首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report, based on proteolytic experiments and high resolution 1H nuclear magnetic resonance studies that the terminal regions of the monomeric hook protein are highly mobile and exposed to the solvent. The disordered parts of the hook protein span approximately the first 70 and the last 30 amino acid residues. Although the amino acid sequences of flagellin and hook protein do not resemble each other at all, both proteins have now been shown to contain large disordered terminal regions. Sequential similarities of flagellin and hook protein, especially near the NH2 and COOH termini, to other axial components of bacterial flagellum suggest that terminal disorder may be a common structural feature of the axial proteins of the bacterial flagellum.  相似文献   

2.
We have performed a statistical analysis of unstructured amino acid residues in protein structures available in the databank of protein structures. Data on the occurrence of disordered regions at the ends and in the middle part of protein chains have been obtained: in the regions near the ends (at distance less than 30 residues from the N- or C-terminus), there are 66% of unstructured residues (38% are near the N-terminus and 28% are near the C-terminus), although these terminal regions include only 23% of the amino acid residues. The frequencies of occurrence of unstructured residues have been calculated for each of 20 types in different positions in the protein chain. It has been shown that relative frequencies of occurrence of unstructured residues of 20 types at the termini of protein chains differ from the ones in the middle part of the protein chain; amino acid residues of the same type have different probabilities to be unstructured in the terminal regions and in the middle part of the protein chain. The obtained frequencies of occurrence of unstructured residues in the middle part of the protein chain have been used as a scale for predicting disordered regions from amino acid sequence using the method (FoldUnfold) previously developed by us. This scale of frequencies of occurrence of unstructured residues correlates with the contact scale (previously developed by us and used for the same purpose) at a level of 95%. Testing the new scale on a database of 427 unstructured proteins and 559 completely structured proteins has shown that this scale can be successfully used for the prediction of disordered regions in protein chains.  相似文献   

3.
Intrinsic protein disorder is a widespread phenomenon characterised by a lack of stable three-dimensional structures and is considered to play an important role in protein-protein interactions (PPIs). This study examined the genome-wide preference of disorder in PPIs by using exhaustive disorder prediction in human PPIs. We categorised the PPIs into three types (interaction between disordered proteins, interaction between structured proteins, and interaction between a disordered protein and a structured protein) with regard to the flexibility of molecular recognition and compared these three interaction types in an existing human PPI network with those in a randomised network. Although the structured regions were expected to become the identifiers for binding recognition, this comparative analysis revealed unexpected results. The occurrence of interactions between disordered proteins was significantly frequent, and that between a disordered protein and a structured protein was significantly infrequent. We found that this propensity was much stronger in interactions between nonhub proteins. We also analysed the interaction types from a functional standpoint by using GO, which revealed that the interaction between disordered proteins frequently occurred in cellular processes, regulation, and metabolic processes. The number of interactions, especially in metabolic processes between disordered proteins, was 1.8 times as large as that in the randomised network. Another analysis conducted by using KEGG pathways provided results where several signaling pathways and disease-related pathways included many interactions between disordered proteins. All of these analyses suggest that human PPIs preferably occur between disordered proteins and that the flexibility of the interacting protein pairs may play an important role in human PPI networks.  相似文献   

4.
5.
Nucleoporins with phenylalanine-glycine repeats (FG Nups) function at the nuclear pore complex (NPC) to facilitate nucleocytoplasmic transport. In Saccharomyces cerevisiae, each FG Nup contains a large natively unfolded domain that is punctuated by FG repeats. These FG repeats are surrounded by hydrophilic amino acids (AAs) common to disordered protein domains. Here we show that the FG domain of Nups from human, fly, worm, and other yeast species is also enriched in these disorder-associated AAs, indicating that structural disorder is a conserved feature of FG Nups and likely serves an important role in NPC function. Despite the conservation of AA composition, FG Nup sequences from different species show extensive divergence. A comparison of the AA substitution rates of proteins with syntenic orthologs in four Saccharomyces species revealed that FG Nups have evolved at twice the rate of average yeast proteins with most substitutions occurring in sequences between FG repeats. The rapid evolution of FG Nups is poorly explained by parameters known to influence AA substitution rate, such as protein expression level, interactivity, and essentiality; instead their rapid evolution may reflect an intrinsic permissiveness of natively unfolded structures to AA substitutions. The overall lack of AA sequence conservation in FG Nups is sharply contrasted by discrete stretches of conserved sequences. These conserved sequences highlight known karyopherin and nucleoporin binding sites as well as other uncharacterized sites that may have important structural and functional properties.  相似文献   

6.
Viral proteins bind to numerous cellular and viral proteins throughout the infection cycle. However, the mechanisms by which viral proteins interact with such large numbers of factors remain unknown. Cellular proteins that interact with multiple, distinct partners often do so through short sequences known as molecular recognition features (MoRFs) embedded within intrinsically disordered regions (IDRs). In this study, we report the first evidence that MoRFs in viral proteins play a similar role in targeting the host cell. Using a combination of evolutionary modeling, protein–protein interaction analyses and forward genetic screening, we systematically investigated two computationally predicted MoRFs within the N‐terminal IDR of the hepatitis C virus (HCV) Core protein. Sequence analysis of the MoRFs showed their conservation across all HCV genotypes and the canine and equine Hepaciviruses. Phylogenetic modeling indicated that the Core MoRFs are under stronger purifying selection than the surrounding sequence, suggesting that these modules have a biological function. Using the yeast two‐hybrid assay, we identified three cellular binding partners for each HCV Core MoRF, including two previously characterized cellular targets of HCV Core (DDX3X and NPM1). Random and site‐directed mutagenesis demonstrated that the predicted MoRF regions were required for binding to the cellular proteins, but that different residues within each MoRF were critical for binding to different partners. This study demonstrated that viruses may use intrinsic disorder to target multiple cellular proteins with the same amino acid sequence and provides a framework for characterizing the binding partners of other disordered regions in viral and cellular proteomes.  相似文献   

7.
Intrinsically disordered proteins (IDPs) and proteins with long disordered regions are highly abundant in various proteomes. Despite their lack of well-defined ordered structure, these proteins and regions are frequently involved in crucial biological processes. Although in recent years these proteins have attracted the attention of many researchers, IDPs represent a significant challenge for structural characterization since these proteins can impact many of the processes in the structure determination pipeline. Here we investigate the effects of IDPs on the structure determination process and the utility of disorder prediction in selecting and improving proteins for structural characterization. Examination of the extent of intrinsic disorder in existing crystal structures found that relatively few protein crystal structures contain extensive regions of intrinsic disorder. Although intrinsic disorder is not the only cause of crystallization failures and many structured proteins cannot be crystallized, filtering out highly disordered proteins from structure-determination target lists is still likely to be cost effective. Therefore it is desirable to avoid highly disordered proteins from structure-determination target lists and we show that disorder prediction can be applied effectively to enrich structure determination pipelines with proteins more likely to yield crystal structures. For structural investigation of specific proteins, disorder prediction can be used to improve targets for structure determination. Finally, a framework for considering intrinsic disorder in the structure determination pipeline is proposed.  相似文献   

8.
Intrinsically disordered proteins and intrinsically disordered protein regions are highly abundant in nature. However, the quantitative and qualitative measures of protein intrinsic disorder in species with known genomes are still not available. Furthermore, although the correlation between high fraction of disordered residues and advanced species has been reported, the details of this correlation and the connection between the disorder content and proteome complexity have not been reported as of yet. To fill this gap, we analysed entire proteomes of 3484 species from three domains of life (archaea, bacteria and eukaryotes) and from viruses. Our analysis revealed that the evolution process is characterized by distinctive patterns of changes in the protein intrinsic disorder content. We are showing here that viruses are characterized by the widest spread of the proteome disorder content (the percentage of disordered residues ranges from 7.3% in human coronavirus NL63 to 77.3% in Avian carcinoma virus). For several organisms, a clear correlation is seen between their disorder contents and habitats. In multicellular eukaryotes, there is a weak correlation between the complexity of an organism (evaluated as a number of different cell types) and its overall disorder content. For both the prokaryotes and eukaryotes, the disorder content is generally independent of the proteome size. However, disorder shows a sharp increase associated with the transition from prokaryotic to eukaryotic cells. This suggests that the increased disorder content in eukaryotic proteomes might be used by nature to deal with the increased cell complexity due to the appearance of the various cellular compartments.  相似文献   

9.
Many biologically active proteins are intrinsically disordered. A reasonable understanding of the disorder status of these proteins may be beneficial for better understanding of their structures and functions. The disorder contents of disordered proteins vary dramatically, with two extremes being fully ordered and fully disordered proteins. Often, it is necessary to perform a binary classification and classify a whole protein as ordered or disordered. Here, an improved error estimation technique was applied to develop the cumulative distribution function (CDF) algorithms for several established disorder predictors. A consensus binary predictor, based on the artificial neural networks, NN-CDF, was developed by using output of the individual CDFs. The consensus method outperforms the individual predictors by 4-5% in the averaged accuracy.  相似文献   

10.
11.
Intrinsically disordered proteins (IDPs)/protein regions (IDPRs) lack unique three-dimensional structure at the level of secondary and/or tertiary structure and are represented as an ensemble of interchanging conformations. To investigate the role of presence/absence of secondary structures in promoting intrinsic disorder in proteins, a comparative sequence analysis of IDPs, IDPRs and proteins with minimal secondary structures (less than 5%) is required. A sequence analysis reveals proteins with minimal secondary structure content have high mean net positive charge, low mean net hydrophobicity and low sequence complexity. Interestingly, analysis of the relative local electrostatic interactions reveal that an increase in the relative repulsive interactions between amino acids separated by three or four residues lead to either loss of secondary structure or intrinsic disorder. IDPRs show increase in both local negative-negative and positive-positive repulsive interactions. While IDPs show a marked increase in the local negative-negative interactions, proteins with minimal secondary structure depict an increase in the local positive-positive interactions. IDPs and IDPRs are enriched in D, E and Q residues, while proteins with minimal secondary structure are depleted of these residues. Proteins with minimal secondary structures have higher content of G and C, while IDPs and IDPRs are depleted of these residues. These results confirm that proteins with minimal secondary structure have a distinctly different propensity for charge, hydrophobicity, specific amino acids and local electrostatic interactions as compared to IDPs/IDPRs. Thus we conclude that lack of secondary structure may be a necessary but not a sufficient condition for intrinsic disorder in proteins.  相似文献   

12.
Intracellular juxtamembrane regions of transmembrane proteins play pivotal roles in cell signalling, mediated by protein-protein interactions. Disordered protein regions, and short conserved motifs within them, are emerging as key determinants of many such interactions. Here, we investigated whether disorder and conserved motifs are enriched in the juxtamembrane area of human single-pass transmembrane proteins. Conserved motifs were defined as short disordered regions that were much more conserved than the adjacent disordered residues. Human single-pass proteins had higher mean disorder in their cytoplasmic segments than their extracellular parts. Some, but not all, of this effect reflected the shorter length of the cytoplasmic tail. A peak of cytoplasmic disorder was seen at around 30 residues from the membrane. We noted a significant increase in the incidence of conserved motifs within the disordered regions at the same location, even after correcting for the extent of disorder. We conclude that elevated disorder within the cytoplasmic tail of many transmembrane proteins is likely to be associated with enrichment for signalling interactions mediated by conserved short motifs.  相似文献   

13.
Flavors of protein disorder   总被引:1,自引:0,他引:1  
Intrinsically disordered proteins are characterized by long regions lacking 3-D structure in their native states, yet they have been so far associated with 28 distinguishable functions. Previous studies showed that protein predictors trained on disorder from one type of protein often achieve poor accuracy on disorder of proteins of a different type, thus indicating significant differences in sequence properties among disordered proteins. Important biological problems are identifying different types, or flavors, of disorder and examining their relationships with protein function. Innovative use of computational methods is needed in addressing these problems due to relative scarcity of experimental data and background knowledge related to protein disorder. We developed an algorithm that partitions protein disorder into flavors based on competition among increasing numbers of predictors, with prediction accuracy determining both the number of distinct predictors and the partitioning of the individual proteins. Using 145 variously characterized proteins with long (>30 amino acids) disordered regions, 3 flavors, called V, C, and S, were identified by this approach, with the V subset containing 52 segments and 7743 residues, C containing 39 segments and 3402 residues, and S containing 54 segments and 5752 residues. The V, C, and S flavors were distinguishable by amino acid compositions, sequence locations, and biological function. For the sequences in SwissProt and 28 genomes, their protein functions exhibit correlations with the commonness and usage of different disorder flavors, suggesting different flavor-function sets across these protein groups. Overall, the results herein support the flavor-function approach as a useful complement to structural genomics as a means for automatically assigning possible functions to sequences.  相似文献   

14.
15.
Intrinsically disordered proteins (IDPs) are an important class of proteins in all domains of life for their functional importance. However, how nature has shaped the disorder potential of prokaryotic and eukaryotic proteins is still not clearly known. Randomly generated sequences are free of any selective constraints, thus these sequences are commonly used as null models. Considering different types of random protein models, here we seek to understand how the disorder potential of natural eukaryotic and prokaryotic proteins differs from random sequences. Comparing proteome-wide disorder content between real and random sequences of 12 model organisms, we noticed that eukaryotic proteins are enriched in disordered regions compared to random sequences, but in prokaryotes such regions are depleted. By analyzing the position-wise disorder profile, we show that there is a generally higher disorder near the N- and C-terminal regions of eukaryotic proteins as compared to the random models; however, either no or a weak such trend was found in prokaryotic proteins. Moreover, here we show that this preference is not caused by the amino acid or nucleotide composition at the respective sites. Instead, these regions were found to be endowed with a higher fraction of protein–protein binding sites, suggesting their functional importance. We discuss several possible explanations for this pattern, such as improving the efficiency of protein–protein interaction, ribosome movement during translation, and post-translational modification. However, further studies are needed to clearly understand the biophysical mechanisms causing the trend.  相似文献   

16.
本文对固有无序蛋白(IDPs)与其他蛋白质相互作用位点残基特征进行了研究.首先在数据库中选出满足条件的109条IDPs蛋白质链及与其他配体蛋白形成的299个IDPs-蛋白质复合物,然后提取复合物中作为相互作用位点的IDPs-蛋白质残基.这109条IDPs链中共含有50 031个氨基酸残基,其中处于作用位点的残基有4 822个.通过分析发现,20种氨基酸在形成IDPs-蛋白质相互作用位点残基时具有不同的倾向性,根据形成作用位点残基的倾向性,20种氨基酸可分成三大类:倾向型氨基酸(ILE、LEU、ARG、PHE、TYR、MET、TRP)、中间型氨基酸(GLN、GLU、THR、LYS、VAL、ASP、HIS)、非倾向型氨基酸(PRO、SER、GLY、ALA、ASN、CYS).研究结果还进一步表明,不同氨基酸在有序区域与无序区域形成IDPs-蛋白质作用位点残基的倾向性不同.其中,氨基酸TRP、LEU、ILE、CYS在有序和无序区域形成作用位点残基的差异性尤为明显,而氨基酸GLU、PHE、HIS、ALA则基本没有多大差别.对IDPs-蛋白质相互作用位点残基理化特征进行分析发现:疏水性强、侧链净电荷量较少、极性较小、溶剂可及性表面积较大、侧链体积较大、极化率较大的氨基酸比较倾向于形成作用位点残基.主成分分析结果显示,残基的极化率、侧链体积和溶剂可及表面积对作用位点残基影响最大.  相似文献   

17.
Hepatitis E virus (HEV) is the causative agent of Hepatitis E infections across the world. Intrinsically disordered protein regions (IDPRs) or intrinsically disordered proteins (IDPs) are regions or proteins that are characterized by lack of definite structure. These IDPRs or IDPs play significant roles in a wide range of biological processes, such as cell cycle regulation, control of signaling pathways, etc. IDPR/IDP in proteins is associated with the virus''s pathogenicity and infectivity. The prevalence of IDPR/IDP in rat HEV proteome remains undetermined. Hence, we examined the unstructured/disordered regions of the open reading frame (ORF) encoded proteins of rat HEV by analyzing the prevalence of intrinsic disorder. The intrinsic disorder propensity analysis showed that the different ORF proteins consisted of varying fraction of intrinsic disorder. The protein ORF3 was identified with maximum propensity for intrinsic disorder while the ORF6 protein had the least fraction of intrinsic disorder. The analysis revealed ORF6 as a structured protein (ORDP); ORF1 and ORF4 as moderately disordered proteins (IDPRs); and ORF3 and ORF5 as highly disordered proteins (IDPs). The protein ORF2 was found to be moderately as well as highly disordered using different predictors, thus, was categorized into both IDPR and IDP. Such disordered regions have important roles in pathogenesis and replication of viruses.  相似文献   

18.
Disordered or unstructured regions of proteins, while often very important biologically, can pose significant challenges for resonance assignment and three‐dimensional structure determination of the ordered regions of proteins by NMR methods. In this article, we demonstrate the application of 1H/2H exchange mass spectrometry (DXMS) for the rapid identification of disordered segments of proteins and design of protein constructs that are more suitable for structural analysis by NMR. In this benchmark study, DXMS is applied to five NMR protein targets chosen from the Northeast Structural Genomics project. These data were then used to design optimized constructs for three partially disordered proteins. Truncated proteins obtained by deletion of disordered N‐ and C‐terminal tails were evaluated using 1H‐15N HSQC and 1H‐15N heteronuclear NOE NMR experiments to assess their structural integrity. These constructs provide significantly improved NMR spectra, with minimal structural perturbations to the ordered regions of the protein structure. As a representative example, we compare the solution structures of the full length and DXMS‐based truncated construct for a 77‐residue partially disordered DUF896 family protein YnzC from Bacillus subtilis, where deletion of the disordered residues (ca. 40% of the protein) does not affect the native structure. In addition, we demonstrate that throughput of the DXMS process can be increased by analyzing mixtures of up to four proteins without reducing the sequence coverage for each protein. Our results demonstrate that DXMS can serve as a central component of a process for optimizing protein constructs for NMR structure determination. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The mechanism of autophagy relies on complex cell signaling and regulatory processes. Each cell contains many proteins that lack a rigid 3-dimensional structure under physiological conditions. These dynamic proteins, called intrinsically disordered proteins (IDPs) and protein regions (IDPRs), are predominantly involved in cell signaling and regulation. Yet, very little is known about their presence among proteins of the core autophagy machinery. In this work, we characterized the autophagy protein Atg3 from yeast and human along with 2 variants to show that Atg3 is an IDPRs-containing protein and that disorder/order predicted for these proteins from their amino acid sequence corresponds to their experimental characteristics. Based on this consensus, we applied the same prediction methods to all known Atg proteins from Saccharomyces cerevisiae. The data presented here provide an insight into the structural dynamics of each Atg protein. They also show that intrinsic disorder at various levels has to be taken into consideration for about half of the Atg proteins. This work should become a useful tool that will facilitate and encourage exploration of protein intrinsic disorder in autophagy.  相似文献   

20.
Intrinsically disordered regions serve as molecular recognition elements, which play an important role in the control of many cellular processes and signaling pathways. It is useful to be able to predict positions of disordered regions in protein chains. The statistical analysis of disordered residues was done considering 34,464 unique protein chains taken from the PDB database. In this database, 4.95% of residues are disordered (i.e. invisible in X-ray structures). The statistics were obtained separately for the N- and C-termini as well as for the central part of the protein chain. It has been shown that frequencies of occurrence of disordered residues of 20 types at the termini of protein chains differ from the ones in the middle part of the protein chain. Our systematic analysis of disordered regions in PDB revealed 109 disordered patterns of different lengths. Each of them has disordered occurrences in at least five protein chains with identity less than 20%. The vast majority of all occurrences of each disordered pattern are disordered. This allows one to use the library of disordered patterns for predicting the status of a residue of a given protein to be ordered or disordered. We analyzed the occurrence of the selected patterns in three eukaryotic and three bacterial proteomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号