首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intrinsically disordered proteins (IDPs) are implicated in a range of human diseases, some of which are associated with the ability to bind to lipids. Although the presence of solvent‐exposed hydrophobic regions in IDPs should favor their interactions with low‐molecular‐weight hydrophobic/amphiphilic compounds, this hypothesis has not been systematically explored as of yet. In this study, the analysis of the DisProt database with regard to the presence of lipid‐binding IDPs (LBIDPs) reveals that they comprise, at least, 15% of DisProt entries. LBIDPs are classified into four groups by ligand type, functional categories, domain structure, and conformational state. 57% of LBIDPs are classified as ordered according to the CH‐CDF analysis, and 70% of LBIDPs possess lengths of disordered regions below 50%. To investigate the lipid‐binding properties of IDPs for which lipid binding is not reported, three proteins from different conformational groups are rationally selected. They all are shown to bind linoleic (LA) and oleic (OA) acids with capacities ranging from 9 to 34 LA/OA molecules per protein molecule. The association with LA/OA causes the formation of high‐molecular‐weight lipid–protein complexes. These findings suggest that lipid binding is common among IDPs, which can favor their involvement in lipid metabolism.  相似文献   

2.
3.
Intrinsically disordered proteins (IDPs) are crucial players in various cellular activities. Several experimental and computational analyses have been conducted to study structural pliability and functional potential of IDPs. In spite of active research in past few decades, what induces structural disorder in IDPs and how is still elusive. Many studies testify that sequential and spatial neighbours often play important roles in determining structural and functional behaviour of proteins. Considering this fact, we assessed sequence neighbours of intrinsically disordered regions (IDRs) to understand if they have any role to play in inducing structural flexibility in IDPs. Our analysis includes 97% eukaryotic IDPs and 3% from bacteria and viruses. Physicochemical and structural parameters including amino acid propensity, hydrophobicity, secondary structure propensity, relative solvent accessibility, B-factor and atomic packing density are used to characterise the neighbouring residues of IDRs (NRIs). We show that NRIs exhibit a unique nature, which makes them stand out from both ordered and disordered residues. They show correlative occurrences of residue pairs like Ser-Thr and Gln-Asn, indicating their tendency to avoid strong biases of order or disorder promoting amino acids. We also find differential preferences of amino acids between N- and C-terminal neighbours, which might indicate a plausible directional effect on the dynamics of adjacent IDRs. We designed an efficient prediction tool using Random Forest to distinguish the NRIs from the ordered residues. Our findings will contribute to understand the behaviour of IDPs, and may provide potential lead in deciphering the role of IDRs in protein folding and assembly.  相似文献   

4.
Chen Wang  Lukasz Kurgan 《Proteomics》2016,16(10):1486-1498
Intrinsically disordered proteins (IDPs) are abundant in various proteomes, where they play numerous important roles and complement biological activities of ordered proteins. Among functions assigned to IDPs are interactions with nucleic acids. However, often, such assignments are made based on the guilty‐by‐association principle. The validity of the extension of these correlations to all nucleic acid binding proteins has never been analyzed on a large scale across all domains of life. To fill this gap, we perform a comprehensive computational analysis of the abundance of intrinsic disorder and intrinsically disordered domains in nucleiomes (~548 000 nucleic acid binding proteins) of 1121 species from Archaea, Bacteria and Eukaryota. Nucleiome is a whole complement of proteins involved in interactions with nucleic acids. We show that relative to other proteins in the corresponding proteomes, the DNA‐binding proteins have significantly increased disorder content and are significantly enriched in disordered domains in Eukaryotes but not in Archaea and Bacteria. The RNA‐binding proteins are significantly enriched in the disordered domains in Bacteria, Archaea and Eukaryota, while the overall abundance of disorder in these proteins is significantly increased in Bacteria, Archaea, animals and fungi. The high abundance of disorder in nucleiomes supports the notion that the nucleic acid binding proteins often require intrinsic disorder for their functions and regulation.  相似文献   

5.
Intrinsically disordered proteins (IDPs)/protein regions (IDPRs) lack unique three-dimensional structure at the level of secondary and/or tertiary structure and are represented as an ensemble of interchanging conformations. To investigate the role of presence/absence of secondary structures in promoting intrinsic disorder in proteins, a comparative sequence analysis of IDPs, IDPRs and proteins with minimal secondary structures (less than 5%) is required. A sequence analysis reveals proteins with minimal secondary structure content have high mean net positive charge, low mean net hydrophobicity and low sequence complexity. Interestingly, analysis of the relative local electrostatic interactions reveal that an increase in the relative repulsive interactions between amino acids separated by three or four residues lead to either loss of secondary structure or intrinsic disorder. IDPRs show increase in both local negative-negative and positive-positive repulsive interactions. While IDPs show a marked increase in the local negative-negative interactions, proteins with minimal secondary structure depict an increase in the local positive-positive interactions. IDPs and IDPRs are enriched in D, E and Q residues, while proteins with minimal secondary structure are depleted of these residues. Proteins with minimal secondary structures have higher content of G and C, while IDPs and IDPRs are depleted of these residues. These results confirm that proteins with minimal secondary structure have a distinctly different propensity for charge, hydrophobicity, specific amino acids and local electrostatic interactions as compared to IDPs/IDPRs. Thus we conclude that lack of secondary structure may be a necessary but not a sufficient condition for intrinsic disorder in proteins.  相似文献   

6.
Proteins or regions of proteins that do not form compact globular structures are classified as intrinsically unstructured proteins (IUPs). IUPs are common in nature and have essential molecular functions, but even a limited understanding of the evolution of their dynamic behavior is lacking. The primary objective of this work was to test the evolutionary conservation of dynamic behavior for a particular class of IUPs that form intrinsically unstructured linker domains (IULD) that tether flanking folded domains. This objective was accomplished by measuring the backbone flexibility of several IULD homologues using nuclear magnetic resonance (NMR) spectroscopy. The backbone flexibility of five IULDs, representing three kingdoms, was measured and analyzed. Two IULDs from animals, one IULD from fungi, and two IULDs from plants showed similar levels of backbone flexibility that were consistent with the absence of a compact globular structure. In contrast, the amino acid sequences of the IULDs from these three taxa showed no significant similarity. To investigate how the dynamic behavior of the IULDs could be conserved in the absence of detectable sequence conservation, evolutionary rate studies were performed on a set of nine mammalian IULDs. The results of this analysis showed that many sites in the IULD are evolving neutrally, suggesting that dynamic behavior can be maintained in the absence of natural selection. This work represents the first experimental test of the evolutionary conservation of dynamic behavior and demonstrates that amino acid sequence conservation is not required for the conservation of dynamic behavior and presumably molecular function.  相似文献   

7.
Plasmodium falciparum triosephosphate isomerase (PfTIM) is known to be functional only as a homodimer. Although many studies have shown that the interface Cys13 plays a major role in the stability of the dimer, a few reports have demonstrated that structurally conserved Tyr74 may be essential for the stability of PfTIM dimer. To understand the role of Tyr74, we have performed molecular dynamics (MD) simulations of monomeric and dimeric PfTIM mutated to glycine and cysteine at position 74. Simulations of the monomer revealed that mutant Tyr74Gly does not produce changes in folding and stability of the monomer. Interestingly, comparison of the flexibility of Tyr74 in the monomer and dimer revealed that this residue possesses an intrinsic restricted mobility, indicating that Tyr74 is an anchor residue required for homodimerization. Tyr74 also appears to play an important role in binding by facilitating the disorder-to-order transitions of loops 1 and 3, which allows Cys13 to form favorable interactions with loop 3 and Lys12 to be locked in a favorable position for catalysis. High-temperature MD simulations of the wild-type and Tyr74Gly PfTIM dimers showed that the aromatic moiety of Tyr74 is necessary to preserve the geometry and native contacts between loops 1 and 3 at the interface of the dimer. Disulfide cross-linking between mutant Tyr74Cys and Cys13 further revealed that Tyr74 stabilizes the geometry of loop 1 (which contains the catalytic residue Lys12) and the interactions between loops 1 and 3 via aromatic-aromatic interactions with residues Phe69, Tyr101, and Phe102. Principal component analysis showed that Tyr74 is also necessary to preserve the collective motions in the dimer that contribute to the catalytic efficiency of PfTIM dimer. We conclude that Tyr74 not only plays a role in the stability of the dimer, but also participates in the dimerization process and collective motions via coupled disorder-to-order transitions of intrinsically disordered regions, necessary for efficiency in the catalytic function of PfTIM.  相似文献   

8.
An interaction between a pair of proteins unique for a particular tissue is denoted as a tissue-specific interaction (TSI). Tissue-specific (TS) proteins always perform TSIs with a limited number of interacting partners. However, it has been claimed that housekeeping (HK) proteins frequently take part in TSIs. This is actually an unusual phenomenon. How a single HK protein mediates TSIs – remains an interesting yet an unsolved question. We have hypothesized that HK proteins have attained a high degree of structural flexibility to modulate TSIs efficiently. We have observed that HK proteins are selected to be intrinsically disordered compared to TS proteins. Therefore, the purposeful adaptation of structural disorder brings out special advantages for HK proteins compared to TS proteins. We have demonstrated that TSIs may play vital roles in shaping the molecular adaptation of disordered regions within HK proteins. We also have noticed that HK proteins, mediating a huge number of TSIs, have a greater portion of their interacting interfaces overlapped with the adjacent disordered segment. Moreover, these HK proteins, mediating TSIs, preferably adapt single domain (SD). We have concluded that HK proteins adapt a high degree of structural flexibility to mediate TSIs. Besides, having a SD along with structural flexibility is more economic than maintaining multiple domains with a rigid structure. This assists them in attaining various structural conformations upon binding to their partners, thereby designing an economically optimum molecular system.  相似文献   

9.
Dribble (DBE) is an essential protein in Drosophila that belongs to the evolutionarily conserved Krr1p protein family. Proteins in this family are localised in the cell nucleolus and are important for the processing of ribosomal RNAs. However, little is known about their structural and biophysical properties. We have expressed and purified full-length DBE protein from Escherichia coli. Consistent with the native role of DBE in RNA processing, recombinant DBE was shown to bind RNA homo-polymers in vitro. By bioinformatics, size-exclusion chromatography, equilibrium sedimentation analysis, controlled proteolysis, and a variety of spectroscopic techniques, we have found that DBE is a monomeric protein in solution containing both alpha- and beta-structures. Moreover, the structure of DBE is expanded and significantly disordered (approximately 45% disordered). Natively disordered proteins are thought to provide a disproportionately large surface area and structural plasticity for nucleic acid binding. We therefore propose that the presence of structural disorder is an important feature of DBE that facilitates the protein to interact with RNAs in the nucleolus.  相似文献   

10.
11.
Intrinsically disordered proteins (IDPs) and proteins with long disordered regions are highly abundant in various proteomes. Despite their lack of well-defined ordered structure, these proteins and regions are frequently involved in crucial biological processes. Although in recent years these proteins have attracted the attention of many researchers, IDPs represent a significant challenge for structural characterization since these proteins can impact many of the processes in the structure determination pipeline. Here we investigate the effects of IDPs on the structure determination process and the utility of disorder prediction in selecting and improving proteins for structural characterization. Examination of the extent of intrinsic disorder in existing crystal structures found that relatively few protein crystal structures contain extensive regions of intrinsic disorder. Although intrinsic disorder is not the only cause of crystallization failures and many structured proteins cannot be crystallized, filtering out highly disordered proteins from structure-determination target lists is still likely to be cost effective. Therefore it is desirable to avoid highly disordered proteins from structure-determination target lists and we show that disorder prediction can be applied effectively to enrich structure determination pipelines with proteins more likely to yield crystal structures. For structural investigation of specific proteins, disorder prediction can be used to improve targets for structure determination. Finally, a framework for considering intrinsic disorder in the structure determination pipeline is proposed.  相似文献   

12.
13.
The structural stability of a protein requires a large number of interresidue interactions. The energetic contribution of these can be approximated by low-resolution force fields extracted from known structures, based on observed amino acid pairing frequencies. The summation of such energies, however, cannot be carried out for proteins whose structure is not known or for intrinsically unstructured proteins. To overcome these limitations, we present a novel method for estimating the total pairwise interaction energy, based on a quadratic form in the amino acid composition of the protein. This approach is validated by the good correlation of the estimated and actual energies of proteins of known structure and by a clear separation of folded and disordered proteins in the energy space it defines. As the novel algorithm has not been trained on unstructured proteins, it substantiates the concept of protein disorder, i.e. that the inability to form a well-defined 3D structure is an intrinsic property of many proteins and protein domains. This property is encoded in their sequence, because their biased amino acid composition does not allow sufficient stabilizing interactions to form. By limiting the calculation to a predefined sequential neighborhood, the algorithm was turned into a position-specific scoring scheme that characterizes the tendency of a given amino acid to fall into an ordered or disordered region. This application we term IUPred and compare its performance with three generally accepted predictors, PONDR VL3H, DISOPRED2 and GlobPlot on a database of disordered proteins.  相似文献   

14.
15.
16.
Most RNA-binding modules are small and bind few nucleotides. RNA-binding proteins typically attain the physiological specificity and affinity for their RNA targets by combining several RNA-binding modules. Here, we review how disordered linkers connecting RNA-binding modules govern the specificity and affinity of RNA–protein interactions by regulating the effective concentration of these modules and their relative orientation. RNA-binding proteins also often contain extended intrinsically disordered regions that mediate protein–protein and RNA–protein interactions with multiple partners. We discuss how these regions can connect proteins and RNA resulting in heterogeneous higher-order assemblies such as membrane-less compartments and amyloid-like structures that have the characteristics of multi-modular entities. The assembled state generates additional RNA-binding specificity and affinity properties that contribute to further the function of RNA-binding proteins within the cellular environment.  相似文献   

17.
Supervillin, the largest member of the villin/gelsolin family, is a cytoskeleton regulating, peripheral membrane protein. Supervillin increases cell motility and promotes invasive activity in tumors. Major cytoskeletal interactors, including filamentous actin and myosin II, bind within the unique supervillin amino terminus, amino acids 1–830. The structural features of this key region of the supervillin polypeptide are unknown. Here, we utilize circular dichroism and bioinformatics sequence analysis to demonstrate that the N-terminal part of supervillin forms an extended intrinsically disordered region (IDR). Our combined data indicate that the N-terminus of human and bovine supervillin sequences (positions 1–830) represents an IDR, which is the largest IDR known to date in the villin/gelsolin family. Moreover, this result suggests a potentially novel mechanism of regulation of myosin II and F-actin via the intrinsically disordered N-terminal region of hub protein supervillin.  相似文献   

18.
19.
20.
Late embryogenesis abundant (LEA) proteins are highly hydrophilic, low complexity proteins whose expression has been correlated with desiccation tolerance in anhydrobiotic organisms. Here, we report the identification of three new mitochondrial LEA proteins in anhydrobiotic embryos of Artemia franciscana, AfrLEA3m_47, AfrLEA3m_43, and AfrLEA3m_29. These new isoforms are recognized by antibody raised against recombinant AfrLEA3m, the original mitochondrial-targeted LEA protein previously reported from these embryos; mass spectrometry confirms all four proteins share sequence similarity. The corresponding messenger RNA (mRNA) species for the four proteins are readily amplified from total complementary DNA (cDNA) prepared from embryos. cDNA sequences of the four mRNAs are quite similar, but each has a stretch of sequence that is absent in at least one of the others, plus multiple single base pair differences. We conclude that all four mitochondrial LEA proteins are products of independent genes. Each possesses a mitochondrial targeting sequence, and indeed Western blots performed on extracts of isolated mitochondria clearly detect all four isoforms. Based on mass spectrometry and sodium dodecyl sulfate polyacrylamide gel electrophoresis migration, the cytoplasmic-localized AfrLEA2 exists primarily as a homodimer in A. franciscana. Quantification of protein expression for AfrLEA2, AfrLEA3m, AfrLEA3m_43, and AfrLEA3m_29 as a function of development shows that cellular concentrations are highest in diapause embryos and decrease during development to low levels in desiccation-intolerant nauplius larvae. When adjustment is made for mitochondria matrix volume, the effective concentrations of cytoplasmic versus mitochondrial group 3 LEA proteins are similar in vivo, and the values provide guidance for the design of in vitro functional studies with these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号