首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Noninvasive genetic tracking of the endangered Pyrenean brown bear population   总被引:27,自引:0,他引:27  
Pyrenean brown bears Ursus arctos are threatened with extinction. Management efforts to preserve this population require a comprehensive knowledge of the number and sex of the remaining individuals and their respective home ranges. This goal has been achieved using a combination of noninvasive genetic sampling of hair and faeces collected in the field and corresponding track size data. Genotypic data were collected at 24 microsatellite loci using a rigorous multiple-tubes approach to avoid genotyping errors associated with low quantities of DNA. Based on field and genetic data, the Pyrenean population was shown to be composed at least of one yearling, three adult males, and one adult female. These data indicate that extinction of the Pyrenean brown bear population is imminent without population augmentation. To preserve the remaining Pyrenean gene pool and increase genetic diversity, we suggest that managers consider population augmentation using only females. This study demonstrates that comprehensive knowledge of endangered small populations of mammals can be obtained using noninvasive genetic sampling.  相似文献   

2.
Obligate scavenging on the dead and decaying animal matter is a rare dietary specialization that in extant vertebrates is restricted to vultures. These birds perform essential ecological services, yet many vulture species have undergone recent steep population declines and are now endangered. To test for molecular adaptations underlying obligate scavenging in vultures, and to assess whether genomic features might have contributed to their population declines, we generated high-quality genomes of the Himalayan and bearded vultures, representing both independent origins of scavenging within the Accipitridae, alongside a sister taxon, the upland buzzard. By comparing our data to published sequences from other birds, we show that the evolution of obligate scavenging in vultures has been accompanied by widespread positive selection acting on genes underlying gastric acid production, and immunity. Moreover, we find evidence of parallel molecular evolution, with amino acid replacements shared among divergent lineages of these scavengers. Our genome-wide screens also reveal that both the Himalayan and bearded vultures exhibit low levels of genetic diversity, equating to around a half of the mean genetic diversity of other bird genomes examined. However, demographic reconstructions indicate that population declines began at around the Last Glacial Maximum, predating the well-documented dramatic declines of the past three decades. Taken together, our genomic analyses imply that vultures harbor unique adaptations for processing carrion, but that modern populations are genetically depauperate and thus especially vulnerable to further genetic erosion through anthropogenic activities.  相似文献   

3.
We present the identification and characterization of microsatellite loci in the Pyrenean endemic Borderea pyrenaica Miégeville (Dioscoreaceae). Seven microsatellite loci were isolated from a (CTT)(n)-enriched partial genomic library. Electropherograms patterns suggest that B. pyrenaica is a tetraploid species, as is its congener B. chouardii. One microsatellite locus was monomorphic, whereas the remaining ones presented from 2 to 10 alleles when analyzed in a sample of 60 individuals. Microsatellites have revealed higher levels of genetic variability than those in previous studies based on allozymes. Levels of genetic diversity are discussed in terms of tetrasomic (autotetraploidy) or duplicated disomic (allotetraploidy) modes of allele segregation. According to the first hypothesis, mean levels of genetic variability (H(min)-H(max)) range between 0.36 and 0.41, whereas, according to the second hypothesis, the 7 primer pairs amplified 11 chromosomal loci, and mean levels of observed and expected heterozygosities were 0.217 and 0.229, respectively, and did not differ significantly from HW expectations. These results suggest a hybrid allopolyploid origin for the Borderea taxa.  相似文献   

4.
We combined pedigree data with data derived from 14 microsatellite loci to investigate genetic diversity and its maintenance in the captive source population for the reintroduction of the bearded vulture into the Alps. We found the captive population to be genetically more variable than the largest natural population in Europe, both in terms of mean number of alleles per locus and mean observed and expected heterozygosity. Allelic diversity of the captive population was higher than, and mean heterozygosity measurements were comparable with the ones found in two large, extinct populations from Sardinia and the Alps represented by museum specimens. The amount of genetic variability recruited with the founders was still present in the captive population of the year 2000, mainly because the carriers of rare alleles were still alive. However, the decline in expected heterozygosity and the loss of alleles over generations in captivity was significant. Point estimates of effective population size, N(e), based on pedigree data and estimates of effective number of breeders, N(b), based on allele frequency changes, ranged from 20 to 30 and were significantly smaller than the census size. The results demonstrate that the amount of genetic variability in the captive bearded vulture population is comparable or even larger than the amount present in natural populations. However, the population is in danger to lose genetic variability over time because of genetic drift. Management strategies should therefore aim at preserving genetic variability by minimising kinship, and at increasing N(e) by recruiting additional founders and enhancing gene flow between the released, the captive and natural populations.  相似文献   

5.
A study of genetic diversity at microsatellite loci and the mitochondrial DNA (mtDNA) cytochrome b gene was carried out to assess genetic relationships among four Mexican cave (Pachon, Sabinos, Tinaja, Chica) and four surface populations of Astyanax fasciatus (Characidae) from northeast Mexico and the Yucatan. With the exception of Chica, the cave populations were all characterized by extremely low microsatellite variability, which most likely resulted from bottleneck events. Population analyses of the microsatellite data indicated no measurable levels of gene flow between all cave and surface populations (F(ST) > 0.0707). Phylogenetic analyses of mtDNA data showed that only two cave populations - Sabinos and Tinaja - group together to the exclusion of surface populations. From the microsatellite data these cave populations cluster with the Pachon cave fish population. The mtDNA thus appears to have been replaced in Pachon because of introgressive hybridization. It is likely that these three cave populations have descended from a surface ancestor in common with current surface populations, rather than evolving recently from one of the extant surface populations. Like Pachon, the Chica population clustered with the surface populations according to mtDNA data, but was not clearly associated with either the surface or the other cave populations according to the microsatellite data. Our data indicate that the Chica population evolved recently from a surface population, and subsequently hybridized with a phylogenetically older cave population. In conclusion, both the microsatellite and mtDNA data suggest multiple origins of cave populations and the Chica and Sabinos/Tinaja/Pachon were founded after at least two independent invasions from surface populations.  相似文献   

6.
Greater prairie-chickens (Tympanuchus cupido pinnatus) were once found throughout the tallgrass prairie of midwestern North America but over the last century these prairies have been lost or fragmented by human land use. As a consequence, many current populations of prairie-chickens have become isolated and small. This fragmentation of populations is expected to lead to reductions in genetic variation as a result of random genetic drift and a decrease in gene flow. As expected, we found that genetic variation at both microsatellite DNA and mitochondrial DNA (mtDNA) markers was reduced in smaller populations, particularly in Wisconsin. There was relatively little range-wide geographical structure (FST) when we examined mtDNA haplotypes but there was a significant positive relationship between genetic (FST) and geographical distance (isolation by distance). In contrast, microsatellite DNA loci revealed significant geographical structure (FST) and a weak effect of isolation by distance throughout the range. These patterns were much stronger when populations with reduced levels of genetic variability (Wisconsin) were removed from the analyses. This suggests that the effects of genetic drift were stronger than gene flow at microsatellite loci, whereas these forces were in range-wide equilibrium at mtDNA markers. These differences between the two molecular markers may be explained by a larger effective population size (Ne) for mtDNA, which is expected in species such as prairie-chickens that have female-biased dispersal and high levels of polygyny. Our results suggest that historic populations of prairie-chickens were once interconnected by gene flow but current populations are now isolated. Thus, maintaining gene flow may be important for the long-term persistence of prairie-chicken populations.  相似文献   

7.
The low-latitude limits of species ranges are thought to be particularly important as long-term stores of genetic diversity and hot spots for speciation. The Iberian Peninsula, one of the main glacial refugia in Europe, houses the southern distribution limits of a number of boreal species. The capercaillie is one such species with a range extending northwards to cover most of Europe from Iberia to Scandinavia and East to Siberia. The Cantabrian Range, in North Spain, constitutes the contemporary south-western distribution limit of the species. In contrast to all other populations, which live in pure or mixed coniferous forests, the Cantabrian population is unique in inhabiting pure deciduous forests. We have assessed the existence of genetic differentiation between this and other European populations using microsatellite and mitochondrial DNA (mtDNA) extracted from capercaillie feathers. Samples were collected between 2001 and 2004 across most of the current distribution of the Cantabrian population. Mitochondrial DNA analysis showed that the Cantabrian birds form a distinct clade with respect to all the other European populations analysed, including the Alps, Black Forest, Scandinavia and Russia, which are all members of a discrete clade. Microsatellite DNA from Cantabrian birds reveals the lowest genetic variation within the species in Europe. The existence of birds from both mtDNA clades in the Pyrenees and evidence from microsatellite frequencies for two different groups, points to the existence of a Pyrenean contact zone between European and Cantabrian type birds. The ecological and genetic differences of the Cantabrian capercaillies qualify them as an Evolutionarily Significant Unit and support the idea of the importance of the rear edge for speciation. Implications for capercaillie taxonomy and conservation are discussed.  相似文献   

8.
BACKGROUND: Individuals from an introduced population of longtail macaques on Mauritius have been extensively used in recent research. This population has low MHC gene diversity, and is thus regarded as a valuable resource for research. METHODS: We investigated the genetic diversity of this population using multiple molecular markers located in mitochondrial DNA and microsatellite DNA loci on the autosomes and the Y chromosome. We tested samples from 82 individuals taken from seven study sites. RESULTS AND CONCLUSIONS: We found this population to be panmictic, with a low degree of genetic variability. On the basis of an mtDNA phylogeny, we inferred that these macaques' ancestors originated from Java in Asia. Weak gametic disequilibrium was observed, suggesting decay of non-random associations between genomic genes at the time of founding. The results suggest that macaques bred in Mauritius are valuable as model animals for biomedical research because of their genetic homogeneity.  相似文献   

9.
The genetic structure and the phylogenetic relationships among five Balkan populations of trout Salmo trutta that have been classified earlier into five different taxa were studied, using microsatellite and mitochondrial DNA (mtDNA) analyses. The pattern of population differentiation observed at microsatellites differed to that depicted by mtDNA variation, yet both methods indicated a very strong partitioning of the genetic variation among sampling locations. Results thus suggest that conservation strategies should be directed towards preserving the genetic integrity and uniqueness of each population.  相似文献   

10.
We analyzed the hypervariable region I (HVR-I) sequence variability of the mitochondrial DNA (mtDNA) of individuals buried at Aldaieta (6th-7th centuries AD) in order to find out more about the biosocial implications of this cemetery. The results, fully authenticated by means of diverse criteria (analysis of duplicates, replication in an independent laboratory, quantification of target DNA, and sequencing and cloning of polymerase chain reaction products), suggest that Aldaieta largely consists of autochthonous individuals who shared common funereal customs with the late Ancient North Pyrenean cemeteries of Western Europe (the Reihengr?berfelder), a cultural influence possibly accompanied by a certain genetic flow. Furthermore, the distribution of mtDNA lineages in the cemetery highlighted the existence of a significant number of family relationships, supporting the belief that it was a stable settlement and not a group that had haphazardly settled in the area. Finally, this paper stresses the importance of ancient DNA data for reconstructing the biological history of human populations, rendering it possible to verify certain hypotheses based solely on current population data. The presence at Aldaieta of an mtDNA lineage originating in Northwest Africa testifies to the existence of contact between the Iberian Peninsula and Northwest Africa prior to the Moorish occupation. Both this latter discovery and the high frequency of haplogroup J at the Aldaieta cemetery raise questions about the generally accepted belief that, since ancient times, the influence of other human groups has been very scarce in the Basque Country.  相似文献   

11.
Microsatellites and mitochondrial DNA (mtDNA) have traditionally been used in population genetics because of their variability and presumed neutrality, whereas genes of the major histocompatibility complex (MHC) are increasingly of interest because strong selective pressures shape their standing variation. Despite the potential for MHC genes, microsatellites, and mtDNA sequences to complement one another in deciphering population history and demography, the three are rarely used in tandem. Here we report on MHC, microsatellite, and mtDNA variability in a single large population of the eastern tiger salamander (Ambystoma tigrinum tigrinum). We use the mtDNA mismatch distribution and, on microsatellite data, the imbalance index and bottleneck tests to infer aspects of population history and demography. Haplotype and allelic variation was high at all loci surveyed, and heterozygosity was high at the nuclear loci. We find concordance among neutral molecular markers that suggests our study population originated from post-Pleistocene expansions of multiple, fragmented sources that shared few migrants. Differences in N(e) estimates derived from haploid and diploid genetic markers are potentially attributable to secondary contact among source populations that experienced rapid mtDNA divergence and comparatively low levels of nuclear DNA divergence. We find strong evidence of natural selection acting on MHC genes and estimate long-term effective population sizes (N(e)) that are very large, making small selection intensities significant evolutionary forces in this population.  相似文献   

12.
Eight microsatellite DNA markers were isolated and characterized from white bearded manakin (Manacus manacus) using an enrichment cloning procedure. A large number of alleles (range 9–25), and high levels of observed heterozygosity (mean 0.67) were resolved in 236 individuals. No evidence for linkage disequilibrium or the presence of null alleles was found, indicating that these markers will be useful for examining genetic relatedness, parentage and population structure in manakins.  相似文献   

13.
Due to their high mobility, large terrestrial predators are potentially capable of maintaining high connectivity, and therefore low genetic differentiation among populations. However, previous molecular studies have provided contradictory findings in relation to this. To elucidate patterns of genetic structure in large carnivores, we studied the genetic variability of the Eurasian lynx, Lynx lynx throughout north-eastern Europe using microsatellite, mitochondrial DNA control region and Y chromosome-linked markers. Using SAMOVA we found analogous patterns of genetic structure based on both mtDNA and microsatellites, which coincided with a relatively little evidence for male-biased dispersal. No polymorphism for the cytochrome b and ATP6 mtDNA genes and Y chromosome-linked markers were found. Lynx inhabiting a large area encompassing Finland, the Baltic countries and western Russia formed a single genetic unit, while some marginal populations were clearly divergent from others. The existence of a migration corridor was suggested to correspond with distribution of continuous forest cover. The lowest variability (in both markers) was found in lynx from Norway and Białowieża Primeval Forest (BPF), which coincided with a recent demographic bottleneck (Norway) or high habitat fragmentation (BPF). The Carpathian population, being monomorphic for the control region, showed relatively high microsatellite diversity, suggesting the effect of a past bottleneck (e.g. during Last Glacial Maximum) on its present genetic composition. Genetic structuring for the mtDNA control region was best explained by latitude and snow cover depth. Microsatellite structuring correlated with the lynx''s main prey, especially the proportion of red deer (Cervus elaphus) in its diet. Eurasian lynx are capable of maintaining panmictic populations across eastern Europe unless they are severely limited by habitat continuity or a reduction in numbers. Different correlations of mtDNA and microsatellite population divergence patterns with climatic and ecological factors may suggest separate selective pressures acting on males and females in this solitary carnivore.  相似文献   

14.
<正>猫科动物广泛分布于世界各地(Johnson et al.,2006),全球现存37种猫科动物,其中25种已被国际自然保护联盟(IUCN)列为濒危和易危,86%以上的种群数量处于下降或未知状态(IUCN Red List,2011)。我国有13种猫科动物,占世界种类的35%(王应祥,2003),其中属于国家一级保护的有4种,二级保护的有8种,然而,对这些珍稀物种的生态学研究并不充分(高耀亭,  相似文献   

15.
Levels of genetic variability at 12 microsatellite loci and 19 single nucleotide polymorphisms in mitochondrial DNA were studied in four farm strains and four wild populations of Atlantic salmon. Within populations, the farm strains showed significantly lower allelic richness and expected heterozygosity than wild populations at the 12 microsatellite loci, but a significantly higher genetic variability with respect to observed number of haplotypes and haplotype diversity in mtDNA. Significant differences in allele- and haplotype-frequencies were observed between farm strains and wild populations, as well as between different farm strains and between different wild populations. The large genetic differentiation at mitochondrial DNA between wild populations (FST = 0.24), suggests that the farm strains attained a high mitochondrial genetic variability when created from different wild populations seven generations ago. A large proportion of this variability remains despite an expected lower effective population size for mitochondrial than nuclear DNA. This is best explained by the particular mating schemes in the breeding programmes, with 2–4 females per male. Our observations suggest that for some genetic polymorphisms farm populations might currently hold equal or higher genetic variability than wild populations, but lower overall genetic variability. In the short-term, genetic interactions between escaped farm salmon and wild salmon might increase genetic variability in wild populations, for some, but not most, genetic polymorphisms. In the long term, further losses of genetic variability in farm populations are expected for all genetic polymorphisms, and genetic variability in wild populations will be reduced if escapes of farm salmon continue.  相似文献   

16.
Genetic structure and species relationships were studied in three closely related mosquito species, Anopheles dirus A, C and D in Thailand using 11 microsatellite loci and compared with previous mitochondrial DNA (mtDNA) data on the same populations. All three species were well differentiated from each other at the microsatellite loci. Given the almost complete absence of mtDNA differentiation between An. dirus A and D, this endorses the previous suggestion of mtDNA introgression between these species. The high degree of differentiation between the northern and southern population of An. dirus C (RST = 0.401), in agreement with mtDNA data, is suggestive of incipient species. The lack of genetic structure indicated by microsatellites in four populations of An. dirus A across northern Thailand also concurs with mtDNA data. However, in An. dirus D a limited but significant level of structure was detected by microsatellites over ~400 km in northern Thailand, whereas the mtDNA detected no population differentiation over a much larger area (>1200 km). There is prior evidence for population expansion in the mtDNA. If this is due to a selective sweep originating in An. dirus D, the microsatellite data may indicate greater barriers to gene flow within An. dirus D than in species A. Alternatively, there may have been historical introgression of mtDNA and subsequent demographic expansion which occurred first in An. dirus D so enabling it to accumulate some population differentiation. In the latter case the lack of migration-drift equilibrium precludes the inference of absolute or relative values of gene flow in An. dirus A and D.  相似文献   

17.
Sea otter (Enhydra lutris) populations experienced widespread reduction and extirpation due to the fur trade of the 18th and 19th centuries. We examined genetic variation within four microsatellite markers and the mitochondrial DNA (mtDNA) d-loop in one prefur trade population and compared it to five modern populations to determine potential losses in genetic variation. While mtDNA sequence variability was low within both modern and extinct populations, analysis of microsatellite allelic data revealed that the prefur trade population had significantly more variation than all the extant sea otter populations. Reduced genetic variation may lead to inbreeding depression and we believe sea otter populations should be closely monitored for potential associated negative effects.  相似文献   

18.
The genetic population structure of the bumble bee Bombus pascuorum was studied using six microsatellite loci and a partial sequence of the mitochondrial gene cytochrome b . Eighteen populations from central and northern Europe were included in the analysis. Observed levels of genetic variability and heterozygosity were high. Estimates of population differentiation based on F - and Φ-statistics revealed significant genetic differentiation among B. pascuorum populations and suggest that two partially isolated gene pools, separated by the Alps, do exist. The distribution of mtDNA haplotypes supports this view and presents direct evidence for gene flow across the Alps. Estimates of the number of migrants exchanged among populations north of the Alps suggest that historical events may have left a strong imprint on population structure.  相似文献   

19.
The growing number of grey seals in the Baltic Sea has led to a dramatic increase in interactions between seals and fisheries. The conflict has become such a problem that hunting was introduced in Finland in 1998 and the Swedish Environment Protection Agency recommended a cull of grey seals starting in 2001. Culling has been implemented despite the lack of data on population structure. Low levels of migration between regions would mean that intensive culling in specific geographic areas would have disproportionate effects on local population structure and genetic diversity. We used eight microsatellite loci and a 489 bp section of the mtDNA control region to examine the genetic variability and differentiation between three breeding sites in the Baltic Sea and two in the UK. We found high levels of genetic variability in all sampled Baltic groups for both the microsatellites and the control region. There were highly significant differences in microsatellite allele frequencies between all three Baltic breeding sites and between the Baltic sites and the UK sites. However, there were no significant differences in mtDNA control region haplotypes between the Baltic sites. This genetic substructure of the Baltic grey seal populations should be taken into consideration when managing the seal population to prevent the hunting regime from having an adverse effect on genetic diversity by setting hunting quotas separately for the different subpopulations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The pattern and scale of the genetic structure of populations provides valuable information for the understanding of the spatial ecology of populations, including the spatial aspects of density fluctuations. In the present paper, the genetic structure of periodically fluctuating lemmings (Dicrostonyx groenlandicus) in the Canadian Arctic was analysed using mitochondrial DNA (mtDNA) control region sequences and four nuclear microsatellite loci. Low genetic variability was found in mtDNA, while microsatellite loci were highly variable in all localities, including localities on isolated small islands. For both genetic markers the genetic differentiation was clear among geographical regions but weaker among localities within regions. Such a pattern implies gene flow within regions. Based on theoretical calculations and population census data from a snap-trapping survey, we argue that the observed genetic variability on small islands and the low level of differentiation among these islands cannot be explained without invoking long distance dispersal of lemmings over the sea ice. Such dispersal is unlikely to occur only during population density peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号