater, to show that a prospective and ecological view of development reveals pronounced variation in patterns of reproductive behaviour that cannot be understood without taking into account developmental ecology.  相似文献   

14.
Because low developmental stability may compromise the precision with which adaptations can be reached, the variability and genetic basis of developmental stability are important evolutionary parameters. Developmental stability is also an important clue to understanding how traits are regulated to achieve their phenotypic target value. However, developmental stability must be studied indirectly through proxy variables, such as fluctuating asymmetry, that are suggested to have noisy and often nonlinear relationships to the underlying variable of interest. In this paper we first show that mean-standardized measures of variance and covariance in fluctuating asymmetry, unlike heritabilities, repeatabilities, and correlations, are linearly related to corresponding measures of variation in underlying developmental stability. We then examine the variational properties of developmental stability in a population of the Neotropical vine, Dalechampia scandens (Euphorbiaceae). By studying fluctuating asymmetry in a large number of floral characters in both selfed and outcrossed individuals in a diallel design, we assemble strong evidence that both additive genetic and individual variation and covariation in developmental stability are virtually absent in this population.  相似文献   

15.
The existence of additive genetic variance in developmental stability has important implications for our understanding of morphological variation. The heritability of individual fluctuating asymmetry and other measures of developmental stability have frequently been estimated from parent-offspring regressions, sib analyses, or from selection experiments. Here we review by meta-analysis published estimates of the heritability of developmental stability, mainly the degree of individual fluctuating asymmetry in morphological characters. The overall mean effect size of heritabilities of individual fluctuating asymmetry was 0.19 from 34 studies of 17 species differing highly significantly from zero (P < 0.0001). The mean heritability for 14 species was 0.27. This indicates that there is a significant additive genetic component to developmental stability. Effect size was larger for selection experiments than for studies based on parent-offspring regression or sib analyses, implying that genetic estimates were unbiased by maternal or common environment effects. Additive genetic coefficients of variation for individual fluctuating asymmetry were considerably higher than those for character size per se. Developmental stability may be significantly heritable either because of strong directional selection, or fluctuating selection regimes which prevent populations from achieving a high degree of developmental stability to current environmental and genetic conditions.  相似文献   

16.
17.
Genes and human elite athletic performance   总被引:6,自引:0,他引:6  
Physical fitness is a complex phenotype influenced by a myriad of environmental and genetic factors, and variation in human physical performance and athletic ability has long been recognised as having a strong heritable component. Recently, the development of technology for rapid DNA sequencing and genotyping has allowed the identification of some of the individual genetic variations that contribute to athletic performance. This review will examine the evidence that has accumulated over the last three decades for a strong genetic influence on human physical performance, with an emphasis on two sets of physical traits, viz. cardiorespiratory and skeletal muscle function, which are particularly important for performance in a variety of sports. We will then review recent studies that have identified individual genetic variants associated with variation in these traits and the polymorphisms that have been directly associated with elite athlete status. Finally, we explore the scientific implications of our rapidly growing understanding of the genetic basis of variation in performance.  相似文献   

18.
An essential requirement to determine a population's potential for evolutionary change is to quantify the amount of genetic variability expressed for traits under selection. Early investigations in laboratory conditions showed that the magnitude of the genetic and environmental components of phenotypic variation can change with environmental conditions. However, there is no consensus as to how the expression of genetic variation is sensitive to different environmental conditions. Recently, the study of quantitative genetics in the wild has been revitalized by new pedigree analyses based on restricted maximum likelihood, resulting in a number of studies investigating these questions in wild populations. Experimental manipulation of environmental quality in the wild, as well as the use of naturally occurring favourable or stressful environments, has broadened the treatment of different taxa and traits. Here, we conduct a meta-analysis on recent studies comparing heritability in favourable versus unfavourable conditions in non-domestic and non-laboratory animals. The results provide evidence for increased heritability in more favourable conditions, significantly so for morphometric traits but not for traits more closely related to fitness. We discuss how these results are explained by underlying changes in variance components, and how they represent a major step in our understanding of evolutionary processes in wild populations. We also show how these trends contrast with the prevailing view resulting mainly from laboratory experiments on Drosophila. Finally, we underline the importance of taking into account the environmental variation in models predicting quantitative trait evolution.  相似文献   

19.
20.
Dreyer AP  Shingleton AW 《PloS one》2011,6(12):e28278
The genitalia of most male arthropods scale hypoallometrically with body size, that is they are more or less the same size across large and small individuals in a population. Such scaling is expected to arise when genital traits show less variation than somatic traits in response to factors that generate size variation among individuals in a population. Nevertheless, there have been few studies directly examining the relative sensitivity of genital and somatic traits to factors that affect their size. Such studies are key to understanding genital evolution and the evolution of morphological scaling relationships more generally. Previous studies indicate that the size of genital traits in male Drosophila melanogaster show a relatively low response to variation in environmental factors that affect trait size. Here we show that the size of genital traits in male fruit flies also exhibit a relatively low response to variation in genetic factors that affect trait size. Importantly, however, this low response is only to genetic factors that affect body and organ size systemically, not those that affect organ size autonomously. Further, we show that the genital traits do not show low levels of developmental instability, which is the response to stochastic developmental errors that also influence organ size autonomously. We discuss these results in the context of current hypotheses on the proximate and ultimate mechanisms that generate genital hypoallometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号