首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensory circuitry for sexual attraction in C. elegans males   总被引:1,自引:0,他引:1  
BACKGROUND: Why do males and females behave differently? Sexually dimorphic behaviors could arise from sex-specific neurons or by the modification of circuits present in both sexes. C. elegans males exhibit different behaviors than hermaphrodites. Although there is a single class of sex-specific sensory neurons in the head of males, most of their neurons are part of a core nervous system also present in hermaphrodites. Are the behavioral differences due to sex-specific or core neurons? RESULTS: We demonstrate that C. elegans males chemotax to a source of hermaphrodite pheromones. This sexual-attraction behavior depends on a TRPV (transient receptor potential vanilloid) channel encoded by the osm-9, ocr-1, and ocr-2 genes. OSM-9 is required in three classes of sensory neurons: the AWA and AWC olfactory neurons and the male-specific CEM neurons. The absence of OSM-9 from any of these neurons impairs attraction, suggesting that their ensemble output elicits sexual attraction. Likewise, the ablation of any of these classes after sexual maturation impairs attraction behavior. If ablations are performed before sexual maturation, attraction is unimpaired, demonstrating that these neurons compensate for one another. Thus, males lacking sex-specific neurons are still attracted to pheromones, suggesting that core neurons are sexualized. Similarly, transgender nematodes-animals that appear morphologically to be hermaphrodites but have a masculinized core nervous system-are attracted to hermaphrodite pheromones. CONCLUSIONS: Both sexually dimorphic and core sensory neurons are normally required in the adult for sexual attraction, but they can replace each other during sexual maturation if necessary to generate robust male-specific sexual attraction behavior.  相似文献   

2.
The nematode C. elegans is an important model for the study of social behaviors. Recent investigations have shown that a family of small molecule signals, the ascarosides, controls population density sensing and mating behavior. However, despite extensive studies of C. elegans aggregation behaviors, no intraspecific signals promoting attraction or aggregation of wild-type hermaphrodites have been identified. Using comparative metabolomics, we show that the known ascarosides are accompanied by a series of derivatives featuring a tryptophan-derived indole moiety. Behavioral assays demonstrate that these indole ascarosides serve as potent intraspecific attraction and aggregation signals for hermaphrodites, in contrast to ascarosides lacking the indole group, which are repulsive. Hermaphrodite attraction to indole ascarosides depends on the ASK amphid sensory neurons. Downstream of the ASK sensory neuron, the interneuron AIA is required for mediating attraction to indole ascarosides instead of the RMG interneurons, which previous studies have shown to integrate attraction and aggregation signals from ASK and other sensory neurons. The role of the RMG interneuron in mediating aggregation and attraction is thought to depend on the neuropeptide Y-like receptor NPR-1, because solitary and social C. elegans strains are distinguished by different npr-1 variants. We show that indole ascarosides promote attraction and aggregation in both solitary and social C. elegans strains. The identification of indole ascarosides as aggregation signals reveals unexpected complexity of social signaling in C. elegans, which appears to be based on a modular library of ascarosides integrating building blocks derived from lipid β-oxidation and amino-acid metabolism. Variation of modules results in strongly altered signaling content, as addition of a tryptophan-derived indole unit to repellent ascarosides produces strongly attractive indole ascarosides. Our findings show that the library of ascarosides represents a highly developed chemical language integrating different neurophysiological pathways to mediate social communication in C. elegans.  相似文献   

3.
We investigated putative roles of transforming growth factor (TGF)-β expressed in peripheral ganglia in the regulation of neuronal cell survival during the period of ontogenetic neuron death (OD). The chick ciliary ganglion (CG), where OD occurs between embryonic days (E) 6 and 10, was employed as a model system. We show that CG neurons (E8) are immunoreactive (ir) for TGF-β2 and -β3 as well as the TGF-β receptor TβR-II, but are not ir for TGF-β1. Ciliary neurotrophic factor (CNTF) and fibroblast growth factor (FGF)-2, established neurotrophic molecules for CG neurons, up-regulate TGF-β3 mRNA and TGF-β biological activity in cultures of E8 CG neurons. None of the TGF-β isoforms—β1, β2, or β3—has a trophic, survival-promoting effect on cultured CG neurons. However, all isoforms enhance CG neuron survival mediated by CNTF or FGF-2, significantly and over a wide range of concentrations. In combination with the neurotrophins (NT) nerve growth factor (NGF) and NT-3, which are not neurotrophic for CG neurons, TGF-β significantly promotes CG neuron survival. However, TGF-β does not act synergistically with the neuropoietic cytokines oncostatin M, leukemia inhibiting factor, or interleukin-6. Immunoneutralization of endogenous TGF-β released from CG neurons using an antibody to TGF-β1/-β2/-β3 significantly reduces the potency of CNTF or FGF-2 to promote CG neuron survival. The blocking effect of the anti–pan-TGF-β antibody could be rescued by adding exogenous TGF-β. Together, these data suggest that para-/autocrine TGF-β signaling has an important effect on the regulation of neuron survival in a model system of peripheral neurons. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 563–572, 1998  相似文献   

4.
Recent recordings from spinal neurons in hatchling frog tadpoles allow their type-specific properties to be defined. Seven main types of neuron involved in the control of swimming have been characterized. To investigate the significance of type-specific properties, we build models of each neuron type and assemble them into a network using known connectivity between: sensory neurons, sensory pathway interneurons, central pattern generator (CPG) interneurons and motoneurons. A single stimulus to a sensory neuron initiates swimming where modelled neuronal and network activity parallels physiological activity. Substitution of firing properties between neuron types shows that those of excitatory CPG interneurons are critical for stable swimming. We suggest that type-specific neuronal properties can reflect the requirements for involvement in one particular network response (like swimming), but may also reflect the need to participate in more than one response (like swimming and slower struggling). Action Editor: Eberhard E. Fetz  相似文献   

5.
The proliferation/differentiation balance of stem and progenitor cell populations must respond to the physiological needs of the organism [1, 2]. Mechanisms underlying this plasticity are not well understood. The C. elegans germline provides a tractable system to study the influence of the environment on progenitor cells (stem cells and their proliferative progeny). Germline progenitors accumulate during larval stages to form an adult pool from which gametes are produced. Notch pathway signaling from the distal tip cell (DTC) niche to the germline maintains the progenitor pool [3-5], and the larval germline cell cycle is boosted by insulin/IGF-like receptor signaling [6]. Here we show that, independent of its role in the dauer decision, TGF-β regulates the balance of proliferation versus differentiation in the C. elegans germline in response to sensory cues that report population density and food abundance. Ciliated ASI sensory neurons are required for TGF-β-mediated expansion of the larval germline progenitor pool, and the TGF-β receptor pathway acts in the germline stem cell niche. TGF-β signaling thereby couples germline development to the quality of the environment, providing a novel cellular and molecular mechanism linking sensory experience of the environment to reproduction.  相似文献   

6.
Male silkworm moths, Bombyx mori, move their heads side-to-side during zigzag walking toward a source of sex pheromone. High-speed video analysis revealed that changes in walking direction were synchronized with this head turning. Thus the direction of the walking is indicated by the direction of the head turning. Head turning was regulated by neck motor neurons which innervate the cervical ventral muscles and the ventral muscles through the second cervical nerve. To determine the role of the `flipflop' state transition in spike activity carried by descending interneurons from the brain to the thoracic ganglion, we recorded pheromonal responses simultaneously from flipflop descending interneurons and a single cervical ventral 1 neck motor neuron. The activity of the cervical ventral 1 neck motor neuron was synchronized to that of the flipflop descending interneurons. The cervical ventral 1 neck motor neuron was morphologically identified using confocal imaging. Our results demonstrate that the flipflop signals play an important role in instructing turning signals during the pheromone-mediated behavior in a male B. mori. Accepted: 11 June 1998  相似文献   

7.
One approach to understanding behavior is to define the cellular components of neuronal circuits that control behavior. In the nematode Caenorhabditis elegans, neuronal circuits have been delineated based on patterns of synaptic connectivity derived from ultrastructural analysis. Individual cellular components of these anatomically defined circuits have previously been characterized on the sensory and motor neuron levels. In contrast, interneuron function has only been addressed to a limited extent. We describe here several classes of interneurons (AIY, AIZ, and RIB) that modulate locomotory behavior in C. elegans. Using mutant analysis as well as microsurgical mapping techniques, we found that the AIY neuron class serves to tonically modulate reversal frequency of animals in various sensory environments via the repression of the activity of a bistable switch composed of defined command interneurons. Furthermore, we show that the presentation of defined sensory modalities induces specific alterations in reversal behavior and that the AIY interneuron class mediates this alteration in locomotory behavior. We also found that the AIZ and RIB interneuron classes process odorsensory information in parallel to the AIY interneuron class. AIY, AIZ, and RIB are the first interneurons directly implicated in chemosensory signaling. Our neuronal mapping studies provide the framework for further genetic and functional dissections of neuronal circuits in C. elegans.  相似文献   

8.
9.
10.
Striatal dopamine plays key roles in our normal and pathological goal-directed actions. To understand dopamine function, much attention has focused on how midbrain dopamine neurons modulate their firing patterns. However, we identify a presynaptic mechanism that triggers dopamine release directly, bypassing activity in dopamine neurons. We paired electrophysiological recordings of striatal channelrhodopsin2-expressing cholinergic interneurons with simultaneous detection of dopamine release at carbon-fiber microelectrodes in striatal slices. We reveal that activation of cholinergic interneurons by light flashes that cause only single action potentials in neurons from a small population triggers dopamine release via activation of nicotinic receptors on dopamine axons. This event overrides ascending activity from dopamine neurons and, furthermore, is reproduced by activating ChR2-expressing thalamostriatal inputs, which synchronize cholinergic interneurons in vivo. These findings indicate that synchronized activity in cholinergic interneurons directly generates striatal dopamine signals whose functions will extend beyond those encoded by dopamine neuron activity.  相似文献   

11.
Garcia LR  LeBoeuf B  Koo P 《Genetics》2007,175(4):1761-1771
In this study, we addressed why Caenorhabditis elegans males are inefficient at fertilizing their hermaphrodites. During copulation, hermaphrodites generally move away from males before they become impregnated. C. elegans hermaphrodites reproduce by internal self-fertilization, so that copulation with males is not required for species propagation. The hermaphroditic mode of reproduction could potentially relax selection for genes that optimize male mating behavior. We examined males from hermaphroditic and gonochoristic (male-female copulation) Caenorhabditis species to determine if they use different sensory and motor mechanisms to control their mating behavior. Instead, we found through laser ablation analysis and behavioral observations that hermaphroditic C. briggsae and gonochoristic C. remanei and Caenorhabditis species 4, PB2801 males produce a factor that immobilizes females during copulation. This factor also stimulates the vulval slit to widen, so that the male copulatory spicules can easily insert. C. elegans and C. briggsae hermaphrodites are not affected by this factor. We suggest that sensory and motor execution of mating behavior have not significantly changed among males of different Caenorhabditis species; however, during the evolution of internal self-fertilization, hermaphrodites have lost the ability to respond to the male soporific-inducing factor.  相似文献   

12.
The development of the Drosophila olfactory system is a striking example of how genetic programs specify a large number of different neuron types and assemble them into functional circuits. To ensure precise odorant perception, each sensory neuron has to not only select a single olfactory receptor (OR) type out of a large genomic repertoire but also segregate its synaptic connections in the brain according to the OR class identity. Specification and patterning of second-order interneurons in the olfactory brain center occur largely independent of sensory input, followed by a precise point-to-point matching of sensory and relay neurons. Here we describe recent progress in the understanding of how cell-intrinsic differentiation programs and context-dependent cellular interactions generate a stereotyped sensory map in the Drosophila brain. Recent findings revealed an astonishing morphological diversity among members of the same interneuron class, suggesting an unexpected variability in local microcircuits involved in insect sensory processing.  相似文献   

13.
Liu S  Schulze E  Baumeister R 《PloS one》2012,7(3):e32360

Background

Any organism depends on its ability to sense temperature and avoid noxious heat. The nematode Caenorhabditis elegans responds to noxious temperatures exceeding ∼35°C and also senses changes in its environmental temperature in the range between 15 and 25°C. The neural circuits and molecular mechanisms involved in thermotaxis have been successfully studied, whereas details of the thermal avoidance behavior remain elusive. In this work, we investigate neurological and molecular aspects of thermonociception using genetic, cell biological and physiological approaches.

Methodology/Principal Findings

We show here that the thermosensory neurons AFD, in addition to sensing temperature within the range within which the animals can thrive, also contribute to the sensation of noxious temperatures resulting in a reflex-like escape reaction. Distinct sets of interneurons are involved in transmitting thermonociception and thermotaxis, respectively. Loss of AFD is partially compensated by the activity of a pair of multidendritic, polymodal neurons, FLP, whereas laser ablation of both types of neurons abrogated the heat response in the head of the animals almost completely. A third pair of heat sensory neurons, PHC, is situated in the tail. We find that the thermal avoidance response requires the cell autonomous function of cGMP dependent Cyclic Nucleotide-Gated (CNG) channels in AFD, and the heat- and capsaicin-sensitive Transient Receptor Potential Vanilloid (TRPV) channels in the FLP and PHC sensory neurons.

Conclusions/Significance

Our results identify distinct thermal responses mediated by a single neuron, but also show that parallel nociceptor circuits and molecules may be used as back-up strategies to guarantee fast and efficient responses to potentially detrimental stimuli.  相似文献   

14.
In most animals locomotion can be started and stopped by specific sensory cues. We are using a simple vertebrate, the hatchling Xenopus tadpole, to study a neuronal pathway that turns off locomotion. In the tadpole, swimming stops when the head contacts solid objects or the water's surface meniscus. The primary sensory neurons are in the trigeminal ganglion and directly excite inhibitory reticulospinal neurons in the hindbrain. These project axons into the spinal cord and release GABA to inhibit spinal neurons and stop swimming. We ask whether there is specificity in the types of spinal neuron inhibited. We used single-neuron recording to determine which classes of spinal neurons receive inhibition when the head skin is pressed. Ventral motoneurons and premotor interneurons involved in generating the swimming rhythm receive reliable GABAergic inhibition. More dorsal inhibitory premotor interneurons are inhibited less reliably and some are excited. Dorsal sensory pathway interneurons that start swimming following a touch to the trunk skin do not appear to receive such inhibition. There is therefore specificity in the formation of descending inhibitory connections so that more ventral neurons producing swimming are most strongly inhibited.  相似文献   

15.
The relationship between courtship ultrasound emission rates and the volume of a discrete, sex-related, hypothalamic nucleus, the sexually dimorphic area, pars compacta (SDApc), in male and neonatally androgenized female gerbils is lateralized. Unbiased stereological estimates of neuron number and nuclear and neuropil volume are also laterally asymmetric in male SDApcs. In this study sexual differentiation and lateral asymmetry of stereologically assessed cytoarchitectural SDApc components, and their relationship to male-typical behaviors, including vocal emission, were examined in masculinized females. Female neonates received a single injection of testosterone propionate (TP) or control vehicle (Control) and were then implanted with silastic cannulae of testosterone at 65 days of age. Total SDApc volume, neuron number, nuclear volume, and neuropil volume had significantly greater values in TP compared to Control females. Neuron number was laterally asymmetric in TP females, since the left SDApc contained a greater number of smaller neurons, possibly interneurons, than the right. Courtship vocal emission and two other behaviors were masculinized in TP females. Left SDApc total volume and, most significantly, left neuron number, were correlated with vocal rates. No other lateralized correlations between behaviors and stereological estimates were found. It was concluded that various stereological parameters and the lateralization of vocal behavior and brain asymmetry depend on the early sexually differentiating effects of androgens. It is suggested that in gerbils, androgens have a role in the survival of interneurons in a laterally asymmetric hypothalamic nucleus which is an index of vocal control.  相似文献   

16.
Synopsis Gulf of California populations of Serranus fasciatus are composed of functional simultaneous hermaphrodites and males. This is the first serranid known to have this sexual pattern which is functionally intermediate between the typical serranid patterns of simultaneous and protogynous hermaphroditism. Males of S. fasciatus are derived from hermaphrodites by resorption of ovarian tissue and proliferation of the extant testicular band. Distinct sexual roles are evident in spawning events. Hermaphrodites gain female function by pair spawning with males (124 and 125 observed spawns) and rarely with other hermaphrodites (1 of 125). Hermaphrodites gain male function by sneak spawning (9 of 125) and rarely by pair spawning with other hermaphrodites. Males exclusively pair spawned with hermaphrodites. Despite its unusual sexual pattern, S. fasciatus appears allied with other Serranus species based on similarities in gonad morphology.  相似文献   

17.
Kohatsu S  Koganezawa M  Yamamoto D 《Neuron》2011,69(3):498-508
We determined the cellular substrate for male courtship behavior by quasinatural and artificial stimulation of brain neurons. Activation of fruitless (fru)-expressing neurons via stimulation of thermosensitive dTrpA1 channels induced an entire series of courtship acts in male Drosophila placed alone without any courting target. By reducing the number of neurons expressing dTrpA1 by MARCM, we demonstrated that the initiation of courtship behavior is significantly correlated with the activation of the transmidline P1 interneurons, the descending P2b interneurons, or both, indicating that these interneurons trigger courtship. Using an experimental paradigm in which a tethered male can be stimulated to initiate courtship by touching his foreleg tarsus to a female's abdomen, we found that P1 neurites of tethered males showed a transient Ca(2+) rise after tarsal stimulation with the female-associated sensory cues. These observations strongly suggest that P1 neurons are the prime components of the neural circuitry that initiates male courtship.  相似文献   

18.
Most C. elegans sensory neuron types consist of a single bilateral pair of neurons, and respond to a unique set of sensory stimuli. Although genes required for the development and function of individual sensory neuron types have been identified in forward genetic screens, these approaches are unlikely to identify genes that when mutated result in subtle or pleiotropic phenotypes. Here, we describe a complementary approach to identify sensory neuron type-specific genes via microarray analysis using RNA from sorted AWB olfactory and AFD thermosensory neurons. The expression patterns of subsets of these genes were further verified in vivo. Genes identified by this analysis encode 7-transmembrane receptors, kinases, and nuclear factors including dac-1, which encodes a homolog of the highly conserved Dachshund protein. dac-1 is expressed in a subset of sensory neurons including the AFD neurons and is regulated by the TTX-1 OTX homeodomain protein. On thermal gradients, dac-1 mutants fail to suppress a cryophilic drive but continue to track isotherms at the cultivation temperature, representing the first genetic separation of these AFD-mediated behaviors. Expression profiling of single neuron types provides a rapid, powerful, and unbiased method for identifying neuron-specific genes whose functions can then be investigated in vivo.  相似文献   

19.
Morsci NS  Haas LA  Barr MM 《Genetics》2011,189(4):1341-1346
Mating behavior of animals is regulated by the sensory stimuli provided by the other sex. Sexually receptive females emit mating signals that can be inhibited by male ejaculate. The genetic mechanisms controlling the release of mating signals and encoding behavioral responses remain enigmatic. Here we present evidence of a Caenorhabditis elegans hermaphrodite-derived cue that stimulates male mating-response behavior and is dynamically regulated by her reproductive status. Wild-type males preferentially mated with older hermaphrodites. Increased sex appeal of older hermaphrodites was potent enough to stimulate robust response from mating-deficient pkd-2 and lov-1 polycystin mutant males. This enhanced response of pkd-2 males toward older hermaphrodites was independent of short-chain ascaroside pheromones, but was contingent on the absence of active sperm in the hermaphrodites. The improved pkd-2 male response toward spermless hermaphrodites was blocked by prior insemination or by genetic ablation of the ceh-18-dependent sperm-sensing pathway of the hermaphrodite somatic gonad. Our work suggests an interaction between sperm and the soma that has a negative but reversible effect on a hermaphrodite-derived mating cue that regulates male mating response, a phenomenon to date attributed to gonochoristic species only.  相似文献   

20.
Larval motor neurons remodel during Drosophila neuro-muscular junction dismantling at metamorphosis. In this study, we describe the motor neuron retraction as opposed to degeneration based on the early disappearance of β-Spectrin and the continuing presence of Tubulin. By blocking cell dynamics with a dominant-negative form of Dynamin, we show that phagocytes have a key role in this process. Importantly, we show the presence of peripheral glial cells close to the neuro-muscular junction that retracts before the motor neuron. We show also that in muscle, expression of EcR-B1 encoding the steroid hormone receptor required for postsynaptic dismantling, is under the control of the ftz-f1/Hr39 orphan nuclear receptor pathway but not the TGF-β signaling pathway. In the motor neuron, activation of EcR-B1 expression by the two parallel pathways (TGF-β signaling and nuclear receptor) triggers axon retraction. We propose that a signal from a TGF-β family ligand is produced by the dismantling muscle (postsynapse compartment) and received by the motor neuron (presynaptic compartment) resulting in motor neuron retraction. The requirement of the two pathways in the motor neuron provides a molecular explanation for the instructive role of the postsynapse degradation on motor neuron retraction. This mechanism insures the temporality of the two processes and prevents motor neuron pruning before postsynaptic degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号