首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Cognitive functions must involve interactions between several (perhaps many) cortical regions. The instances of such interactions may not be tightly time locked to any external cue. Thus averaging over repeated trials of brain activity or its spectrograms may miss these instances. Here, coordinated activity among multiple cortical locations is revealed in ongoing activity with millisecond accuracy without the need for averaging over time or frequencies. This is based on reconstructions of the cortical current dipole amplitudes at multiple points from MEG recordings. In these current dipole traces, instances of brief activity undulations (BAUs) are automatically detected and used to reveal where and when cortical points interact. The article shows that these BAUs truly represent the reorganization of activity at the cortex and are strongly connected to behavior.  相似文献   

6.
7.
8.
This study examined the brain bases of early human social cognitive abilities. Specifically, we investigated whether cortical regions implicated in adults' perception of facial communication signals are functionally active in early human development. Four-month-old infants watched two kinds of dynamic scenarios in which a face either established mutual gaze or averted its gaze, both of which were followed by an eyebrow raise with accompanying smile. Haemodynamic responses were measured by near-infrared spectroscopy, permitting spatial localization of brain activation (experiment 1), and gamma-band oscillatory brain activity was analysed from electroencephalography to provide temporal information about the underlying cortical processes (experiment 2). The results revealed that perceiving facial communication signals activates areas in the infant temporal and prefrontal cortex that correspond to the brain regions implicated in these processes in adults. In addition, mutual gaze itself, and the eyebrow raise with accompanying smile in the context of mutual gaze, produce similar cortical activations. This pattern of results suggests an early specialization of the cortical network involved in the perception of facial communication cues, which is essential for infants' interactions with, and learning from, others.  相似文献   

9.
10.
Performing a cognitive task requires going through a sequence of functionally diverse stages. Although it is typically assumed that these stages are characterized by distinct states of cortical synchrony that are triggered by sub-cortical events, little reported evidence supports this hypothesis. To test this hypothesis, we first identified cognitive stages in single-trial MEG data of an associative recognition task, showing with a novel method that each stage begins with local modulations of synchrony followed by a state of directed functional connectivity. Second, we developed the first whole-brain model that can simulate cortical synchrony throughout a task. The model suggests that the observed synchrony is caused by thalamocortical bursts at the onset of each stage, targeted at cortical synapses and interacting with the structural anatomical connectivity. These findings confirm that cognitive stages are defined by distinct states of cortical synchrony and explains the network-level mechanisms necessary for reaching stage-dependent synchrony states.  相似文献   

11.
All neocortical areas receive thalamic inputs. Some thalamocortical pathways relay information from ascending pathways (first order thalamic relays) and others relay information from other cortical areas (higher order thalamic relays), thus serving a role in corticocortical communication. Most, possibly all, afferents reaching thalamus, ascending and cortical, are branches of axons that innervate lower (motor) centers, so that thalamocortical pathways can be viewed generally as monitors of ongoing motor instructions. In terms of numbers, the thalamic relay is dominated by synapses that modulate the relay functions. One of the roles of these modulatory pathways is to change the transfer of information through the thalamus, in accord with current attentional demands. Other roles remain to be explored. These modulatory functions can be expected to act on corticocortical communication in addition to their action on ascending pathways.  相似文献   

12.
Thalamic nociceptive systems   总被引:1,自引:0,他引:1  
A role for thalamic structures in the processing of signals of nociception and pain has been suggested on the basis of clinical data since the turn of the century. Searches for a 'pain centre' by lesion or stimulation were often disappointing and the electrophysiological data were rare and usually contradictory. However, recent electrophysiological anatomical and neuropharmacological studies, made in various species (mainly rat and monkey) appear now progressively to give some clues in the understanding of pain process at the thalamic level. These studies have been mainly concerned with the areas receiving projections from ascending spinal pathways conveying noxious inputs, either directly by the spinothalamic tract or indirectly by the spinoreticulothalamic pathway. The eventual respective roles of these thalamic structures are considered. Electrophysiological recordings from thalamic structures in a model of experimental pain, arthritic rats, are also presented.  相似文献   

13.
14.
An important question in neural information processing is how neurons cooperate to transmit information. To study this question, we resort to the concept of redundancy in the information transmitted by a group of neurons and, at the same time, we introduce a novel concept for measuring cooperation between pairs of neurons called relative mutual information (RMI). Specifically, we studied these two parameters for spike trains generated by neighboring neurons from the primary visual cortex in the awake, freely moving rat. The spike trains studied here were spontaneously generated in the cortical network, in the absence of visual stimulation. Under these conditions, our analysis revealed that while the value of RMI oscillated slightly around an average value, the redundancy exhibited a behavior characterized by a higher variability. We conjecture that this combination of approximately constant RMI and greater variable redundancy makes information transmission more resistant to noise disturbances. Furthermore, the redundancy values suggest that neurons can cooperate in a flexible way during information transmission. This mostly occurs via a leading neuron with higher transmission rate or, less frequently, through the information rate of the whole group being higher than the sum of the individual information rates—in other words in a synergetic manner. The proposed method applies not only to the stationary, but also to locally stationary neural signals.  相似文献   

15.
Luther DA 《Biology letters》2008,4(6):651-654
The efficacy of communication relies on the detection of signals against background noise. Some species are known to alter the timing of vocalizations to avoid acoustic interference from similar signals of other species, but nothing is known about the possibility of coordinated adjustments in the timing of receivers' attention. I examined the possibility that co-occurring species might respond as well as vocalize at different times in a diverse tropical avifauna by presenting playbacks of recordings to territorial birds at typical and atypical times for singing during the dawn chorus. The results show that co-occurring species of birds in a diverse avifauna partition the timing of both production and response in a way that would reduce acoustic interference between species.  相似文献   

16.
17.
The corticothalamic system has an important role in synchronizing the activities of thalamic and cortical neurons. Numerically, its synapses dominate the inputs to relay cells and to the gamma-amino butyric acid (GABA)ergic cells of the reticular nucleus (RTN). The capacity of relay neurons to operate in different voltage-dependent functional modes determines that the inputs from the cortex have the capacity directly to excite the relay cells, or indirectly to inhibit them via the RTN, serving to synchronize high- or low-frequency oscillatory activity respectively in the thalamocorticothalamic network. Differences in the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subunit composition of receptors at synapses formed by branches of the same corticothalamic axon in the RTN and dorsal thalamus are an important element in the capacity of the cortex to synchronize low-frequency oscillations in the network. Interactions of focused corticothalamic axons arising from layer VI cortical cells and diffuse corticothalamic axons arising from layer V cortical cells, with the specifically projecting core relay cells and diffusely projecting matrix cells of the dorsal thalamus, form a substrate for synchronization of widespread populations of cortical and thalamic cells during high-frequency oscillations that underlie discrete conscious events.  相似文献   

18.
19.
Electrical stimulation of the thalamus was found to be effective for the treatment of chronic intractable pain of various etiologies. Diencephalic recordings revealed spontaneous focal electrical discharge patterns with relatively low activation thresholds. Localization of the optimum thalamic discharge site is used as a guide for the electrode implant to be used for chronic stimulation. The thalamic sites which most frequently displayed the low threshold spontaneous focal discharge activity were the CM-Pf complex and related intralaminar nuclear structures. Generation of diencephalic pain-reverberating circuits was discussed in relation to explaining the pain syndromes herein described. The applied electrical stimulation is thought to electrophysiologically 'jam' the low threshold discharging systems and thereby alleviate pain.  相似文献   

20.
The processing of species-specific communication signals in the auditory system represents an important aspect of animal behavior and is crucial for its social interactions, reproduction, and survival. In this article the neuronal mechanisms underlying the processing of communication signals in the higher centers of the auditory system--inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC)--are reviewed, with particular attention to the guinea pig. The selectivity of neuronal responses for individual calls in these auditory centers in the guinea pig is usually low--most neurons respond to calls as well as to artificial sounds; the coding of complex sounds in the central auditory nuclei is apparently based on the representation of temporal and spectral features of acoustical stimuli in neural networks. Neuronal response patterns in the IC reliably match the sound envelope for calls characterized by one or more short impulses, but do not exactly fit the envelope for long calls. Also, the main spectral peaks are represented by neuronal firing rates in the IC. In comparison to the IC, response patterns in the MGB and AC demonstrate a less precise representation of the sound envelope, especially in the case of longer calls. The spectral representation is worse in the case of low-frequency calls, but not in the case of broad-band calls. The emotional content of the call may influence neuronal responses in the auditory pathway, which can be demonstrated by stimulation with time-reversed calls or by measurements performed under different levels of anesthesia. The investigation of the principles of the neural coding of species-specific vocalizations offers some keys for understanding the neural mechanisms underlying human speech perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号