首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recent global ban on the use of organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. In this study, a series of new butenolide derivatives with various amine side chains was synthesized and evaluated for their anti-larval settlement activities in the barnacle, Balanus amphitrite. Side chain modification of butenolide resulted in butenolides 3c-3d, which possessed desirable physico-chemical properties and demonstrated highly effective non-toxic anti-larval settlement efficacy. A structure-activity relationship analysis revealed that varying the alkyl side chain had a notable effect on anti-larval settlement activity and that seven to eight carbon alkyl side chains with a tert-butyloxycarbonyl (Boc) substituent on an amine terminal were optimal in terms of bioactivity. Analysis of the physico-chemical profile of butenolide analogues indicated that lipophilicity is a very important physico-chemical parameter contributing to bioactivity.  相似文献   

2.
Larval attachment and metamorphosis, commonly referred to as larval settlement, of marine sessile invertebrates can be triggered or blocked by chemical cues and affected by changes in overall protein expression pattern and phosphorylation dynamics. This study focuses on the effects of butenolide, an effective larval settlement inhibitor, on larval settlement at the proteome level in the bryozoan Bugula neritina. Liquid‐phase IEF sample prefractionation combined with 2‐DE and MALDI‐TOF MS was used to identify the differentially expressed proteins. Substantial changes occurred both in protein abundance and in phosphorylation status during larval settlement and when settling larvae were challenged with butenolide. The proteins that responded to treatment were identified as structural proteins, molecular chaperones, mitochondrial peptidases and calcium‐binding proteins. Compared with our earlier results, both genistein and butenolide inhibited larval settlement of B. neritina primarily by changes in protein abundance and the phosphorylation status of proteins but have different protein targets in the same species. Clearly, to design potent antifouling compounds and to understand the mode of action of compounds, more studies on the effects of different compounds on proteome and phosphoproteome of different larval species are required.  相似文献   

3.
Zhang YF  Zhang H  He L  Liu C  Xu Y  Qian PY 《ACS chemical biology》2012,7(6):1049-1058
Butenolide is a very promising antifouling compound that inhibits ship hull fouling by a variety of marine organisms, but its antifouling mechanism was previously unknown. Here we report the first study of butenolide's molecular targets in three representative fouling organisms. In the barnacle Balanus (=Amphibalanus) amphitrite, butenolide bound to acetyl-CoA acetyltransferase 1 (ACAT1), which is involved in ketone body metabolism. Both the substrate and the product of ACAT1 increased larval settlement under butenolide treatment, suggesting its functional involvement. In the bryozoan Bugula neritina, butenolide bound to very long chain acyl-CoA dehydrogenase (ACADVL), actin, and glutathione S-transferases (GSTs). ACADVL is the first enzyme in the very long chain fatty acid β-oxidation pathway. The inhibition of this primary pathway for energy production in larvae by butenolide was supported by the finding that alternative energy sources (acetoacetate and pyruvate) increased larval attachment under butenolide treatment. In marine bacterium Vibrio sp. UST020129-010, butenolide bound to succinyl-CoA synthetase β subunit (SCSβ) and inhibited bacterial growth. ACAT1, ACADVL, and SCSβ are all involved in primary metabolism for energy production. These findings suggest that butenolide inhibits fouling by influencing the primary metabolism of target organisms.  相似文献   

4.
Zhou X  Zhang Z  Xu Y  Jin C  He H  Hao X  Qian PY 《Biofouling》2009,25(1):69-76
To determine whether they could serve as non-toxic or less damaging alternative antifouling (AF) agents, 17 flavone and isoflavone derivatives were isolated from terrestrial plant extracts, purified and examined for their ability to inhibit the settlement of barnacle (Balanus amphitrite) cyprids. In larval bioassays, eight compounds showed strong anti-larval settlement activities, with EC(50) values <10 microg ml(-1). Through an analysis of the structure-activity relationship of these compounds, it was found that (1) the structural difference between flavones and isoflavones did not affect their AF activities; (2) the 5-hydroxyl group on the skeletons played a key role in AF activities; and (3) the presence of hydroxyl group or bulky group on C3 significantly reduced AF activities. A hydrolysis experiment using genistein, a typical active compound in this study, indicated that it was decomposed in the marine environment by hydrolysis reaction and that the degradation speed was significantly affected by pH. In a field AF test, genistein inhibited the attachment of B. amphitrite on panels coated with genistein-paint mixtures.  相似文献   

5.
A series of 34 amphiphilic compounds varying in both number of quaternary ammonium groups and length of alkyl chains has been assembled. The synthetic preparations for these structures are simple and generally high-yielding, proceeding in 1–2 steps without the need for chromatography. Antibacterial MIC data for these compounds were determined, and over half boast single digit MIC values against a series of gram-positive and gram-negative bacteria. MIC variation mostly hinged on the length of the alkyl chain, where a dodecyl group led to optimal activity; surprisingly, the number of cations and/or basic nitrogens was less important in dictating bioactivity. Additional structural variation was prepared in a trisamine series dubbed 12,3,X,3,12, providing a series of potent amphiphiles functionalized with varied allyl, alkyl, and benzyl groups. Tetraamines were also investigated, culminating in a two-step preparation of a tetracationic structure that showed only modestly improved bioactivity versus amphiphiles with two or three cations.  相似文献   

6.
Self-degradable antimicrobial copolymers bearing cationic side chains and main-chain ester linkages were synthesized using the simultaneous chain- and step-growth radical polymerization of t-butyl acrylate and 3-butenyl 2-chloropropionate, followed by the transformation of t-butyl groups into primary ammonium salts. We prepared a series of copolymers with different structural features in terms of molecular weight, monomer composition, amine functionality, and side chain structures to examine the effect of polymer properties on their antimicrobial and hemolytic activities. The acrylate copolymers containing primary amine side chains displayed moderate antimicrobial activity against E. coli but were relatively hemolytic. The acrylate copolymer with quaternary ammonium groups and the acrylamide copolymers showed low or no antimicrobial and hemolytic activities. An acrylate copolymer with primary amine side chains degraded to lower molecular weight oligomers with lower antimicrobial activity in aqueous solution. This degradation was due to amidation of the ester groups of the polymer chains by the nucleophilic addition of primary amine groups in the side chains resulting in cleavage of the polymer main chain. The degradation mechanism was studied in detail by model reactions between amine compounds and precursor copolymers.  相似文献   

7.
Eleven strains of Streptomyces isolated from deep-sea sediments were screened for anti-larval settlement activity and all were active. Among those strains, Streptomyces sp. UST040711-290 was chosen for the isolation of bioactive antifouling compounds through bioassay-guided isolation procedure. A branched-chain fatty acid, 12-methyltetradecanoid acid (12-MTA) was purified, and it strongly inhibited the larval settlement of the polychaete Hydroides elegans. Streptomyces sp. UST040711-290 produced the highest yield of 12-MTA when the bacterium was cultured at 30°C and pH 7.0 in a modified MGY medium. To investigate the potential antifouling mechanism of 12-MTA in the larval settlement of Hydroides elegans, the expression level of four marker genes, namely, Ran GTPase activating protein (GAP), ATP synthase (AS), NADH dehydrogenase (ND), and cell division cycle protein (CDC), was compared among the untreated larvae (the control), isobutylmethylxanthine (an effective settlement inducer), and 12-MTA-treated larvae. The 12-MTA treatment down-regulated the expression of GAP and up-regulated the expression of AS in the H. elegans larvae, but did not affect the expression of ND and CDC. This study provides the first evidence that a branched-chain fatty acid produced by a marine bacterium isolated from deep-sea sediment effectively inhibited the larval settlement of the biofouling polychaete H. elegans and its effects on the expression of genes important for larval settlement.  相似文献   

8.
Based on the high, non-toxic and reversible antifouling activity of the polymeric 3-alkylpyridinium salts isolated from the sponge Reniera sarai, the anti-settlement activity and toxicity of a series of synthetic analogues has been studied. All the test compounds were less efficient than the natural polymers, suggesting that the high and reversible anti-macrofouling activity of the natural polymers could derive from their detergent-like properties. The values obtained for EC50sett. of inhibition of cyprid settlement and EC50imm. as naupliar toxicity for the synthetic compounds indicate that the presence of single or multiple charges in the structure is not relevant for the antifouling activity which, conversely, is favoured by increasing the length of the alkyl chain, or by the presence of uncharged pyridine units. The compound 1,8-di(3-pyridyl)octane was the most efficient (EC50sett.= 0.44?μg?ml–1), although with a higher toxicity on naupliar stage of B. amphitrite than the natural polymers.  相似文献   

9.
C A Yu  L Q Gu  Y Z Lin  L Yu 《Biochemistry》1985,24(15):3897-3902
The effect of the alkyl side chain of the ubiquinone molecule on the electron-transfer activity of ubiquinone in mitochondrial succinate-cytochrome c reductase is studied by using synthetic ubiquinone derivatives that possess the basic ubiquinone structure of 2,3-dimethoxy-5-methyl-1,4-benzoquinone with different alkyl side chains at the 6-position. The alkyl side chains vary in chain length, degree of saturation, and location of double bonds. When a ubiquinone derivative is used as an electron acceptor for succinate-ubiquinone reductase, an alkyl side chain of six carbons is needed to obtain the maximum activity. However, when it serves as an electron donor for ubiquinol-cytochrome c reductase or as a mediator in succinate-cytochrome c reductase, an alkyl side chain of 10 carbons gives maximal efficiency. Introduction of one or two isolated double bonds into the alkyl side chain of the ubiquinone molecule has little effect on electron-transfer activity. However, a conjugated double bond system in the alkyl side chain drastically reduces electron-transfer efficiency. The effect of the conjugated double bond system on the electron-transferring efficiency of ubiquinone depends on its location in the alkyl side chain. When location is far from the benzoquinone ring, the effect is minimal. These observations together with the results obtained from photoaffinity-labeling studies lead us to conclude that flexibility in the portion of the alkyl side chain immediately adjacent to the benzoquinone ring is required for the electron-transfer activity of ubiquinone.  相似文献   

10.
The modulation of gramicidin A single-channel characteristics by the amino acid side chains was investigated using gramicidin A analogues in which the NH2 terminal valine was chemically replaced by other amino acids. The replacements were chosen such that pairs of analogues would have essentially isosteric side chains of different polarities at position 1 (valine vs. trifluorovaline or hexafluorovaline; norvaline vs. S-methyl-cysteine; and norleucine vs. methionine). Even though the side chains are not in direct contact with the permeating ions, the single-channel conductances for Na+ and Cs+ are markedly affected by the changes in the physico-chemical characteristics of the side chains. The maximum single-channel conductance for Na+ is decreased by as much as 10-fold in channels formed by analogues with polar side chains at position 1 compared with their counterparts with nonpolar side chains, while the Na+ affinity is fairly insensitive to these changes. The relative conductance changes seen with Cs+ were less than those seen with Na+; the ion selectivity of the channels with polar side chains at position 1 was increased. Hybrid channels could form between compounds with a polar side chain at position 1 and either valine gramicidin A or their counterparts with a nonpolar side chain at position 1. The structure of channels formed by the modified gramicidins is thus essentially identical to the structure of channels formed by valine gramicidin A. The polarity of the side chain at position 1 is an important determinant of the permeability characteristics of the gramicidin A channel. We discuss the importance of having structural information when interpreting the functional consequences of site-directed amino acid modifications.  相似文献   

11.
Dash S  Nogata Y  Zhou X  Zhang Y  Xu Y  Guo X  Zhang X  Qian PY 《Bioresource technology》2011,102(16):7532-7537
A sponge-associated bacterium, Winogradskyella poriferorum strain UST030701-295T was cultured up to 100 l for extraction of antifouling bioactive compounds. Five poly-ethers were isolated and partially characterized based on nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS); two of them showed inhibitory effects on biofilm formation of marine bacteria and larval settlement of macro-foulers but did not produce any adverse effects on the phenotypes of zebra fish embryos at a concentration of 5 μg ml−1. The effect of culture duration on the production of the poly-ethers and the bioactivity of the relevant extracts was monitored over a period of 12 days. The total crude poly-ether production increased from day 2 to day 5 and the highest bioactivity was observed on day 3. The poly-ethers were found to be localized in the cellular fraction of the extracts, implying their natural occurrence. The potent bioactivity of these poly-ethers together with their high natural abundance in bacteria makes them promising candidates as ingredients in antifouling applications.  相似文献   

12.
For the purpose of developing a transglutaminase inhibitor which could be effective in physiological and pharmacological studies, a series of phenylthiourea derivatives of alpha, omega-diaminoalkanes were designed, synthesized, and evaluated kinetically as inhibitors of transglutaminases. A homologous series of compounds of the structure phenylthiourea-(CH2)n-NH2, where n = 2, 3, 4, 5, and 6, were tested for the inhibition of both guinea pig liver transglutaminase-catalyzed amine incorporation into various glutamine-containing substrates and plasma transglutaminase (factor XIIIa)-catalyzed amine incorporation into fibrin and fibrin cross-linking. It was found that the inhibitory activity of the compounds increases with increasing number of methylene groups in the side chain up to a maximum of n = 5. A further increase in the length of the methylene side chain to n = 6 results in decreased activity. The Ki value (4.9 X 10(-5) M) of 1-(5-aminopentyl)-3-phenylthiourea (PPTU) (n = 5) for the inhibition of guinea pig transglutaminase-catalyzed amine incorporation into the B chain of oxidized insulin is in close agreement to its Km(app) value (7.1 X 10(-5) M) obtained using 14C-labeled PPTU. PPTU was also found to be a potent inhibitor of plasma transglutaminase-catalyzed fibrin cross-linking. The finding that the specificity of the alkylamines for inhibition is correlated with the length of their methyl side chains is compatible with those reported for aliphatic amines and monodansylcadaverine analogues (where dansyl is 5-dimethylaminonaphthalene-1-sulfonyl). The phenylthiourea derivatives, however, are far less toxic in mice than monodansylcadaverine as indicated by their LD50 values: PPTU, 400 +/- 25 mg/kg; and monodansylcadaverine, 160 +/- 20 mg/kg.  相似文献   

13.
We have investigated the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers containing a series of cholesterol analogues varying in the length and structure of their alkyl side chains. We find that upon the incorporation of up to approximately 25 mol % of any of the side chain analogues, the DPPC main transition endotherm consists of superimposed sharp and broad components representing the hydrocarbon chain melting of sterol-poor and sterol-rich phospholipid domains, respectively. Moreover, the behavior of these components is dependent on sterol side chain length. Specifically, for all sterol/DPPC mixtures, the sharp component enthalpy decreases linearly to zero by 25 mol % sterol while the cooperativity is only moderately reduced from that observed in the pure phospholipid. In addition, the sharp component transition temperature decreases for all sterol/DPPC mixtures; however, the magnitude of the decrease is dependent on the sterol side chain length. With respect to the broad component, the enthalpy initially increases to a maximum around 25 mol % sterol, thereafter decreasing toward zero by 50 mol % sterol with the exception of the sterols with very short alkyl side chains. Both the transition temperature and cooperativity of the broad component clearly exhibit alkyl chain length-dependent effects, with both the transition temperature and cooperativity decreasing more dramatically for sterols with progressively shorter side chains. We ascribe the chain length-dependent effects on transition temperature and cooperativity to the hydrophobic mismatch between the sterol and the host DPPC bilayer (see McMullen, T. P. W., Lewis, R. N. A. H., and McElhaney, R. N. (1993) Biochemistry 32:516-522).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Esterified precursors of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA; 18) and 1,4,7-triazacyclononane-1,4,7-trisacetic acid (NOTA; 17,19) ligands bearing a dimethoxytritylated hydroxyl side arm were prepared and immobilized via an ester linkage to long chain alkyl amine derivatized controlled pore glass (LCAA-CPG). Oligonucleotide chains were then assembled on the hydroxyl function and conjugates were released and deprotected by a two-step cleavage with aqueous alkali and ammonia. The 3'-DOTA and 3'-NOTA conjugated oligonucleotides were converted to (68)Ga chelates by a brief treatment with [(68)Ga]Cl(3) at elevated temperature. Applicability of the conjugates for in vivo imaging with positron emission tomography (PET) was verified.  相似文献   

15.
The biological activities of tamoxifen derivatives that contain various side chain alterations were studied using a T47D breast cancer cell growth assay in vitro. We studied the activity of various analogs to determine the important aspects of side chain composition and aryl ring positioning on antiestrogenic activity. Previous studies utilizing a rat pituitary cell prolactin synthesis assay have shown that substitution of the aminoethoxy side chain for an allyl side chain resulted in agonist activity, whereas the addition of a glyceryl side chain produced antiestrogenic activity. In the present study utilizing T47D cells, compounds with alkyl or allyl substitutions were partial agonists, as were compounds with bulky para-substituted benzyl group constituents. A tamoxifen derivative with a side chain containing an ethyl ester was antiestrogenic (IC50 = 2 x 10(-6) M) and effectively inhibited estradiol (10(-10) M) stimulation of growth. However, a compound with a short similar methyl ester-containing side chain did not possess any activity. Compounds with carbinol-containing side chains were antiestrogenic (IC50 = 2.8-3.5 x 10(-7) M). All of the compounds displaying antiestrogenic activity could be "rescued" by incubation with estradiol (10(-8) M) and therefore were not nonspecifically toxic to the cells. These results support the hypothesis that the presence of a lone pair of electrons within the side chain region of tamoxifen may be required for antiestrogenic activity. Also, nonplanar placement of the aryl ring of the triphenylethylene-type of compound is critical for potency.  相似文献   

16.
Three sets of carboline derived compounds were prepared by Pictet-Spengler cyclization. These tetrahydro β- and γ-carbolines have CF3 group with an additional amino alkyl chains (α- or δ-position) and guanidine alkyl chains (α-position), of varying length. Structure–activity relationship of these molecules with calf thymus DNA was emphasized by fluorescence, ITC, FTIR and viscosity. Binding with DNA resulted in dramatic enhancement and quenching in the fluorescence emission. Gamma-carboline analogs showed maximum DNA binding followed by beta-carboline compounds with amino alkyl chain and least with guanidine alkyl chain compounds. It decreased with increasing chain length. The bindings were entropically driven being more with guanidine alkyl chain analogs. Site preference and mode of binding with partial intercalation and external binding was supported by FTIR and viscosity. Cytotoxic potencies of the compounds were tested on seven different cancer cell lines. The smallest alkyl chain analog attached to gamma position, Comp3, showed maximum cytotoxicity with GI50 6.2 µM, against HCT-116 causing apoptosis, followed by the guanidine alkyl chain compounds, but amino alkyl chain compounds to beta position showed poor cytotoxicity.These results may be of prospective use in a framework to design novel carboline derivatives as antitumor drugs for improved therapeutic applications in future.  相似文献   

17.
Based on the high, non-toxic and reversible antifouling activity of the polymeric 3-alkylpyridinium salts isolated from the sponge Reniera sarai, the anti-settlement activity and toxicity of a series of synthetic analogues has been studied. All the test compounds were less efficient than the natural polymers, suggesting that the high and reversible anti-macrofouling activity of the natural polymers could derive from their detergent-like properties. The values obtained for EC50sett. of inhibition of cyprid settlement and EC50imm. as naupliar toxicity for the synthetic compounds indicate that the presence of single or multiple charges in the structure is not relevant for the antifouling activity which, conversely, is favoured by increasing the length of the alkyl chain, or by the presence of uncharged pyridine units. The compound 1,8-di(3-pyridyl)octane was the most efficient (EC50sett. = 0.44 microgml(-1)), although with a higher toxicity on naupliar stage of B. amphitrite than the natural polymers.  相似文献   

18.
A stereoselective synthetic route has been developed for the combinatorial synthesis of a structurally unique class of C-4' side chain modified peptide-linked nucleosides. The synthetic strategy and approach involves initial synthesis of a strategically functionalized amino butenolide template, utilizing L-serine as a chiral starting material. Subsequent transformation of the above lactone to C4' aminoalkyl substituted nucleosides, followed by the peptidic coupling of the C4' side chain amine with various amino acids completed the syntheses of the target peptidyl nucleosides. Employing the above route, and utilizing a combination of easily available nucleobases (4) and amino acids (6) as the two diversity elements, synthesis of a 24-member combinatorial library of the title peptide-linked nucleosides has been accomplished.  相似文献   

19.
Biofouling results in tremendous economic losses to maritime industries around the world. A recent global ban on the use of organotin compounds as antifouling agents has further raised demand for safe and effective antifouling compounds. In this study, 49 secondary metabolites, including diterpenoids, steroids, and polyketides, were isolated from soft corals, gorgonians, brown algae, and fungi collected along the coast of China, and their antifouling activity was tested against cyprids of the barnacle Balanus (Amphibalanus) amphitrite. Twenty of the compounds were found to inhibit larval settlement significantly at a concentration of 25 μg ml-1. Two briarane diterpenoids, juncin O (2) and juncenolide H (3), were the most promising non-toxic antilarval settlement candidates, with EC50 values less than 0.13 μg ml-1 and a safety ratio (LC50/EC50) higher than 400. A preliminary structure—activity relationships study indicated that both furanon and furan moieties are important for antifouling activity. Intriguingly, the presence of hydroxyls enhanced their antisettlement activity.  相似文献   

20.
This paper presents a comparative study on the antifouling properties of poly(ethylene glycol) (PEG)-based polymer coatings prepared by surface-initiated polymerization (SIP). Three types of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMEMA) polymer thin films of approximate 100 nm thickness were grafted from a catechol initiator that was immobilized on a Ti substrate. OEGMEMA monomers containing side chains of 4, 9, and 23 EG units were used in surface-initiated atom transfer radical polymerization (SI-ATRP) to form POEGMEMA-4, -9, and -23 polymer brushes. The chemical composition, thickness, and wettability of the polymer brushes were characterized by X-ray photoelectron spectroscopy (XPS), ellipsometry, and static water contact angle measurements, respectively. The dependence of antifouling performance on EG side chain length was systemically tested and compared by 3T3 fibroblast cell adhesion assays. Results from 4-h cell culture experiments revealed the complete absence of cell attachment on all the grafted Ti substrates. Excellent cell fouling resistance continued with little dependence on EG side chain length up to three weeks, after which long-term antifouling performance depended on the EG chain length as the grafted samples reached confluent cell coverage in 7, 10, and 11 weeks for POEGMEMA-4, -9, and -23, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号